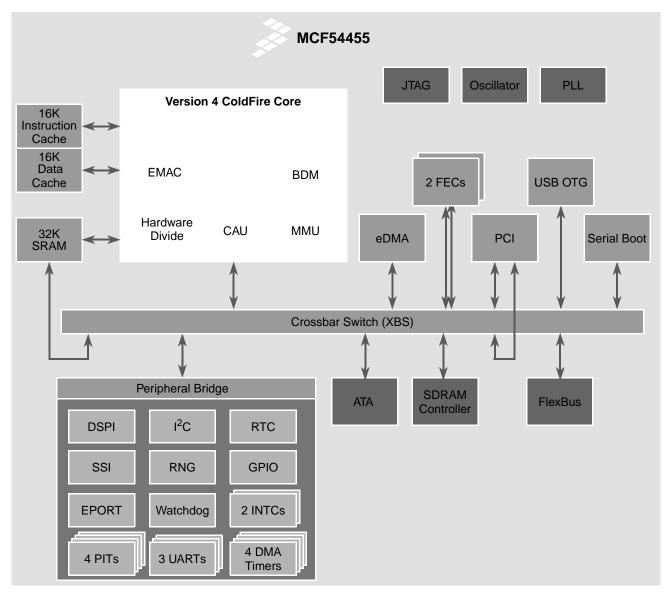


Welcome to **E-XFL.COM**


What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details		
Product Status	Active	
Core Processor	Coldfire V4	
Core Size	32-Bit Single-Core	
Speed	200MHz	
Connectivity	I ² C, SPI, SSI, UART/USART, USB OTG	
Peripherals	DMA, WDT	
Number of I/O	132	
Program Memory Size	-	
Program Memory Type	ROMIess	
EEPROM Size	-	
RAM Size	32K x 8	
Voltage - Supply (Vcc/Vdd)	1.35V ~ 3.6V	
Data Converters	-	
Oscillator Type	Internal	
Operating Temperature	-40°C ~ 85°C (TA)	
Mounting Type	Surface Mount	
Package / Case	360-BBGA	
Supplier Device Package	360-TEPBGA (23x23)	
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcf54454cvr200	

LEGEND

 Advanced Technology Attachment Controller 	INTC	 Interrupt controller
 Background debug module 	JTAG	 Joint Test Action Group interface
 Cryptography acceleration unit 	MMU	 Memory management unit
 DMA serial peripheral interface 	PCI	 Peripheral Component Interconnect
 Enhanced direct memory access 	PIT	 Programmable interrupt timers
 Enchance multiply-accumulate unit 	PLL	 Phase locked loop module
 Edge port module 	RNG	 Random Number Generator
 Fast Ethernet controller 	RTC	 Real time clock
 General Purpose Input/Output 	SSI	 Synchronous Serial Interface
 Inter-Intergrated Circuit 	USB OTG	- Universal Serial Bus On-the-Go controller
	 Background debug module Cryptography acceleration unit DMA serial peripheral interface Enhanced direct memory access Enchance multiply-accumulate unit Edge port module Fast Ethernet controller General Purpose Input/Output 	 Background debug module Cryptography acceleration unit DMA serial peripheral interface Enhanced direct memory access Enchance multiply-accumulate unit Edge port module Fast Ethernet controller General Purpose Input/Output JTAG MMU PCI PIT PLL RNG Fast Ethernet controller RTC SSI

Figure 1. MCF54455 Block Diagram

MCF5445x Family Comparison

1 MCF5445*x* Family Comparison

The following table compares the various device derivatives available within the MCF5445x family.

