E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Coldfire V4
Core Size	32-Bit Single-Core
Speed	266MHz
Connectivity	I ² C, SPI, SSI, UART/USART, USB OTG
Peripherals	DMA, WDT
Number of I/O	132
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.35V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	360-BBGA
Supplier Device Package	360-TEPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcf54453vr266

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 Ordering Information

Table 2. Orderable Part Numbers

Freescale Part Number	Description	Package	Speed	Temperature
MCF54450CVM180			180 MHz	–40° to +85° C
MCF54450VM240	MCF54450 Microprocessor		240 MHz	0° to +70° C
MCF54451CVM180	MCE54451 Microprocessor	230 WAF DOA	180 MHz	-40° to $+85^{\circ}$ C
MCF54451VM240	1001 54451 Microprocessor		240 MHz	0° to +70° C
MCF54452CVR200			200 MHz	-40° to $+85^{\circ}$ C
MCF54452YVR200	MCF54452 Microprocessor		200 MHz	–40° to +105° C
MCF54452VR266			266 MHz	0° to +70° C
MCF54453CVR200	MCE54453 Microprocessor		200 MHz	-40° to $+85^{\circ}$ C
MCF54453VR266	1001 04400 Microprocessor	360 TEPBGA	266 MHz	0° to +70° C
MCF54454CVR200	MCE54454 Microprocessor		200 MHz	-40° to $+85^{\circ}$ C
MCF54454VR266	Mor 34434 Microprocessor		266 MHz	0° to +70° C
MCF54455CVR200	MCE54455 Microprocessor		200 MHz	-40° to $+85^{\circ}$ C
MCF54455VR266	Wor 34433 Wicroprocessor		266 MHz	0° to +70° C

3 Hardware Design Considerations

3.1 Analog Power Filtering

To further enhance noise isolation, an external filter is strongly recommended for the analog V_{DD} pins (VDD_A_PLL, VDD_RTC). The filter shown in Figure 2 should be connected between the board IV_{DD} and the analog pins. The resistor and capacitors should be placed as close to the dedicated analog V_{DD} pin as possible. The 10- Ω resistor in the given filter is required. Do not implement the filter circuit using only capacitors. The analog power pins draw very little current. Concerns regarding voltage loss across the 10-ohm resistor are not valid.

Figure 2. System Analog V_{DD} Power Filter

Hardware Design Considerations

3.2 Oscillator Power Filtering

Figure 3 shows an example for isolating the oscillator power supply from the I/O supply (EVDD) and ground.

Figure 3. Oscillator Power Filter

3.3 Supply Voltage Sequencing

Figure 4 shows situations in sequencing the I/O V_{DD} (EV_{DD}), SDRAM V_{DD} (SDV_{DD}), PLL V_{DD} (PV_{DD}), and internal logic/core V_{DD} (IV_{DD}).

¹ Input voltage must not be greater than the supply voltage (EV_{DD}, SDV_{DD}, IV_{DD}, or PV_{DD}) by more than 0.5V at any time, including during power-up.

² Use 50 V/millisecond or slower rise time for all supplies.

Figure 4. Supply Voltage Sequencing and Separation Cautions

The relationship between SDV_{DD} and EV_{DD} is non-critical during power-up and power-down sequences. SDV_{DD} (2.5V or 1.8V) and EV_{DD} are specified relative to IV_{DD}.

3.3.1 Power-Up Sequence

If EV_{DD}/SDV_{DD} are powered up with the IV_{DD} at 0 V, the sense circuits in the I/O pads cause all pad output drivers connected to the EV_{DD}/SDV_{DD} to be in a high impedance state. There is no limit on how long after EV_{DD}/SDV_{DD} powers up before IV_{DD} must power up. The rise times on the power supplies should be slower than 50 V/millisecond to avoid turning on the internal ESD protection clamp diodes.

3.3.2 Power-Down Sequence

If IV_{DD}/PV_{DD} are powered down first, sense circuits in the I/O pads cause all output drivers to be in a high impedance state. There is no limit on how long after IV_{DD} and PV_{DD} power down before EV_{DD} or SDV_{DD} must power down. There are no requirements for the fall times of the power supplies.

4 Pin Assignments and Reset States

4.1 Signal Multiplexing

The following table lists all the MCF5445*x* pins grouped by function. The Dir column is the direction for the primary function of the pin only. Refer to Section 4, "Pin Assignments and Reset States," for package diagrams. For a more detailed discussion of the MCF5445*x* signals, consult the *MCF54455 Reference Manual* (MCF54455RM).

