E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Coldfire V4
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	I ² C, SPI, SSI, UART/USART, USB OTG
Peripherals	DMA, WDT
Number of I/O	132
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.35V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	360-BBGA
Supplier Device Package	360-TEPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcf54452cvr200

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MCF5445x Family Comparison

1 MCF5445*x* Family Comparison

The following table compares the various device derivatives available within the MCF5445*x* family.

Table 1. MCF5445*x* Family Configurations

Module	MCF54450	MCF54451	MCF54452	MCF54453	MCF54454	MCF54455
ColdFire Version 4 Core with EMAC (Enhanced Multiply-Accumulate Unit)	•	•	•	•	•	•
Core (System) Clock	up to 24	40 MHz		up to 2	66 MHz	1
Peripheral Bus Clock (Core clock ÷ 2)	up to 1	20 MHz		up to 1	33 MHz	
External Bus Clock (Core clock ÷ 4)	up to 6	60 MHz		up to 6	6 MHz	
Performance (Dhrystone/2.1 MIPS)	up to	370		up to	o 410	
Independent Data/Instruction Cache			16 Kbyt	es each		
Static RAM (SRAM)			32 K	bytes		
PCI Controller	—	_	•	•	•	•
Cryptography Acceleration Unit (CAU)	—	•	—	•	—	•
ATA Controller	—	_	—	—	•	•
DDR SDRAM Controller	•	•	•	•	•	•
FlexBus External Interface	•	•	•	•	•	•
USB 2.0 On-the-Go	•	•	•	•	•	•
UTMI+ Low Pin Interface (ULPI)	•	•	•	•	•	•
Synchronous Serial Interface (SSI)	•	•	•	•	•	•
Fast Ethernet Controller (FEC)	1	1	2	2	2	2
UARTs	3	3	3	3	3	3
l ² C	•	•	•	•	•	•
DSPI	•	•	•	•	•	•
Real Time Clock	•	•	•	•	•	•
32-bit DMA Timers	4	4	4	4	4	4
Watchdog Timer (WDT)	•	•	•	•	•	•
Periodic Interrupt Timers (PIT)	4	4	4	4	4	4
Edge Port Module (EPORT)	•	•	•	•	•	•
Interrupt Controllers (INTC)	2	2	2	2	2	2
16-channel Direct Memory Access (DMA)	•	•	•	•	•	•
General Purpose I/O (GPIO)	•	•	•	•	•	•
JTAG - IEEE [®] 1149.1 Test Access Port	•	•	•	•	•	•
Package	256 MAPBGA 360 TEPBGA					1

2 Ordering Information

Table 2. Orderable Part Numbers

Freescale Part Number	Description	Package	Speed	Temperature
MCF54450CVM180			180 MHz	–40° to +85° C
MCF54450VM240	MCF54450 Microprocessor		240 MHz	0° to +70° C
MCF54451CVM180	MCE54451 Microprocessor	230 WAF DOA	180 MHz	-40° to $+85^{\circ}$ C
MCF54451VM240	1001 54451 Microprocessor		240 MHz	0° to +70° C
MCF54452CVR200			200 MHz	-40° to $+85^{\circ}$ C
MCF54452YVR200	MCF54452 Microprocessor		200 MHz	–40° to +105° C
MCF54452VR266			266 MHz	0° to +70° C
MCF54453CVR200	MCE54453 Microprocessor		200 MHz	-40° to $+85^{\circ}$ C
MCF54453VR266	1001 04400 Microprocessor	360 TEPBGA	266 MHz	0° to +70° C
MCF54454CVR200	MCE54454 Microprocessor		200 MHz	-40° to $+85^{\circ}$ C
MCF54454VR266	Mor 34434 Microprocessor		266 MHz	0° to +70° C
MCF54455CVR200	MCE54455 Microprocessor		200 MHz	-40° to $+85^{\circ}$ C
MCF54455VR266	Wor 34433 Wicroprocessor		266 MHz	0° to +70° C

3 Hardware Design Considerations

3.1 Analog Power Filtering

To further enhance noise isolation, an external filter is strongly recommended for the analog V_{DD} pins (VDD_A_PLL, VDD_RTC). The filter shown in Figure 2 should be connected between the board IV_{DD} and the analog pins. The resistor and capacitors should be placed as close to the dedicated analog V_{DD} pin as possible. The 10- Ω resistor in the given filter is required. Do not implement the filter circuit using only capacitors. The analog power pins draw very little current. Concerns regarding voltage loss across the 10-ohm resistor are not valid.