Table 1. MCF5445x Family Configurations

Module	MCF54450	MCF54451	MCF54452	MCF54453	MCF54454	MCF54455		
ColdFire Version 4 Core with EMAC (Enhanced Multiply-Accumulate Unit)	•	•	•	•	•	•		
Core (System) Clock	up to 2	40 MHz		up to 2	66 MHz	l		
Peripheral Bus Clock (Core clock ÷ 2)	up to 1	20 MHz	up to 133 MHz					
External Bus Clock (Core clock ÷ 4)	up to 6	60 MHz	up to 66 MHz					
Performance (Dhrystone/2.1 MIPS)	up to	370		up to	410			
Independent Data/Instruction Cache			16 Kbyt	es each				
Static RAM (SRAM)			32 K	bytes				
PCI Controller	_	_	•	•	•	•		
Cryptography Acceleration Unit (CAU)	_	•	_	•	_	•		
ATA Controller	_	_	_	_	•	•		
DDR SDRAM Controller	•	•	•	•	•	•		
FlexBus External Interface	•	•	•	•	•	•		
USB 2.0 On-the-Go	•	•	•	•	•	•		
UTMI+ Low Pin Interface (ULPI)	•	•	•	•	•	•		
Synchronous Serial Interface (SSI)	•	•	•	•	•	•		
Fast Ethernet Controller (FEC)	1	1	2	2	2	2		
UARTs	3	3	3	3	3	3		
I ² C	•	•	•	•	•	•		
DSPI	•	•	•	•	•	•		
Real Time Clock	•	•	•	•	•	•		
32-bit DMA Timers	4	4	4	4	4	4		
Watchdog Timer (WDT)	•	•	•	•	•	•		
Periodic Interrupt Timers (PIT)	4	4	4	4	4	4		
Edge Port Module (EPORT)	•	•	•	•	•	•		
Interrupt Controllers (INTC)	2	2	2	2	2	2		
16-channel Direct Memory Access (DMA)	•	•	•	•	•	•		
General Purpose I/O (GPIO)	•	•	•	•	•	•		
JTAG - IEEE [®] 1149.1 Test Access Port	•	•	•	•	•	•		
Package	256 M	MAPBGA 360 TEPBGA						

5

2 Ordering Information

Table 2. Orderable Part Numbers

Freescale Part Number	Description	Package	Speed	Temperature
MCF54450CVM180	MCF54450 Microprocessor		180 MHz	–40° to +85° C
MCF54450VM240	Wici 34430 Wildioprocessor	256 MAPBGA	240 MHz	0° to +70° C
MCF54451CVM180	MCF54451 Microprocessor	230 WAI DOA	180 MHz	–40° to +85° C
MCF54451VM240	Wich 54451 Wildroptocessor		240 MHz	0° to +70° C
MCF54452CVR200	MCF54452 Microprocessor		200 MHz	−40° to +85° C
MCF54452YVR200		or	200 MHz	–40° to +105° C
MCF54452VR266			266 MHz	0° to +70° C
MCF54453CVR200	MCF54453 Microprocessor		200 MHz	−40° to +85° C
MCF54453VR266	Wildi 34403 Microprocessor	360 TEPBGA	266 MHz	0° to +70° C
MCF54454CVR200	MCF54454 Microprocessor		200 MHz	–40° to +85° C
MCF54454VR266	Wici 54454 Microprocessor		266 MHz	0° to +70° C
MCF54455CVR200	MCEF44FF Migroproggar		200 MHz	−40° to +85° C
MCF54455VR266	MCF54455 Microprocessor		266 MHz	0° to +70° C

3 Hardware Design Considerations

3.1 Analog Power Filtering

To further enhance noise isolation, an external filter is strongly recommended for the analog V_{DD} pins (VDD_A_PLL, VDD_RTC). The filter shown in Figure 2 should be connected between the board IV_{DD} and the analog pins. The resistor and capacitors should be placed as close to the dedicated analog V_{DD} pin as possible. The 10- Ω resistor in the given filter is required. Do not implement the filter circuit using only capacitors. The analog power pins draw very little current. Concerns regarding voltage loss across the 10-ohm resistor are not valid.

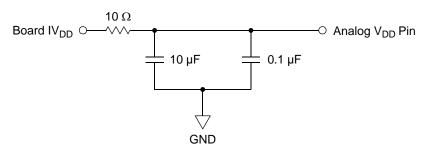


Figure 2. System Analog V_{DD} Power Filter

Hardware Design Considerations

3.2 Oscillator Power Filtering

Figure 3 shows an example for isolating the oscillator power supply from the I/O supply (EVDD) and ground.