NOTE

In this table and throughout this document, a single signal within a group is designated without square brackets (i.e., FB_AD23), while designations for multiple signals within a group use brackets (i.e., FB_AD[23:21]) and is meant to include all signals within the two bracketed numbers when these numbers are separated by a colon.

NOTE

The primary functionality of a pin is not necessarily its default functionality. Most pins that are muxed with GPIO default to their GPIO functionality. See Table 3 for a list of the exceptions.

Pin	256 MAPBGA 360 TEPBGA							
FB_AD[31:0]	FB_AD[31:0] except whe boot po	AD[31:0] except when serial boot selects 0-bit boot port size.						
FB_BE/BWE[3:0]	FB_BE/E	FB_BE/BWE[3:0]						
FB_CS[3:1]	FB_CS[3:1]							
FB_OE	FB_	OE						
FB_R/W	FB_R/W							
FB_TA	FB_TA							
FB_TS	FB_	TS						

Table 3. Special-Case Default Signal Functionality

Pin Assignments and Reset States

Table 3. Sr	oecial-Case	Default	Signal	Functionality	v	(continued)
14610 01 01		Donadit	e.g	. anotionant	, ,	(

Pin	256 MAPBGA	360 TEPBGA
PCI_GNT[3:0]	GPIO	PCI_GNT[3:0]
PCI_REQ[3:0]	GPIO	PCI_REQ[3:0]
IRQ1	GPIO	PCI_INTA and configured as an agent.
ATA_RESET	GPIO	ATA reset

Table 4. MCF5445x Signal Infor	rmation and Muxing
--------------------------------	--------------------

Signal Name	GPIO	Alternate 1	Alternate 2	Pull-up (U) ¹ Pull-down (D)	Direction ²	Voltage Domain	MCF54450 MCF54451 256 MAPBGA	MCF54452 MCF54453 MCF54454 MCF54455 360 TEPBGA	
Reset									
RESET	—	_	_	U	I	EVDD	L4	Y18	
RSTOUT	—	_	—	—	0	EVDD	M15	B17	
			Clock						
EXTAL/PCI_CLK	—	_	_	—	I	EVDD	M16	A16	
XTAL	—	_	—	U ³	0	EVDD	L16	A17	
	Mode Selection								
BOOTMOD[1:0]	—	_		—	I	EVDD	M5, M7	AB17, AB21	
			FlexBus						
FB_AD[31:24]	PFBADH[7:0] ⁴	FB_D[31:24]		_	I/O	EVDD	A14, A13, D12, C12, B12, A12, D11, C11	J2, K4, J1, K1–3, L1, L4	
FB_AD[23:16]	PFBADMH[7:0] ⁴	FB_D[23:16]	—	—	I/O	EVDD	B11, A11, D10, C10, B10, A10, D9, C9	L2, L3, M1–4, N1–2	
FB_AD[15:8]	PFBADML[7:0] ⁴	FB_D[15:8]	—		I/O	EVDD	B9, A9, D8, C8, B8, A8, D7, C7	P1–2, R1–3, P4, T1–2	
FB_AD[7:0]	PFBADL[7:0] ⁴	FB_D[7:0]	—	—	I/O	EVDD	B7, A7, D6, C6, B6, A6, D5, C5	T3–4, U1–3, V1–2, W1	
FB_BE/BWE[3:2]	PBE[3:2]	FB_TSIZ[1:0]	_	—	0	EVDD	B5, A5	Y1, W2	
FB_BE/BWE[1:0]	PBE[1:0]	_	_	_	0	EVDD	B4, A4	W3, Y2	
FB_CLK	—	—	—	_	0	EVDD	B13	J3	
FB_CS[3:1]	PCS[3:1]	—	—	—	0	EVDD	C2, D4, C3	W5, AA4, AB3	
FB_CS0	—	—		—	0	EVDD	C4	Y4	
FB_OE	PFBCTL3			—	0	EVDD	A2	AA1	
FB_R/W	PFBCTL2			—	0	EVDD	B2	AA3	
FB_TA	PFBCTL1	_		U	I	EVDD	B1	AB2	

MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8

Pin Assignments and Reset States

Signal Name	GPIO	Alternate 1	Alternate 2	Pull-up (U) ¹ Pull-down (D)	Direction ²	Voltage Domain	MCF54450 MCF54451 256 MAPBGA	MCF54452 MCF54453 MCF54454 MCF54455 360 TEPBGA
FB_TS	PFBCTL0	FB_ALE	FB_TBST	_	0	EVDD	A3	Y3
		PC	Cl Controller ⁵					
PCI_AD[31:0]	_	FB_A[31:0]			I/O	EVDD	_	C11, D11, A10, B10, J4, G2, G3, F1, D12, C12, B12, A11, B11, B9, D9, D10, A8, B8, A5, B5, A4, A3, B3, D4, D3, E3–E1, F3, C2, D2, C1
_	_	FB_A[23:0]	_	_	I/O	EVDD	K14–13, J15–13, H13–15, G15–13, F14–13, E15–13, D16, B16, C15, B15, C14, D15, C16, D14	_
PCI_CBE[3:0]	—	—	_	_	I/O	EVDD	—	G4, E4, D1, B1
PCI_DEVSEL	—	—	—	_	0	EVDD	—	F2
PCI_FRAME	—	_	_	—	I/O	EVDD	—	B2
PCI_GNT3	PPCI7	ATA_DMACK	_	—	0	EVDD	_	B7
PCI_GNT[2:1]	PPCI[6:5]	_	_	_	0	EVDD	—	C8, C9
PCI_GNT0/ PCI_EXTREQ	PPCI4		_	—	0	EVDD	—	A9
PCI_IDSEL	—	_	_	—	I	EVDD	_	D5
PCI_IRDY	—	_	_	—	I/O	EVDD	_	C3
PCI_PAR	_	_	_	—	I/O	EVDD	_	C4
PCI_PERR	—	_	_	_	I/O	EVDD	—	B4
PCI_REQ3	PPCI3	ATA_INTRQ	_	_	I	EVDD	—	C7
PCI_REQ[2:1]	PPCI[2:1]	_	_	—	I	EVDD	_	D7, C5
PCI_REQ0/ PCI_EXTGNT	PPCI0		_	—	I	EVDD	—	A2
PCI_RST	_	_	_	—	0	EVDD	_	B6
PCI_SERR	—	_	_	—	I/O	EVDD	_	A6
PCI_STOP	—		—	—	I/O	EVDD	—	A7
PCI_TRDY	—	_	_	—	I/O	EVDD	—	C10
		SDR	AM Controller					
SD_A[13:0]					0	SDVDD	R1, P1, N2, P2, R2, T2, M4, N3, P3, R3, T3, T4, R4, N4	V22, U20–22, T19–22, R20–22, N19, P20–21

Table 4. MCF5445*x* Signal Information and Muxing (continued)

Pin Assignments and Reset States

Signal Name	GPIO	Alternate 1	Alternate 2	Pull-up (U) ¹ Pull-down (D)	Direction ²	Voltage Domain	MCF54450 MCF54451 256 MAPBGA	MCF54452 MCF54453 MCF54454 MCF54455 360 TEPBGA
SD_BA[1:0]	_	—	_		0	SDVDD	P4, T5	P22, P19
SD_CAS	_	—	_	_	0	SDVDD	T6	L19
SD_CKE	_	—	_	_	0	SDVDD	N5	N22
SD_CLK	—	_	—	—	0	SDVDD	Т9	L22
SD_CLK	_	—	—	—	0	SDVDD	Т8	M22
SD_CS[1:0]		—	_	—	0	SDVDD	P6, R6	L20, M20
SD_D[31:16]		—		_	I/O	SDVDD	N6, T7, N7, P7, R7, R8, P8, N8, N9, T10, R10, P10, N10, T11, R11, P11	L21, K22, K21, K20, J20, J19, J21, J22, H20, G22, G21, G20, G19, F22, F21, F20
SD_DM[3:2]	_	—	—	_	0	SDVDD	P9, N12	H21, E21
SD_DQS[3:2]		—		—	0	SDVDD	R9, N11	H22, E22
SD_RAS	_	—	—	—	0	SDVDD	P5	N21
SD_VREF	_	—	—	—	I	SDVDD	M8	M21
SD_WE	_	—	—	—	0	SDVDD	R5	N20
		Externa	al Interrupts Port ⁶					
IRQ7	PIRQ7	—	_		I	EVDD	L1	ABB13
IRQ4	PIRQ4	—	SSI_CLKIN	_	I	EVDD	L2	ABB13
IRQ3	PIRQ3	—	_	_	I	EVDD	L3	AB14
IRQ1	PIRQ1	PCI_INTA	—	—	Ι	EVDD	F15	C6
			FEC0					
FEC0_MDC	PFECI2C3	—	_		0	EVDD	F3	AB8
FEC0_MDIO	PFECI2C2	—	_		I/O	EVDD	F2	Y7
FEC0_COL	PFEC0H4	—	ULPI_DATA7	—	I	EVDD	E1	AB7
FEC0_CRS	PFEC0H0	—	ULPI_DATA6	—	I	EVDD	F1	AA7
FEC0_RXCLK	PFEC0H3	—	ULPI_DATA1		I	EVDD	G1	AA8
FEC0_RXDV	PFEC0H2	FEC0_RMII_ CRS_DV		—	I	EVDD	G2	Y8
FEC0_RXD[3:2]	PFEC0L[3:2]	—	ULPI_DATA[5:4]		I	EVDD	G3, G4	AB9, Y9
FEC0_RXD1	PFEC0L1	FEC0_RMII_RXD1	_	_	I	EVDD	H1	W9
FEC0_RXD0	PFEC0H1	FEC0_RMII_RXD0	_		I	EVDD	H2	AB10
FEC0_RXER	PFEC0L0	FEC0_RMII_RXER		_	Ι	EVDD	H3	AA10