Figure 2. System Analog V_{DD} Power Filter

Pin Assignments and Reset States

Signal Name	GPIO	Alternate 1	Alternate 2	Pull-up (U) ¹ Pull-down (D)	Direction ²	Voltage Domain	MCF54450 MCF54451 256 MAPBGA	MCF54452 MCF54453 MCF54454 MCF54455 360 TEPBGA
FB_TS	PFBCTL0	FB_ALE	FB_TBST	_	0	EVDD	A3	Y3
		PC	Cl Controller ⁵					
PCI_AD[31:0]	_	FB_A[31:0]			I/O EVDD —		_	C11, D11, A10, B10, J4, G2, G3, F1, D12, C12, B12, A11, B11, B9, D9, D10, A8, B8, A5, B5, A4, A3, B3, D4, D3, E3–E1, F3, C2, D2, C1
_	_	FB_A[23:0]	_	_	I/O	EVDD	K14–13, J15–13, H13–15, G15–13, F14–13, E15–13, D16, B16, C15, B15, C14, D15, C16, D14	_
PCI_CBE[3:0]	—	—	_	_	I/O	EVDD	—	G4, E4, D1, B1
PCI_DEVSEL	—	—	—	_	0	EVDD	—	F2
PCI_FRAME	—	_	_	—	I/O	EVDD	—	B2
PCI_GNT3	PPCI7	ATA_DMACK	_	—	0	EVDD	_	B7
PCI_GNT[2:1]	PPCI[6:5]	_	_	_	0	EVDD	—	C8, C9
PCI_GNT0/ PCI_EXTREQ	PPCI4		_	—	0	EVDD	—	A9
PCI_IDSEL	—	_	_	—	I	EVDD	_	D5
PCI_IRDY	—	_	_	—	I/O	EVDD	_	C3
PCI_PAR	—	_	_	—	I/O	EVDD	_	C4
PCI_PERR	—	_	_	_	I/O	EVDD	—	B4
PCI_REQ3	PPCI3	ATA_INTRQ	_	_	I	EVDD	—	C7
PCI_REQ[2:1]	PPCI[2:1]	_	_	—	I	EVDD	_	D7, C5
PCI_REQ0/ PCI_EXTGNT	PPCI0		_	—	I	EVDD	—	A2
PCI_RST	_	_	_	—	0	EVDD	_	B6
PCI_SERR	—	_	_	—	I/O	EVDD	_	A6
PCI_STOP	—		—	—	I/O	EVDD	—	A7
PCI_TRDY	—	_	_	—	I/O	EVDD	—	C10
		SDR	AM Controller					
SD_A[13:0]					0	SDVDD	R1, P1, N2, P2, R2, T2, M4, N3, P3, R3, T3, T4, R4, N4	V22, U20–22, T19–22, R20–22, N19, P20–21

Table 4. MCF5445*x* Signal Information and Muxing (continued)

Pin Assignments and Reset States

Signal Name GPIO Alternate 1		Alternate 2	Pull-up (U) ¹ Pull-down (D)	Direction ²	Voltage Domain	MCF54450 MCF54451 256 MAPBGA	MCF54452 MCF54453 MCF54454 MCF54455 360 TEPBGA	
SD_BA[1:0]	_	—	_		0	SDVDD	P4, T5	P22, P19
SD_CAS	_	—	_	_	0	SDVDD	T6	L19
SD_CKE	_	—	_	_	0	SDVDD	N5	N22
SD_CLK	—	_	—	—	0	SDVDD	Т9	L22
SD_CLK	_	—	_	—	0	SDVDD	Т8	M22
SD_CS[1:0]		—	_	—	0	SDVDD	P6, R6	L20, M20
SD_D[31:16]	SD_D[31:16] —			_	I/O	SDVDD	N6, T7, N7, P7, R7, R8, P8, N8, N9, T10, R10, P10, N10, T11, R11, P11	L21, K22, K21, K20, J20, J19, J21, J22, H20, G22, G21, G20, G19, F22, F21, F20
SD_DM[3:2]	_	—	—	_	0	SDVDD	P9, N12	H21, E21
SD_DQS[3:2]		—		—	0	SDVDD	R9, N11	H22, E22
SD_RAS	_	—	—	—	0	SDVDD	P5	N21
SD_VREF			—	—	I	SDVDD	M8	M21
SD_WE	_	—	—	—	0	SDVDD	R5	N20
		Externa	al Interrupts Port ⁶					
IRQ7	PIRQ7	—	_		I	EVDD	L1	ABB13
IRQ4	PIRQ4	—	SSI_CLKIN	_	I	EVDD	L2	ABB13
IRQ3	PIRQ3	—	_	_	I	EVDD	L3	AB14
IRQ1	PIRQ1	PCI_INTA	—	—	Ι	EVDD	F15	C6
			FEC0					
FEC0_MDC	PFECI2C3	—	_		0	EVDD	F3	AB8
FEC0_MDIO	PFECI2C2	—	_		I/O	EVDD	F2	Y7
FEC0_COL	PFEC0H4	—	ULPI_DATA7	—	I	EVDD	E1	AB7
FEC0_CRS	PFEC0H0	—	ULPI_DATA6	—	I	EVDD	F1	AA7
FEC0_RXCLK	PFEC0H3	—	ULPI_DATA1		I	EVDD	G1	AA8
FEC0_RXDV	PFEC0H2	FEC0_RMII_ CRS_DV		—	I	EVDD	G2	Y8
FEC0_RXD[3:2]	PFEC0L[3:2]	—	ULPI_DATA[5:4]		I	EVDD	G3, G4	AB9, Y9
FEC0_RXD1	PFEC0L1	FEC0_RMII_RXD1	_	_	I	EVDD	H1	W9
FEC0_RXD0	PFEC0H1	FEC0_RMII_RXD0	_		I	EVDD	H2	AB10
FEC0_RXER	PFEC0L0	FEC0_RMII_RXER		—	Ι	EVDD	H3	AA10

Table 4. MCF5445x Signal Information and Muxing (continued)