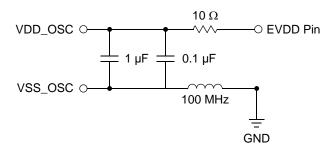
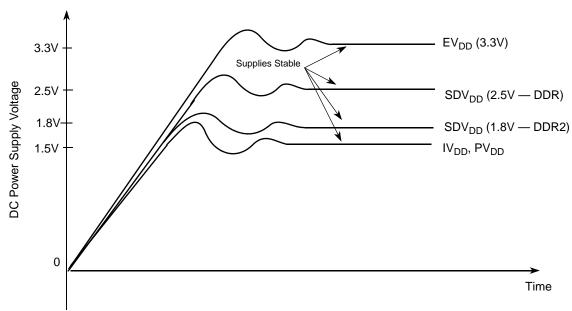



Figure 3. Oscillator Power Filter

3.3 Supply Voltage Sequencing

Figure 4 shows situations in sequencing the I/O V_{DD} (EV $_{DD}$), SDRAM V_{DD} (SDV $_{DD}$), PLL V_{DD} (PV $_{DD}$), and internal logic/core V_{DD} (IV $_{DD}$).

Notes

Figure 4. Supply Voltage Sequencing and Separation Cautions

The relationship between SDV_{DD} and EV_{DD} is non-critical during power-up and power-down sequences. SDV_{DD} (2.5V or 1.8V) and EV_{DD} are specified relative to IV_{DD} .

Input voltage must not be greater than the supply voltage (EV_{DD}, SDV_{DD}, IV_{DD}, or PV_{DD}) by more than 0.5V at any time, including during power-up.

² Use 50 V/millisecond or slower rise time for all supplies.

3.3.1 Power-Up Sequence

If EV_{DD}/SDV_{DD} are powered up with the IV_{DD} at 0 V, the sense circuits in the I/O pads cause all pad output drivers connected to the EV_{DD}/SDV_{DD} to be in a high impedance state. There is no limit on how long after EV_{DD}/SDV_{DD} powers up before IV_{DD} must power up. The rise times on the power supplies should be slower than 50 V/millisecond to avoid turning on the internal ESD protection clamp diodes.

3.3.2 Power-Down Sequence

If IV_{DD}/PV_{DD} are powered down first, sense circuits in the I/O pads cause all output drivers to be in a high impedance state. There is no limit on how long after IV_{DD} and PV_{DD} power down before EV_{DD} or SDV_{DD} must power down. There are no requirements for the fall times of the power supplies.

4 Pin Assignments and Reset States

4.1 Signal Multiplexing

The following table lists all the MCF5445x pins grouped by function. The Dir column is the direction for the primary function of the pin only. Refer to Section 4, "Pin Assignments and Reset States," for package diagrams. For a more detailed discussion of the MCF5445x signals, consult the MCF54455 Reference Manual (MCF54455RM).

NOTE

In this table and throughout this document, a single signal within a group is designated without square brackets (i.e., FB_AD23), while designations for multiple signals within a group use brackets (i.e., FB_AD[23:21]) and is meant to include all signals within the two bracketed numbers when these numbers are separated by a colon.

NOTE

The primary functionality of a pin is not necessarily its default functionality. Most pins that are muxed with GPIO default to their GPIO functionality. See Table 3 for a list of the exceptions.