Table 4. MCF5445x Signal Information and Muxing (continued)

Signal Name	GPIO	Alternate 1	Alternate 2	Pull-up (U) ¹ Pull-down (D)	Direction ²	Voltage Domain	MCF54450 MCF54451 256 MAPBGA	MCF54452 MCF54453 MCF54454 MCF54455 360 TEPBGA
		Ро	wer Supplies					
IVDD	_	_	_	_	—		E6–12, F5, F12	D6, D8, D14, F4, H4, N4, R4, W4, W7, W8, W12, W16, W19
EVDD	_	_	_	_	_	_	G5, G12, H5, H12, J5, J12, K5, K12, L5–6, L12	D13, D19, G8, G11, G14, G16, J7, J16, L7, L16, N16, P7, R16, T8, T12, T14, T16
SD_VDD	—	_	—	—	—	—	L7–11, M9, M10	F19, H19, K19, M19, R19, U19
VDD_OSC	—	—	—	_	_	—	L14	B16
VDD_A_PLL	—	—	—	_	_	—	K15	C14
VDD_RTC	—	—	—	_	_	—	M12	C13
VSS	_	_		_			A1, A16, F6–11, G6–11, H6–11, J6–11, K6–11, T1, T16	A1, A22, B14, G7, G9–10, G12–13, G15, H7, H16, J9–14, K7, K9–14, K16, L9–14, M7, M9–M14, M16, N7, N9–14, P9–14, P16, R7, T7, T9–11, T13, T15, AB1, AB22
VSS_OSC	—	_		—	—	—	L15	C16

Table 4. MCF5445*x* Signal Information and Muxing (continued)

¹ Pull-ups are generally only enabled on pins with their primary function, except as noted.

² Refers to pin's primary function.

- ³ Enabled only in oscillator bypass mode (internal crystal oscillator is disabled).
- ⁴ Serial boot must select 0-bit boot port size to enable the GPIO mode on these pins.
- ⁵ When the PCI is enabled, all PCI bus pins come up configured as such. This includes the PCI_GNT and PCI_REQ lines, which have GPIO. The IRQ1/PCI_INTA signal is a special case. It comes up as PCI_INTA when booting as a PCI agent and as GPIO when booting as a PCI host.

For the 360 TEPBGA, booting with PCI disabled results in all dedicated PCI pins being safe-stated. The PCI_GNT and PCI_REQ lines and IRQ1/PCI_INTA come up as GPIO.

- ⁶ GPIO functionality is determined by the edge port module. The pin multiplexing and control module is only responsible for assigning the alternate functions.
- ⁷ Depends on programmed polarity of the USB_VBUS_OC signal.
- ⁸ Pull-up when the serial boot facility (SBF) controls the pin
- ⁹ If JTAG_EN is asserted, these pins default to Alternate 1 (JTAG) functionality. The pin multiplexing and control module is not responsible for assigning these pins.

where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

5.3 ESD Protection

Characteristics	Symbol	Value	Units
ESD Target for Human Body Model	HBM	2000	V

¹ All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

² A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing is performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