Pin Assignments and Reset States

Signal Name	GPIO	Alternate 1	Alternate 2	Pull-up (U) ¹ Pull-down (D)	Direction ²	Voltage Domain	MCF54450 MCF54451 256 MAPBGA	MCF54452 MCF54453 MCF54454 MCF54455 360 TEPBGA			
DSPI_SIN	PDSPI1	SBF_DI	_	8	I	EVDD	P15	B19			
DSPI_SOUT	PDSPI0	SBF_DO	—		0	EVDD	N13	C20			
			UARTs								
U1CTS	PUART7	—	_	—	Ι	EVDD	—	V3			
U1RTS	PUART6	_	_	—	0	EVDD	—	U4			
U1RXD	PUART5			—	Ι	EVDD	_	P3			
U1TXD	PUART4			—	0	EVDD	_	N3			
UOCTS	PUART3	_			I	EVDD	M3	Y16			
UORTS	PUART2	_	_		0	EVDD	M2	AA16			
UORXD	U0RXD PUART1 —		_		I	EVDD	N1	AB16			
U0TXD	PUART0	_	—	—	0	EVDD	M1	W15			
Note: The UART1 and	d UART 2 signals	are multiplexed on the	e DMA timers and I	2C pins.							
DMA Timers											
DT3IN	PTIMER3	DT3OUT	U2RXD		Ι	EVDD	C13	H2			
DT2IN	PTIMER2	DT2OUT	U2TXD	—	Ι	EVDD	D13	H1			
DT1IN	PTIMER1	DT1OUT	U2CTS	—	Ι	EVDD	B14	H3			
DT0IN	PTIMER0	DTOOUT	U2RTS	_	Ι	EVDD	A15	G1			
		E	BDM/JTAG ⁹								
PSTDDATA[7:0]	_	_	—	—	0	EVDD	E2, D1, F4, E3, D2, C1, E4, D3	AA6, AB6, AB5, W6, Y6, AA5, AB4, Y5			
JTAG_EN		_		D	I	EVDD	M11	C21			
PSTCLK	_	TCLK	_		I	EVDD	P13	C22			
DSI	_	TDI	—	U	I	EVDD	T15	C19			
DSO	_	TDO	—	—	0	EVDD	T14	A21			
BKPT	—	TMS	—	U	Ι	EVDD	R14	B21			
DSCLK		TRST	—	U	Ι	EVDD	M13	B22			
			Test								
TEST	_	_	_	D	Ι	EVDD	M6	AB20			
PLLTEST	_		—	_	0	EVDD	K16	D15			

Table 4. MCF5445x Signal Information and Muxing (continued)

Signal Name	GPIO	Alternate 1	Alternate 2	Pull-up (U) ¹ Pull-down (D)	Direction ²	Voltage Domain	MCF54450 MCF54451 256 MAPBGA	MCF54452 MCF54453 MCF54454 MCF54455 360 TEPBGA					
	Power Supplies												
IVDD	_	_	_	_	—		E6–12, F5, F12	D6, D8, D14, F4, H4, N4, R4, W4, W7, W8, W12, W16, W19					
EVDD	_	_	_	_	_	_	G5, G12, H5, H12, J5, J12, K5, K12, L5–6, L12	D13, D19, G8, G11, G14, G16, J7, J16, L7, L16, N16, P7, R16, T8, T12, T14, T16					
SD_VDD	—	_	—	—	—	—	L7–11, M9, M10	F19, H19, K19, M19, R19, U19					
VDD_OSC	—	—	—	_	_	—	L14	B16					
VDD_A_PLL	—	—	—	_	_	—	K15	C14					
VDD_RTC	—	—	—	_	_	—	M12	C13					
VSS	_	_		_			A1, A16, F6–11, G6–11, H6–11, J6–11, K6–11, T1, T16	A1, A22, B14, G7, G9–10, G12–13, G15, H7, H16, J9–14, K7, K9–14, K16, L9–14, M7, M9–M14, M16, N7, N9–14, P9–14, P16, R7, T7, T9–11, T13, T15, AB1, AB22					
VSS_OSC	—	_		—	—	—	L15	C16					

Table 4. MCF5445*x* Signal Information and Muxing (continued)

¹ Pull-ups are generally only enabled on pins with their primary function, except as noted.

² Refers to pin's primary function.

- ³ Enabled only in oscillator bypass mode (internal crystal oscillator is disabled).
- ⁴ Serial boot must select 0-bit boot port size to enable the GPIO mode on these pins.
- ⁵ When the PCI is enabled, all PCI bus pins come up configured as such. This includes the PCI_GNT and PCI_REQ lines, which have GPIO. The IRQ1/PCI_INTA signal is a special case. It comes up as PCI_INTA when booting as a PCI agent and as GPIO when booting as a PCI host.

For the 360 TEPBGA, booting with PCI disabled results in all dedicated PCI pins being safe-stated. The PCI_GNT and PCI_REQ lines and IRQ1/PCI_INTA come up as GPIO.

- ⁶ GPIO functionality is determined by the edge port module. The pin multiplexing and control module is only responsible for assigning the alternate functions.
- ⁷ Depends on programmed polarity of the USB_VBUS_OC signal.
- ⁸ Pull-up when the serial boot facility (SBF) controls the pin
- ⁹ If JTAG_EN is asserted, these pins default to Alternate 1 (JTAG) functionality. The pin multiplexing and control module is not responsible for assigning these pins.