Table 3. S	pecial-Case Default Sig	nal Functionality
D:	OFC MADDO A	000 TEDDO 4

Pin	256 MAPBGA 360 TEPBGA				
FB_AD[31:0]	FB_AD[31:0] except whe boot po	n serial boot selects 0-bit ort size.			
FB_BE/BWE[3:0]	FB_BE/BWE[3:0]				
FB_CS[3:1]	FB_CS[3:1]				
FB_OE	FB_	OE			
FB_R/W	FB_R/W				
FB_TA	FB_TA				
FB_TS	FB_	TS			

Pin Assignments and Reset States

Table 4. MCF5445x Signal Information and Muxing (continued)

Signal Name	GPIO	Alternate 1	Alternate 2	Pull-up (U) ¹ Pull-down (D)	Direction ²	Voltage Domain	MCF54450 MCF54451 256 MAPBGA	MCF54452 MCF54453 MCF54454 MCF54455 360 TEPBGA
SD_BA[1:0]	_	_	_	_	0	SDVDD	P4, T5	P22, P19
SD_CAS	_	_	_	_	0	SDVDD	T6	L19
SD_CKE	_	_	_	_	0	SDVDD	N5	N22
SD_CLK	_	_	_	_	0	SDVDD	Т9	L22
SD_CLK	_	_	_	_	0	SDVDD	Т8	M22
SD_CS[1:0]	_	_	_	_	0	SDVDD	P6, R6	L20, M20
SD_D[31:16]	_	_	_	_	I/O	SDVDD	N6, T7, N7, P7, R7, R8, P8, N8, N9, T10, R10, P10, N10, T11, R11, P11	L21, K22, K21, K20, J20, J19, J21, J22, H20, G22, G21, G20, G19, F22, F21, F20
SD_DM[3:2]	_	_	_	_	0	SDVDD	P9, N12	H21, E21
SD_DQS[3:2]	_	_	_	_	0	SDVDD	R9, N11	H22, E22
SD_RAS	_	_	_	_	0	SDVDD	P5	N21
SD_VREF	_	_	_	_	I	SDVDD	M8	M21
SD_WE	_	_	_	_	0	SDVDD	R5	N20
		Externa	al Interrupts Port ⁶					
ĪRQ7	PIRQ7	_	_	_	-1	EVDD	L1	ABB13
ĪRQ4	PIRQ4	_	SSI_CLKIN	_	I	EVDD	L2	ABB13
ĪRQ3	PIRQ3	_	_	_	I	EVDD	L3	AB14
ĪRQ1	PIRQ1	PCI_INTA	_	_	I	EVDD	F15	C6
			FEC0					
FEC0_MDC	PFECI2C3	_	_	_	0	EVDD	F3	AB8
FEC0_MDIO	PFECI2C2	_	<u> </u>	_	I/O	EVDD	F2	Y7
FEC0_COL	PFEC0H4	_	ULPI_DATA7	_	I	EVDD	E1	AB7
FEC0_CRS	PFEC0H0	_	ULPI_DATA6	_	I	EVDD	F1	AA7
FEC0_RXCLK	PFEC0H3	_	ULPI_DATA1	_	I	EVDD	G1	AA8
FEC0_RXDV	PFEC0H2	FEC0_RMII_ CRS_DV	_	_	I	EVDD	G2	Y8
FEC0_RXD[3:2]	PFEC0L[3:2]	_	ULPI_DATA[5:4]	_	I	EVDD	G3, G4	AB9, Y9
FEC0_RXD1	PFEC0L1	FEC0_RMII_RXD1	_	_	I	EVDD	H1	W9
FEC0_RXD0	PFEC0H1	FEC0_RMII_RXD0	_	_	ı	EVDD	H2	AB10
FEC0_RXER	PFEC0L0	FEC0_RMII_RXER	_	_	I	EVDD	НЗ	AA10

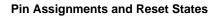


Table 4. MCF5445x Signal Information and Muxing (continued)