5.4 DC Electrical Specifications

Characteristic Symbol Min Max Units Internal logic supply voltage¹ IV_{DD} 1.35 1.65 V PLL analog operation voltage range PV_{DD} V 1.35 1.65 External I/O pad supply voltage V **EV**_{DD} 3.0 3.6 V Internal oscillator supply voltage OSCV_{DD} 3.0 3.6 Real-time clock supply voltage **RTCV**_{DD} V 1.35 1.65 SDRAM I/O pad supply voltage - DDR mode V 2.25 2.75 SDV_{DD} SDRAM I/O pad supply voltage - DDR2 mode SDVDD 1.7 1.9 V SDRAM I/O pad supply voltage - Mobile DDR mode 1.7 1.9 V SDV_{DD} V **SDV**_{REF} 0.51 x SDV_{DD} SDRAM input reference voltage 0.49 x SDV_{DD} 0.7 x EV_{DD} V Input High Voltage VIH 3.65 $V_{SS} - 0.3$ V Input Low Voltage 0.35 x EV_{DD} VII Input Hysteresis V_{HYS} 0.06 x EV_{DD} mV Input Leakage Current² -2.5 2.5 μΑ l_{in} $V_{in} = V_{DD}$ or V_{SS} , Input-only pins Input Leakage Current³ l_{in} -5 5 μΑ $V_{in} = V_{DD}$ or V_{SS} , Input-only pins High Impedance (Off-State) Leakage Current⁴ -10.0 10.0 μΑ loz V_{in} = V_{DD} or V_{SS}, All input/output and output pins Output High Voltage (All input/output and all output pins) VOH $0.85 \times EV_{DD}$ V $I_{OH} = -5.0 \text{ mA}$ Output Low Voltage (All input/output and all output pins) $0.15 \times EV_{DD}$ V VOL $I_{OI} = 5.0 \text{mA}$

Table 8. DC Electrical Specifications

5.7 FlexBus Timing Specifications

A multi-function external bus interface called FlexBus is provided with basic functionality to interface to slave-only devices up to a maximum bus frequency of 66MHz. It can be directly connected to asynchronous or synchronous devices such as external boot ROMs, flash memories, gate-array logic, or other simple target (slave) devices with little or no additional circuitry. For asynchronous devices, a simple chip-select based interface can be used.

All processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency or an integer divider of that frequency.

The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Flexbus output clock (FB_CLK). All other timing relationships can be derived from these values.

Num	Characteristic	Min	Max	Unit	Notes
	Frequency of Operation	25	66.66	MHz	
FB1	Clock Period	15	40	ns	
FB2	Output Valid	—	7.0	ns	1
FB3	Output Hold	1.0	—	ns	1
FB4	Input Setup	3.0	—	ns	2
FB5	Input Hold	0	—	ns	2

Table 12. FlexBus AC Timing Specifications

¹ Specification is valid for all FB_AD[31:0], FB_BS[3:0], FB_CS[3:0], FB_OE, FB_R/W, FB_TBST, FB_TSIZ[1:0], and FB_TS.

² Specification is valid for all FB_AD[31:0] and FB_TA.

NOTE

The processor drives the data lines during the first clock cycle of the transfer with the full 32-bit address. This may be ignored by standard connected devices using non-multiplexed address and data buses. However, some applications may find this feature beneficial.

The address and data busses are muxed between the FlexBus and PCI controller. At the end of the read and write bus cycles the address signals are indeterminate.

Figure 14. Overshoot and Undershoot Limits

5.10 ULPI Timing Specifications

The ULPI interface is fully compliant with the industry standard UTMI+ Low Pin Interface. Control and data timing requirements for the ULPI pins are given in Table 15. These timings apply to synchronous mode only. All timings are measured with respect to the clock as seen at the USB_CLKIN pin on the MCF5445*x*. The ULPI PHY is the source of the 60MHz clock.

NOTE

The USB controller requires a 60-MHz clock, even if using the on-chip FS/LS transceiver instead of the ULPI interface. In this case, the 60-MHz clock can be generated by the PLL or input on the USB_CLKIN pin.

Num	Characteristic	Min	Nominal	Max	Units
	USB_CLKIN operating frequency	—	60	_	MHz
	USB_CLKIN duty cycle	—	50	_	%
U1	USB_CLKIN clock period	—	16.67	_	ns
U2	Input Setup (control and data)	5.0	—	_	ns
U3	Input Hold (control and data)	1.0	—	_	ns
U4	Output Valid (control and data)	—	—	9.5	ns
U5	Output Hold (control and data)	1.0	—	_	

Table 15. ULPI Interface Timing

1

Num	Characteristic	Min	Max	Units
16 ¹	Clock high time	10		t _{SYS}
17 ¹	Data setup time	2		t _{SYS}
18 ¹	Start condition setup time (for repeated start condition only)	20		t _{SYS}
19 ¹	Stop condition setup time	10		t _{SYS}

Table 19. I²C Output Timing Specifications between SCL and SDA (continued)

Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the maximum frequency (IFDR = 0x20) results in minimum output timings as shown in Table 19. The I^2C interface is designed to scale the actual data transition time to move it to the middle of the SCL low period. The actual position is affected by the prescale and division values programmed into the IFDR. However, the numbers given in Table 19 are minimum values.