4.2 Pinout—256 MAPBGA

The pinout for the MCF54450 and MCF54451 packages are shown below.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
A		FB_OE	FB_TS	FB_BE/ BWE0	FB_BE/ BWE2	FB_AD 2	FB_AD 6	FB_AD 10	FB_AD 14	FB_AD 18	FB_AD 22	FB_AD 26	FB_AD 30	FB_AD 31	TOIN		A
в	FB_TA	FB_R/W	USB_ VBUS_ OC	FB_BE/ BWE1	FB_BE/ BWE3	FB_AD 3	FB_AD 7	FB_AD 11	FB_AD 15	FB_AD 19	FB_AD 23	FB_AD 27	FB_CLK	T1IN	FB_A 4	FB_A 6	в
с	PST DDATA2	FB_CS3	FB_CS1	FB_CS0	FB_AD 0	FB_AD 4	FB_AD 8	FB_AD 12	FB_AD 16	FB_AD 20	FB_AD 24	FB_AD 28	T3IN	FB_A 3	FB_A 5	FB_A 1	с
D	PST DDATA6	PST DDATA3	PST DDATA0	FB_CS2	FB_AD 1	FB_AD 5	FB_AD 9	FB_AD 13	FB_AD 17	FB_AD 21	FB_AD 25	FB_AD 29	T2IN	FB_A 0	FB_A 2	FB_A 7	D
E	FEC0_ COL	PST DDATA7	PST DDATA4	PST DDATA1	USB_ VBUS_ EN	IVDD	IVDD	IVDD	IVDD	IVDD	IVDD	IVDD	FB_A 8	FB_A 9	FB_A 10	USB_ DP	E
F	FEC0_ CRS	FEC0_ MDIO	FEC0_ MDC	PST DDATA5	IVDD							IVDD	FB_A 11	FB_A 12	IRQ_1	USB_ DM	F
G	FEC0_ RXCLK	FEC0_ RXDV	FEC0_ RXD3	FEC0_ RXD2	EVDD							EVDD	FB_A 13	FB_A 14	FB_A 15	NC	G
н	FEC0_ RXD1	FEC0_ RXD0	FEC0_ RXER	FEC0_ TXCLK	EVDD							EVDD	FB_A 18	FB_A 17	FB_A 16	XTAL 32K	н
J	FEC0_ TXD3	FEC0_ TXD2	FEC0_ TXD1	FEC0_ TXD0	EVDD							EVDD	FB_A 19	FB_A 20	FB_A 21	EXTAL 32K	J
κ	FEC0_ TXEN	FEC0_ TXER	I2C_ SCL	I2C_ SDA	EVDD							EVDD	FB_A 22	FB_A 23	VDD_A _PLL	PLL TEST	к
L	IRQ_7	IRQ_4	IRQ_3	RESET	EVDD	EVDD						EVDD	DSPI_ PCS2	VDD_ OSC	VSS_ OSC	XTAL	L
м	U0TXD	UORTS	UOCTS	SD_A7	BOOT MOD1	TEST	BOOT MOD0	SD_ VREF			JTAG_ EN	VDD_ RTC	TRST	DACK1	RST OUT	EXTAL	м
N	U0RXD	SD_A11	SD_A6	SD_A0	SD_ CKE	SD_D31	SD_D29	SD_D24	SD_D23	SD_D19	SD_ DQS2	SD_DM2	DSPI_ SOUT	DSPI_ PCS5	DACK0	DREQ0	N
Р	SD_A12	SD_A10	SD_A5	SD_BA1	SD_ RAS	SD_ CS1	SD_D28	SD_D25	SD_ DM3	SD_D20	SD_D16	SSI_FS	TCLK	DSPI_ PCS1	DSPI_ SIN	DREQ1	Р
R	SD_A13	SD_A9	SD_A4	SD_A1	SD_WE	SD_ CS0	SD_D27	SD_D26	SD_ DQS3	SD_D21	SD_D17	SSI_TXD	SSI_ BCLK	TMS	DSPI_ SCK	DSPI_ PCS0	R
т		SD_A8	SD_A3	SD_A2	SD_BA0	SD_ CAS	SD_D30	SD_ CLK	SD_ CLK	SD_D22	SD_D18	SSI_RXD	SSI_ MCLK	TDO	TDI		т
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	

Figure 5. MCF54450 and MCF54451 Pinout (256 MAPBGA)

Characteristic	Symbol	Min	Max	Units
Weak Internal Pull Up Device Current, tested at V _{IL} Max. ⁵	I _{APU}	-10	-130	μΑ
Input Capacitance ⁶ All input-only pins All input/output (three-state) pins	C _{in}		7 7	pF
Load Capacitance Low drive strength High drive strength	CL		25 50	pF
DC Injection Current ^{3, 7, 8, 9} V _{NEGCLAMP} =V _{SS} - 0.3 V, V _{POSCLAMP} = V _{DD} + 0.3 Single Pin Limit Total MCU Limit, Includes sum of all stressed pins	IIC	-1.0 -10	1.0 10	mA

Table 8. DC Electrical Specifications

 IV_{DD} and PV_{DD} should be at the same voltage. PV_{DD} should have a filtered input. Please see the PLL section of this specification for an example circuit. There are three PV_{DD} inputs, one for each PLL. A filter circuit should used on each PV_{DD} input.

- ² Valid for all parts, EXCEPT the MCF54452YVR200.
- ³ Valid just the MCF54452YVR200 part number.
- ⁴ Worst-case tristate leakage current with only one I/O pin high. Since all I/Os share power when high, the leakage current is distributed among them. With all I/Os high, this spec reduces to ±2 μA min/max.
- ⁵ Refer to the *MCF54455 Reference Manual* signals description chapter for pins having weak internal pull-up devices.
- ⁶ This parameter is characterized before qualification rather than 100% tested.
- ⁷ All functional non-supply pins are internally clamped to V_{SS} and their respective V_{DD} .
- ⁸ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.
- ⁹ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{in} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure the external V_{DD} load shunts current greater than the maximum injection current. This is the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low which would reduce overall power consumption. Also, at power-up, the system clock is not present during the power-up sequence until the PLL has attained lock.

5.5 Clock Timing Specifications

The clock module configures the device for one of several clocking methods. Clocking modes include internal phase-locked loop (PLL) clocking with an external clock reference or an external crystal reference supported by an internal crystal amplifier. The PLL can also be disabled, and an external oscillator can directly clock the device.