Signal Name	GPIO	Alternate 1	Alternate 2	Pull-up (U) ¹ Pull-down (D)	Direction ²	Voltage Domain	MCF54450 MCF54451 256 MAPBGA	MCF54452 MCF54453 MCF54454 MCF54455 360 TEPBGA
FEC0_TXCLK	PFEC0H7	FEC0_RMII_ REF_CLK	_	_	I	EVDD	H4	Y10
FEC0_TXD[3:2]	PFEC0L[7:6]	_	ULPI_DATA[3:2]	_	0	EVDD	J1, J2	W10, AB11
FEC0_TXD1	PFEC0L5	FEC0_RMII_TXD1	_	_	0	EVDD	J3	AA11
FEC0_TXD0	PFEC0H5	FEC0_RMII_TXD0	_	_	0	EVDD	J4	Y11
FEC0_TXEN	PFEC0H6	FEC0_RMII_TXEN	_	_	0	EVDD	K1	W11
FEC0_TXER	PFEC0L4	_	ULPI_DATA0	_	0	EVDD	K2	AB12
	<u> </u>		FEC1					
FEC1_MDC	PFECI2C5	_	ATA_DIOR	_	0	EVDD	_	W20
FEC1_MDIO	PFECI2C4	_	ATA_DIOW	_	I/O	EVDD	_	Y22
FEC1_COL	PFEC1H4	_	ATA_DATA7	_	1	EVDD	_	AB18
FEC1_CRS	PFEC1H0	_	ATA_DATA6	_	I	EVDD	_	AA18
FEC1_RXCLK	PFEC1H3	_	ATA_DATA5	_	I	EVDD	_	W14
FEC1_RXDV	PFEC1H2	FEC1_RMII_ CRS_DV	ATA_DATA15	_	I	EVDD	_	AB15
FEC1_RXD[3:2]	PFEC1L[3:2]	_	ATA_DATA[4:3]	_	I	EVDD	_	AA15, Y15
FEC1_RXD1	PFEC1L1	FEC1_RMII_RXD1	ATA_DATA14	_	I	EVDD	_	AA17
FEC1_RXD0	PFEC1H1	FEC1_RMII_RXD0	ATA_DATA13	_	I	EVDD	_	Y17
FEC1_RXER	PFEC1L0	FEC1_RMII_RXER	ATA_DATA12	_	I	EVDD	_	W17
FEC1_TXCLK	PFEC1H7	FEC1_RMII_ REF_CLK	ATA_DATA11	_	I	EVDD	_	AB19
FEC1_TXD[3:2]	PFEC1L[7:6]	_	ATA_DATA[2:1]	_	0	EVDD	_	Y19, W18
FEC1_TXD1	PFEC1L5	FEC1_RMII_TXD1	ATA_DATA10	_	0	EVDD	_	AA19
FEC1_TXD0	PFEC1H5	FEC1_RMII_TXD0	ATA_DATA9	_	0	EVDD	_	Y20
FEC1_TXEN	PFEC1H6	FEC1_RMII_TXEN	ATA_DATA8	_	0	EVDD	_	AA21
FEC1_TXER	PFEC1L4	_	ATA_DATA0	_	0	EVDD	_	AA22
		US	B On-the-Go	1				
USB_DM	_	_	_	_	0	USB VDD	F16	A14
USB_DP	_	_	_	_	0	USB VDD	E16	A15
USB_VBUS_EN	PUSB1	USB_PULLUP	ULPI_NXT	_	0	USB VDD	E5	AA2
USB_VBUS_OC	PUSB0	_	ULPI_STP	UD ⁷	I	USB VDD	В3	V4

MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8

Pin Assignments and Reset States

4.3 Pinout—360 TEPBGA

The pinout for the MCF54452, MCF54453, MCF54454, and MCF54455 packages are shown below.