² Because I2C_SCL and I2C_SDA are open-collector-type outputs, which the processor can only actively drive low, the time I2C_SCL or I2C_SDA take to reach a high level depends on external signal capacitance and pull-up resistor values.

³ Specified at a nominal 50-pF load.

Figure 18. I²C Input/Output Timings

5.13 Fast Ethernet Timing Specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

5.13.1 Receive Signal Timing Specifications

The following timing specs meet the requirements for MII and 7-Wire style interfaces for a range of transceiver devices.

Num	Characteristic	MII Mode		RMII	Mode	Unit	
		Min	Мах	Min	Мах	Sim	
_	RXCLK frequency		25	_	50	MHz	
E1	RXD[n:0], RXDV, RXER to RXCLK setup ¹	5	_	4	_	ns	
E2	RXCLK to RXD[n:0], RXDV, RXER hold ¹	5	_	2	_	ns	
E3	RXCLK pulse width high	35%	65%	35%	65%	RXCLK period	
E4	RXCLK pulse width low	35%	65%	35%	65%	RXCLK period	

 Table 20. Receive Signal Timing

In MII mode, n = 3; In RMII mode, n = 1

MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8

Figure 19. MII Receive Signal Timing Diagram

5.13.2 Transmit Signal Timing Specifications

Table 21. Transmit Signal Timing

Num	Characteristic	MII Mode		RMII Mode		Unit	
		Min	Мах	Min	Мах	onit	
—	TXCLK frequency	—	25	_	50	MHz	
E5	TXCLK to TXD[n:0], TXEN, TXER invalid ¹	5	_	5	_	ns	
E6	TXCLK to TXD[n:0], TXEN, TXER valid ¹	—	25	_	14	ns	
E7	TXCLK pulse width high	35%	65%	35%	65%	t _{TXCLK}	
E8	TXCLK pulse width low	35%	65%	35%	65%	t _{TXCLK}	

¹ In MII mode, n = 3; In RMII mode, n = 1

Figure 20. MII Transmit Signal Timing Diagram

5.13.3 Asynchronous Input Signal Timing Specifications

Table 22. MII Transmit Signal Timing

Num	Characteristic	Min	Max	Unit
E9	CRS, COL minimum pulse width	1.5		TXCLK period

5.15 ATA Interface Timing Specifications

The ATA controller is compatible with the ATA/ATAPI-6 industry standard. Refer to the *ATA/ATAPI-6 Specficiation* and the ATA controller chapter of the *MCF54455 Reference Manual* for timing diagrams of the various modes of operation.

The timings of the various ATA data transfer modes are determined by a set of timing equations described in the ATA section of the *MCF54455 Reference Manual*. These timing equations must be fulfilled for the ATA host to meet timing. Table 25 provides implementation specific timing parameters necessary to complete the timing equations.

Name	Characteristic	Symbol	Min	Мах	Unit	Notes
A1	Setup time — ATA_IORDY to SYSCLK falling	t _{SUI}	4.0		ns	
A2	Hold time — ATA_IORDY from SYSCLK falling	t _{HI}	3.0		ns	
A3	Setup time — ATA_DATA[15:0] to SYSCLK rising	t _{SU}	4.0		ns	
A4	Propagation delay — SYSCLK rising to all outputs	t _{CO}	—	7.0	ns	3
A5	Output skew	t _{SKEW1}		1.5	ns	3
A6	Setup time — ATA_DATA[15:0] valid to ATA_IORDY	t _{I_DS}	2.0	_	ns	4
A7	Hold time — ATA_IORDY to ATA_DATA[15:0] invalid	t _{I_DH}	3.5	_	ns	4

Table 25. ATA Interface Timing Specifications^{1,2}

¹ These parameters are guaranteed by design and not testable.

² All timings specified with a capacitive load of 40pF.

³ Applies to ATA_CS[1:0], ATA_DA[2:0], ATA_DIOR, ATA_DIOW, ATA_DMACK, ATA_DATA[15:0]

⁴ Applies to Ultra DMA data-in burst only

5.16 DSPI Timing Specifications

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. Table 26 provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the *MCF54455 Reference Manual* for information on the modified transfer formats used for communicating with slower peripheral devices.