The specifications in Table 9 are for the CLKIN input pin (EXTAL input driven by an external clock reference). The duty cycle specification is based on an acceptable tolerance for the PLL, which yields 50% duty-cycle internal clocks to all on-chip peripherals. The MCF5445*x* devices use the input clock signal as its synchronous bus clock for PCI. A poor duty cycle on the input clock, may affect the overall timing margin to external devices. If negative edge logic is used to interface to PCI, providing a 50% duty-cycle input clock aids in simplifying overall system design.

Num	Characteristic	Symbol	Min. Value	Max. Value	Unit	
11	Total on-chip stray capacitance on EXTAL	C _{S_EXTAL}	_	1.5	pF	
12	Crystal capacitive load	CL	See cry	See crystal spec		
13	Discrete load capacitance for XTAL Discrete load capacitance for EXTAL	C _{L_XTAL} C _{L_EXTAL}	_	$\begin{array}{c} 2\times(C_L - \\ C_{S_XTAL} - \\ C_{S_EXTAL} - \\ C_{S_PCB})^6 \end{array}$	pF	
14	Frequency un-LOCK Range	f _{UL}	-4.0	4.0	% f _{sys}	
15	Frequency LOCK Range	f _{LCK}	-2.0	2.0	% f _{sys}	
17	CLKOUT Period Jitter, ^{3, 4, 7} Measured at f _{SYS} Max Peak-to-peak Jitter (Clock edge to clock edge) Long Term Jitter	C _{jitter}	—	10 TBD	% FB_CLK % FB_CLK	

Table 10. PLL Electrical Characteristics (continued)

¹ The minimum system frequency is the minimum input clock divided by the maximum low-power divider (16 MHz \div 32,768). When the PLL is enabled, the minimum system frequency (f_{sys}) is 150 MHz.

² This parameter is guaranteed by characterization before qualification rather than 100% tested. Applies to external clock reference only.

- ³ Proper PC board layout procedures must be followed to achieve specifications.
- ⁴ This parameter is guaranteed by design rather than 100% tested.
- ⁵ This specification is the PLL lock time only and does not include oscillator start-up time.
- ⁶ C_{S PCB} is the measured PCB stray capacitance on EXTAL and XTAL.

⁷ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{sys}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via PLL V_{DD}, EV_{DD}, and V_{SS} and variation in crystal oscillator frequency increase the Cjitter percentage for a given interval.

5.6 Reset Timing Specifications

Table 11 lists specifications for the reset timing parameters shown in Figure 8.

Table 11. Reset and Configuration Override Timing

Num	Characteristic	Min	Мах	Unit
R1 ¹	RESET valid to CLKIN (setup)	9	—	ns
R2	CLKIN to RESET invalid (hold)	1.5	—	ns
R3	RESET valid time ²	5	—	CLKIN cycles
R4	CLKIN to RSTOUT valid	—	10	ns
R5	RSTOUT valid to Configuration Override inputs valid	0	—	ns
R6	Configuration Override inputs valid to RSTOUT invalid (setup)	20	—	CLKIN cycles
R7	Configuration Override inputs invalid after RSTOUT invalid (hold)	0	—	ns
R8	RSTOUT invalid to Configuration Override inputs High Impedance	—	1	CLKIN cycles

¹ RESET and Configuration Override data lines are synchronized internally. Setup and hold times must be met only if recognition on a particular clock is required.

² During low power STOP, the synchronizers for the RESET input are bypassed and RESET is asserted asynchronously to the system. Thus, RESET must be held a minimum of 100 ns.

MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8

5.7 FlexBus Timing Specifications

A multi-function external bus interface called FlexBus is provided with basic functionality to interface to slave-only devices up to a maximum bus frequency of 66MHz. It can be directly connected to asynchronous or synchronous devices such as external boot ROMs, flash memories, gate-array logic, or other simple target (slave) devices with little or no additional circuitry. For asynchronous devices, a simple chip-select based interface can be used.

All processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency or an integer divider of that frequency.

The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Flexbus output clock (FB_CLK). All other timing relationships can be derived from these values.

Num	Characteristic	Min	Max	Unit	Notes
	Frequency of Operation	25	66.66	MHz	
FB1	Clock Period	15	40	ns	
FB2	Output Valid	—	7.0	ns	1
FB3	Output Hold	1.0	—	ns	1
FB4	Input Setup	3.0	—	ns	2
FB5	Input Hold	0	—	ns	2

Table 12. FlexBus AC Timing Specifications

¹ Specification is valid for all FB_AD[31:0], FB_BS[3:0], FB_CS[3:0], FB_OE, FB_R/W, FB_TBST, FB_TSIZ[1:0], and FB_TS.

² Specification is valid for all FB_AD[31:0] and FB_TA.

NOTE

The processor drives the data lines during the first clock cycle of the transfer with the full 32-bit address. This may be ignored by standard connected devices using non-multiplexed address and data buses. However, some applications may find this feature beneficial.

The address and data busses are muxed between the FlexBus and PCI controller. At the end of the read and write bus cycles the address signals are indeterminate.

5.8 SDRAM AC Timing Characteristics

The following timing numbers must be followed to properly latch or drive data onto the SDRAM memory bus. All timing numbers are relative to the four DQS byte lanes.

Num	Characteristic	Symbol	Min	Max	Unit	Notes
	Frequency of Operation		60	133.33	MHz	1
DD1	Clock Period	t _{SDCK}	7.5	16.67	ns	
DD2	Pulse Width High	t _{SDCKH}	0.45	0.55	t _{SDCK}	2
DD3	Pulse Width Low	t _{SDCKL}	0.45	0.55	t _{SDCK}	3
DD4	Address, SD_CKE, SD_CAS, SD_RAS, SD_WE, SD_CS[1:0] — Output Valid	t _{CMV}		(0.5 x t _{SDCK}) + 1.0ns	ns	3
DD5	Address, SD_CKE, <u>SD_CAS</u> , <u>SD_RAS</u> , <u>SD_WE</u> , <u>SD_CS</u> [1:0] — Output Hold	t _{СМН}	2.0	_	ns	
DD6	Write Command to first DQS Latching Transition	t _{DQSS}	(1.0 x t _{SDCK}) - 0.6ns	(1.0 x t _{SDCK}) + 0.6ns	ns	
DD7	Data and Data Mask Output Setup (DQ>DQS) Relative to DQS (DDR Write Mode)	t _{QS}	1.0	—	ns	4 5
DD8	Data and Data Mask Output Hold (DQS>DQ) Relative to DQS (DDR Write Mode)	t _{QH}	1.0		ns	6
DD9	Input Data Skew Relative to DQS (Input Setup)	t _{IS}	—	1.0	ns	7
DD10	Input Data Hold Relative to DQS.	t _{IH}	(0.25 x t _{SDCK}) + 0.5ns		ns	8

Table 13. SDRAM Timing Specifications

¹ The SDRAM interface operates at the same frequency as the internal system bus.

² Pulse width high plus pulse width low cannot exceed min and max clock period.

- ³ Command output valid should be 1/2 the memory bus clock (t_{SDCK}) plus some minor adjustments for process, temperature, and voltage variations.
- ⁴ This specification relates to the required input setup time of DDR memories. The microprocessor's output setup should be larger than the input setup of the DDR memories. If it is not larger, then the input setup on the memory is in violation. SD_D[31:24] is relative to SD_DQS[3]; SD_D[23:16] is relative to SD_DQS[2]
- ⁵ The first data beat is valid before the first rising edge of DQS and after the DQS write preamble. The remaining data beats are valid for each subsequent DQS edge.
- ⁶ This specification relates to the required hold time of DDR memories. SD_D[31:24] is relative to SD_DQS[3]; SD_D[23:16] is relative to SD_DQS[2]
- ⁷ Data input skew is derived from each DQS clock edge. It begins with a DQS transition and ends when the last data line becomes valid. This input skew must include DDR memory output skew and system level board skew (due to routing or other factors).
- ⁸ Data input hold is derived from each DQS clock edge. It begins with a DQS transition and ends when the first data line becomes invalid.

Figure 14. Overshoot and Undershoot Limits

5.10 ULPI Timing Specifications

The ULPI interface is fully compliant with the industry standard UTMI+ Low Pin Interface. Control and data timing requirements for the ULPI pins are given in Table 15. These timings apply to synchronous mode only. All timings are measured with respect to the clock as seen at the USB_CLKIN pin on the MCF5445*x*. The ULPI PHY is the source of the 60MHz clock.

NOTE

The USB controller requires a 60-MHz clock, even if using the on-chip FS/LS transceiver instead of the ULPI interface. In this case, the 60-MHz clock can be generated by the PLL or input on the USB_CLKIN pin.

Num	Characteristic	Min	Nominal	Max	Units
	USB_CLKIN operating frequency		60		MHz
	USB_CLKIN duty cycle		50		%
U1	USB_CLKIN clock period		16.67		ns
U2	Input Setup (control and data)	5.0	—	_	ns
U3	Input Hold (control and data)	1.0	—	_	ns
U4	Output Valid (control and data)	_	—	9.5	ns
U5	Output Hold (control and data)	1.0	—	_	

Table 15. ULPI Interface Timing

5.11 SSI Timing Specifications

This section provides the AC timings for the SSI in master (clocks driven) and slave modes (clocks input). All timings are given for non-inverted serial clock polarity (SSI_TCR[TSCKP] = 0, SSI_RCR[RSCKP] = 0) and a non-inverted frame sync (SSI_TCR[TFSI] = 0, SSI_RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal (SSI_BCLK) and/or the frame sync (SSI_FS) shown in the figures below.

Num	Description	Symbol	Min	Max	Units	Notes
S1	SSI_MCLK cycle time	t _{MCLK}	$2 imes t_{SYS}$	_	ns	2
S2	SSI_MCLK pulse width high / low		45%	55%	t _{MCLK}	
S3	SSI_BCLK cycle time	t _{BCLK}	$8 imes t_{SYS}$		ns	3
S4	SSI_BCLK pulse width		45%	55%	t _{BCLK}	
S5	SSI_BCLK to SSI_FS output valid		—	15	ns	
S6	SSI_BCLK to SSI_FS output invalid		0		ns	
S7	SSI_BCLK to SSI_TXD valid		—	15	ns	
S8	SSI_BCLK to SSI_TXD invalid / high impedence		-2		ns	
S9	SSI_RXD / SSI_FS input setup before SSI_BCLK		10	_	ns	
S10	SSI_RXD / SSI_FS input hold after SSI_BCLK		0	_	ns	

Table 16. SSI Timing — Master Modes¹

¹ All timings specified with a capactive load of 25pF.

 2 SSI_MCLK can be generated from SSI_CLKIN or a divided version of the internal system clock (f_{sys}).

³ SSI_BCLK can be derived from SSI_CLKIN or a divided version of the internal system clock (f_{svs}).

Figure 17. SSI Timing—Slave Modes

5.12 I²C Timing Specifications

Table 18 lists specifications for the I^2C input timing parameters shown in Figure 18.