Name	Characteristic	Symbol	Min	Мах	Unit	Notes
DS1	DSPI_SCK Cycle Time	t _{SCK}	4 x t _{SYS}	—	ns	2
DS2	DSPI_SCK Duty Cycle	—	(t _{sck} ÷ 2) - 2.0	$(t_{sck} \div 2) + 2.0$	ns	3
Master M	ode					
DS3	DSPI_PCS <i>n</i> to DSPI_SCK delay	t _{CSC}	$(2 \times t_{SYS})$ - 1.5	—	ns	4
DS4	DSPI_SCK to DSPI_PCS <i>n</i> delay	t _{ASC}	$(2 \times t_{SYS})$ - 3.0	—	ns	5
DS5	DSPI_SCK to DSPI_SOUT valid	—	—	5	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	—	-5	—	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	—	9	—	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	—	0	—	ns	
Slave Mo	de		•			
DS9	DSPI_SCK to DSPI_SOUT valid	—	—	10	ns	

Table 26. DSPI Module AC Timing Specifications¹

DS14

Electrical Characteristics

ns

10

Table 26. DSPI Module AC Timing Specifications ¹ (continued)										
Name	Characteristic	Symbol	Min	Мах	Unit	Notes				
DS10	DSPI_SCK to DSPI_SOUT invalid	_	0	_	ns					
DS11	DSPI_SIN to DSPI_SCK input setup	—	2	_	ns					
DS12	DSPI_SCK to DSPI_SIN input hold	—	7	—	ns					
DS13	DSPI SS active to DSPI SOUT driven		_	10	ns					

¹ Timings shown are for DMCR[MTFE] = 0 (classic SPI) and DCTAR*n*[CPHA] = 0. Data is sampled on the DSPI_SIN pin on the odd-numbered DSPI_SCK edges and driven on the DSPI_SOUT pin on even-numbered DSPI edges.

² When in master mode, the baud rate is programmable in DCTAR*n*[DBR], DCTAR*n*[PBR], and DCTAR*n*[BR].

³ This specification assumes a 50/50 duty cycle setting. The duty cycle is programmable in DCTAR*n*[DBR], DCTAR*n*[CPHA], and DCTAR*n*[PBR].

⁴ The DSPI_PCS*n* to DSPI_SCK delay is programmable in DCTAR*n*[PCSSCK] and DCTAR*n*[CSSCK].

⁵ The DSPI_SCK to DSPI_PCS*n* delay is programmable in DCTAR*n*[PASC] and DCTAR*n*[ASC].

DSPI_SS inactive to DSPI_SOUT not driven

Figure 23. DSPI Classic SPI Timing—Master Mode

Figure 24. DSPI Classic SPI Timing—Slave Mode

5.17 SBF Timing Specifications

The Serial Boot Facility (SBF) provides a means to read configuration information and system boot code from a broad array of SPI-compatible EEPROMs, flashes, FRAMs, nVSRAMs, etc. Table 27 provides the AC timing specifications for the SBF.

Table 27. SB	F AC Timing	Specifications
--------------	-------------	----------------

Name	Characteristic	Symbol	Min	Мах	Unit	Notes
SB1	SBF_CK Cycle Time	t _{SBFCK}	40	_	ns	1
SB2	SBF_CK High/Low Time	—	30%	—	t _{SBFCK}	
SB3	SBF_CS to SBF_CK delay	—	t _{SBFCK} - 2.0	—	ns	
SB4	SBF_CK to SBF_CS delay	—	t _{SBFCK} - 2.0	—	ns	
SB5	SBF_CK to SBF_DO valid	—	-5	—	ns	
SB6	SBF_CK to SBF_DO invalid	—	5	—	ns	
SB7	SBF_DI to SBF_SCK input setup	—	10	—	ns	
SB8	SBF_CK to SBF_DI input hold	—	0	—	ns	
¹ At reset	the SBE CK cycle time is $t_{DEE} \times 67$ The first	byte of data	read from the ser	rial memory conta	ins a divi	der value

At reset, the SBF_CK cycle time is $t_{REF} \times 67$. The first byte of data read from the serial memory contains a divider value that is used to set the SBF_CK cycle time for the duration of the serial boot process.