Table 18. I-C input Timing Specifications between SCL and SDA	Table 18. I ² C Inpu	t Timing	Specifications	between	SCL	and SDA
---	---------------------------------	----------	----------------	---------	-----	---------

Num	Characteristic	Min	Max	Units
11	Start condition hold time	2	—	t _{SYS}
12	Clock low period	8	_	t _{SYS}
13	I2C_SCL/I2C_SDA rise time (V _{IL} = 0.5 V to V _{IH} = 2.4 V)	_	1	ms
14	Data hold time	0	—	ns
15	I2C_SCL/I2C_SDA fall time (V _{IH} = 2.4 V to V _{IL} = 0.5 V)	_	1	ms
16	Clock high time	4	—	t _{SYS}
17	Data setup time	0	—	ns
18	Start condition setup time (for repeated start condition only)	2	—	t _{SYS}
19	Stop condition setup time	2	—	t _{SYS}

Table 19 lists specifications for the I^2C output timing parameters shown in Figure 18.

able	19. I ² C	Output	Timing	Specifications	between	SCL	and SDA
------	----------------------	--------	--------	----------------	---------	-----	---------

Num	Characteristic	Min	Max	Units
11 ¹	Start condition hold time	6	_	t _{SYS}
12 ¹	Clock low period	10	_	t _{SYS}
13 ²	I2C_SCL/I2C_SDA rise time (V _{IL} = 0.5 V to V _{IH} = 2.4 V)	_	_	μs
14 ¹	Data hold time	7	_	t _{SYS}
15 ³	I2C_SCL/I2C_SDA fall time (V _{IH} = 2.4 V to V _{IL} = 0.5 V)	_	3	ns

5.15 ATA Interface Timing Specifications

The ATA controller is compatible with the ATA/ATAPI-6 industry standard. Refer to the *ATA/ATAPI-6 Specficiation* and the ATA controller chapter of the *MCF54455 Reference Manual* for timing diagrams of the various modes of operation.

The timings of the various ATA data transfer modes are determined by a set of timing equations described in the ATA section of the *MCF54455 Reference Manual*. These timing equations must be fulfilled for the ATA host to meet timing. Table 25 provides implementation specific timing parameters necessary to complete the timing equations.

Name	Characteristic	Symbol	Min	Мах	Unit	Notes
A1	Setup time — ATA_IORDY to SYSCLK falling	t _{SUI}	4.0		ns	
A2	Hold time — ATA_IORDY from SYSCLK falling	t _{HI}	3.0		ns	
A3	Setup time — ATA_DATA[15:0] to SYSCLK rising	t _{SU}	4.0		ns	
A4	Propagation delay — SYSCLK rising to all outputs	t _{CO}	—	7.0	ns	3
A5	Output skew	t _{SKEW1}		1.5	ns	3
A6	Setup time — ATA_DATA[15:0] valid to ATA_IORDY	t _{I_DS}	2.0	_	ns	4
A7	Hold time — ATA_IORDY to ATA_DATA[15:0] invalid	t _{I_DH}	3.5	_	ns	4

Table 25. ATA Interface Timing Specifications^{1,2}

¹ These parameters are guaranteed by design and not testable.

² All timings specified with a capacitive load of 40pF.

³ Applies to ATA_CS[1:0], ATA_DA[2:0], ATA_DIOR, ATA_DIOW, ATA_DMACK, ATA_DATA[15:0]

⁴ Applies to Ultra DMA data-in burst only

5.16 DSPI Timing Specifications

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. Table 26 provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the *MCF54455 Reference Manual* for information on the modified transfer formats used for communicating with slower peripheral devices.

Name	Characteristic	Symbol	Min	Мах	Unit	Notes
DS1	DSPI_SCK Cycle Time	t _{SCK}	4 x t _{SYS}	—	ns	2
DS2	DSPI_SCK Duty Cycle	—	(t _{sck} ÷ 2) - 2.0	$(t_{sck} \div 2) + 2.0$	ns	3
Master M	ode					
DS3	DSPI_PCS <i>n</i> to DSPI_SCK delay	t _{CSC}	$(2 \times t_{SYS})$ - 1.5	—	ns	4
DS4	DSPI_SCK to DSPI_PCS <i>n</i> delay	t _{ASC}	$(2 \times t_{SYS})$ - 3.0	—	ns	5
DS5	DSPI_SCK to DSPI_SOUT valid	—	—	5	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	—	-5	—	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	—	9	—	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	—	0	—	ns	
Slave Mo	de		•			
DS9	DSPI_SCK to DSPI_SOUT valid	—	—	10	ns	

Table 26. DSPI Module AC Timing Specifications¹

Figure 24. DSPI Classic SPI Timing—Slave Mode

5.17 SBF Timing Specifications

The Serial Boot Facility (SBF) provides a means to read configuration information and system boot code from a broad array of SPI-compatible EEPROMs, flashes, FRAMs, nVSRAMs, etc. Table 27 provides the AC timing specifications for the SBF.

Table 27. SB	F AC Timing	Specifications
--------------	-------------	----------------

Name	Characteristic	Symbol	Min	Мах	Unit	Notes
SB1	SBF_CK Cycle Time	t _{SBFCK}	40	_	ns	1
SB2	SBF_CK High/Low Time	—	30%	—	t _{SBFCK}	
SB3	SBF_CS to SBF_CK delay	—	t _{SBFCK} - 2.0	—	ns	
SB4	SBF_CK to SBF_CS delay	—	t _{SBFCK} - 2.0	—	ns	
SB5	SBF_CK to SBF_DO valid	—	-5	—	ns	
SB6	SBF_CK to SBF_DO invalid	—	5	—	ns	
SB7	SBF_DI to SBF_SCK input setup	—	10	—	ns	
SB8	SBF_CK to SBF_DI input hold	—	0	—	ns	
¹ At reset	the SBE CK cycle time is $t_{DEE} \times 67$ The first	byte of data	read from the ser	rial memory conta	ins a divi	der value

At reset, the SBF_CK cycle time is $t_{REF} \times 67$. The first byte of data read from the serial memory contains a divider value that is used to set the SBF_CK cycle time for the duration of the serial boot process.

Figure 25. SBF Timing

5.18 General Purpose I/O Timing Specifications

Table 28. GPIO Timing¹

Num	Characteristic	Min	Max	Unit
G1	FB_CLK High to GPIO Output Valid		9	ns
G2	FB_CLK High to GPIO Output Invalid	1.5	_	ns
G3	GPIO Input Valid to FB_CLK High	9	_	ns
G4	FB_CLK High to GPIO Input Invalid	1.5	_	ns

These general purpose specifications apply to the following signals: IRQ*n*, all UART signals, all timer signals, DACK*n* and DREQ*n*, and all signals configured as GPIO.

Figure 26. GPIO Timing

1

Figure 29. Test Access Port Timing

Power Consumption

All current consumption data is lab data measured on a single device using an evaluation board. Table 32 shows the typical power consumption in low-power modes. These current measurements are taken after executing a STOP instruction.

Mode	Voltage Supply	System Frequency				
		166 (Typ) ³	200 (Typ) ³	233 (Typ) ³	266 (Typ) ³	266 (Peak) ⁴
RUN	IV _{DD} (mA)	93.4	110.9	128.2	145.4	202.1
	Power (mW)	140.1	166.3	192.4	218.1	303.2
WAIT/DOZE	IV _{DD} (mA)	28.0	32.7	37.5	41.1	100.2
	Power (mW)	42.0	49.1	56.2	61.7	150.3
STOP 0	IV _{DD} (mA)	17.1	19.8	22.5	25.2	25.2
	Power (mW)	25.7	29.7	33.7	37.8	37.8
STOP 1	IV _{DD} (mA)	17.9	19.8	22.4	25.1	25.1
	Power (mW)	26.8	29.6	33.6	37.6	37.6
STOP 2	IV _{DD} (mA)	5.7	5.7	5.7	5.7	5.7
	Power (mW)	8.6	8.6	8.6	8.6	8.6
STOP 3	IV _{DD} (mA)	1.8	1.8	1.8	1.8	1.8
	Power (mW)	2.6	2.6	2.6	2.6	2.6

Table 32. Current Consumption in Low-Power Modes^{1,2}

¹ All values are measured on an M54455EVB with 1.5V IV_{DD} power supply. Tests performed at room temperature.

² Refer to the Power Management chapter in the *MCF54455 Reference Manual* for more information on low-power modes.

³ All peripheral clocks are off except UART0, INTC0, IACK, edge port, reset controller, CCM, PLL, and FlexBus prior to entering low-power mode.

⁴ All peripheral clocks on prior to entering low-power mode.

Revision History

9 Revision History

Table 34 summarizes revisions to this document.

Table 34. Revision History

Rev. No.	Date	Summary of Changes		
0	Sept 17, 2007	Initial public release.		
1	Feb 15, 2008	Corrected VSS pin locations in MCF5445 <i>x</i> signal information and muxing table for the 360 TEPBGA package: changed "M9, M16, M17" to "M9–M14, M16" Updated FlexBus read and write timing diagrams and added two notes before them. Change FB_A[23:0] to FB_A[31:0] in FlexBus read and write timing diagrams. Added power consumption section.		
2	May 1, 2008	 In Family Configurations table, added PCI as feature on 256-pin devices. On these devices the PCI_AD bus is limited to 24-bits. In Absolute Maximum Ratings table, changed RTCV_{DD} specification from "-0.3 to +4.0" to "-0.5 to +2.0". In DC Electrical Specifications table: Changed RTCV_{DD} specification from 3.0–3.6 to 1.35–1.65. Changed High Impedance (Off-State) Leakage Current (I_{OZ}) specification from ±1 to ±10µA, and added footnote to this spec: "Worst-case tristate leakage current with only one I/O pin high. Since all I/Os share power when high, the leakage current is distributed among them. With all I/Os high, this spec reduces to ±2 µA min/max." 		
3	Dec 1, 2008	 Changed "360PBGA" heading to "360 TEPBGA" in Table 6. Changed the following specs in Table 13: Minimum frequency of operation from — to 60MHz. Maximum clock period from — to 16.67 ns. 		
4	Apr 12, 2009	 Rescinded previous errata, the 256-pin devices do not contain the PCI bus controller: In Table 4, in PCI_AD<i>n</i> signal section, added a separate row for each package, with PCI_AD<i>n</i> signals shown as — for 256-pin devices. In Figure 5, changed the PCI_AD<i>n</i> pins to their alternative function, FB_A<i>n</i>. 		
5	Apr 27, 2009	In Table 2 changed MCF54450VM180 to MCF54450CVM180 and changed it's temperature entry from "0° to +70° C" to "-40° to +85° C".		
6	Oct 15, 2009	In Table 8 changed Input Leakage Current (I_{in}) from ±1.0 to ±2.5µA.		
7	Oct 18, 2011	In Table 2, added MCF54452YVR200 part number, with temperature range from -40° to $+105^{\circ}$ C. In Table 8, added Input Leakage Current (I _{in}) values for MCF54452YVR200 part number.		
8	Jan 18, 2012	In Table 4, added pin N7 in the VSS pin list for the 360 TEPBGA.		

MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8