5.19 JTAG and Boundary Scan Timing

Table 29. JTAG and Boundary Scan Timing

Num	Characteristics ¹	Min	Max	Unit
J1	TCLK Frequency of Operation	DC	20	MHz
J2	TCLK Cycle Period	50	_	ns
J3	TCLK Clock Pulse Width	20	30	ns
J4	TCLK Rise and Fall Times		3	ns
J5	Boundary Scan Input Data Setup Time to TCLK Rise	5	—	ns
J6	Boundary Scan Input Data Hold Time after TCLK Rise	20	_	ns
J7	TCLK Low to Boundary Scan Output Data Valid	—	33	ns
J8	TCLK Low to Boundary Scan Output High Z		33	ns
J9	TMS, TDI Input Data Setup Time to TCLK Rise	4	_	ns
J10	TMS, TDI Input Data Hold Time after TCLK Rise	10	—	ns
J11	TCLK Low to TDO Data Valid	_	11	ns
J12	TCLK Low to TDO High Z		11	ns
J13	TRST Assert Time	50		ns
J14	TRST Setup Time (Negation) to TCLK High	10	—	ns

¹ JTAG_EN is expected to be a static signal. Hence, specific timing is not associated with it.

Figure 27. Test Clock Input Timing

Figure 29. Test Access Port Timing

Package Information

7 Package Information

The latest package outline drawings are available on the product summary pages on http://www.freescale.com/coldfire. Table 33 lists the case outline numbers per device. Use these numbers in the web page's keyword search engine to find the latest package outline drawings.

Device	Package Type	Case Outline Numbers
MCF54450	256 MAPBGA	98ARH98219A
MCF54451		
MCF54452	360 TEPBGA	
MCF54453		
MCF54454		90ARE 10003D
MCF54455		

Table	33.	Package	Informa	ation
10010	•••	. aonago		

8 **Product Documentation**

Documentation is available from a local Freescale distributor, a Freescale sales office, the Freescale Literature Distribution Center, or through the Freescale world-wide web address at http://www.freescale.com/coldfire.

MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8

Revision History

9 Revision History

Table 34 summarizes revisions to this document.

Table 34. Revision History

Rev. No.	Date	Summary of Changes
0	Sept 17, 2007	Initial public release.
1	Feb 15, 2008	Corrected VSS pin locations in MCF5445 <i>x</i> signal information and muxing table for the 360 TEPBGA package: changed "M9, M16, M17" to "M9–M14, M16" Updated FlexBus read and write timing diagrams and added two notes before them. Change FB_A[23:0] to FB_A[31:0] in FlexBus read and write timing diagrams. Added power consumption section.
2	May 1, 2008	 In Family Configurations table, added PCI as feature on 256-pin devices. On these devices the PCI_AD bus is limited to 24-bits. In Absolute Maximum Ratings table, changed RTCV_{DD} specification from "-0.3 to +4.0" to "-0.5 to +2.0". In DC Electrical Specifications table: Changed RTCV_{DD} specification from 3.0–3.6 to 1.35–1.65. Changed High Impedance (Off-State) Leakage Current (I_{OZ}) specification from ±1 to ±10µA, and added footnote to this spec: "Worst-case tristate leakage current with only one I/O pin high. Since all I/Os share power when high, the leakage current is distributed among them. With all I/Os high, this spec reduces to ±2 µA min/max."
3	Dec 1, 2008	 Changed "360PBGA" heading to "360 TEPBGA" in Table 6. Changed the following specs in Table 13: Minimum frequency of operation from — to 60MHz. Maximum clock period from — to 16.67 ns.
4	Apr 12, 2009	 Rescinded previous errata, the 256-pin devices do not contain the PCI bus controller: In Table 4, in PCI_AD<i>n</i> signal section, added a separate row for each package, with PCI_AD<i>n</i> signals shown as — for 256-pin devices. In Figure 5, changed the PCI_AD<i>n</i> pins to their alternative function, FB_A<i>n</i>.
5	Apr 27, 2009	In Table 2 changed MCF54450VM180 to MCF54450CVM180 and changed it's temperature entry from "0° to +70° C" to "-40° to +85° C".
6	Oct 15, 2009	In Table 8 changed Input Leakage Current (I_{in}) from ±1.0 to ±2.5µA.
7	Oct 18, 2011	In Table 2, added MCF54452YVR200 part number, with temperature range from -40° to $+105^{\circ}$ C. In Table 8, added Input Leakage Current (I _{in}) values for MCF54452YVR200 part number.
8	Jan 18, 2012	In Table 4, added pin N7 in the VSS pin list for the 360 TEPBGA.

MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8