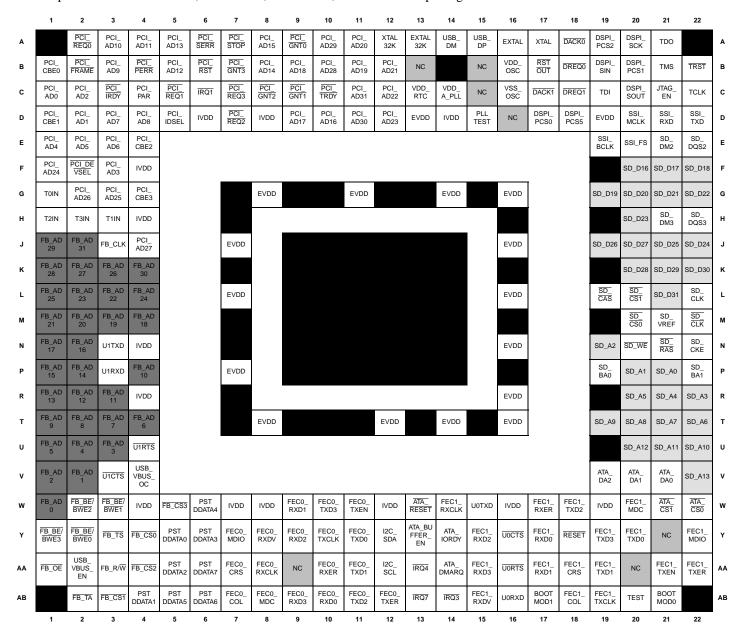


Figure 6. MCF54452, MCF54453, MCF54454, and MCF54455 Pinout (360 TEPBGA)

where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

5.3 ESD Protection

Table 7. ESD Protection Characteristics 1, 2

Characteristics	Symbol	Value	Units
ESD Target for Human Body Model	HBM	2000	V

All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

5.4 DC Electrical Specifications

Table 8. DC Electrical Specifications

Characteristic	Symbol	Min	Max	Units
Internal logic supply voltage ¹	IV _{DD}	1.35	1.65	V
PLL analog operation voltage range ¹	PV_{DD}	1.35	1.65	V
External I/O pad supply voltage	EV _{DD}	3.0	3.6	V
Internal oscillator supply voltage	OSCV _{DD}	3.0	3.6	V
Real-time clock supply voltage	RTCV _{DD}	1.35	1.65	V
SDRAM I/O pad supply voltage — DDR mode	SDV _{DD}	2.25	2.75	V
SDRAM I/O pad supply voltage — DDR2 mode	SDV _{DD}	1.7	1.9	V
SDRAM I/O pad supply voltage — Mobile DDR mode	SDV _{DD}	1.7	1.9	V
SDRAM input reference voltage	SDV _{REF}	0.49 x SDV _{DD}	0.51 x SDV _{DD}	V
Input High Voltage	V _{IH}	0.7 x EV _{DD}	3.65	V
Input Low Voltage	V _{IL}	V _{SS} - 0.3	0.35 x EV _{DD}	V
Input Hysteresis	V _{HYS}	0.06 x EV _{DD}	_	mV
Input Leakage Current ² V _{in} = V _{DD} or V _{SS} , Input-only pins	I _{in}	-2.5	2.5	μА
Input Leakage Current ³ V _{in} = V _{DD} or V _{SS} , Input-only pins	I _{in}	-5	5	μА
High Impedance (Off-State) Leakage Current ⁴ V _{in} = V _{DD} or V _{SS} , All input/output and output pins	loz	-10.0	10.0	μА
Output High Voltage (All input/output and all output pins) $I_{OH} = -5.0 \text{ mA}$	V _{OH}	$0.85 \times \text{EV}_{\text{DD}}$		V
Output Low Voltage (All input/output and all output pins) I _{OL} = 5.0mA	V _{OL}		0.15 × EV _{DD}	V

MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing is performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Table 8. DC Electrical Specifications

Characteristic	Symbol	Min	Max	Units
Weak Internal Pull Up Device Current, tested at V _{IL} Max. ⁵	I _{APU}	-10	-130	μΑ
Input Capacitance ⁶ All input-only pins All input/output (three-state) pins	C _{in}		7 7	pF
Load Capacitance Low drive strength High drive strength	C _L		25 50	pF
DC Injection Current ^{3, 7, 8, 9} V _{NEGCLAMP} = V _{SS} – 0.3 V, V _{POSCLAMP} = V _{DD} + 0.3 Single Pin Limit Total MCU Limit, Includes sum of all stressed pins	I _{IC}	-1.0 -10	1.0 10	mA

IV_{DD} and PV_{DD} should be at the same voltage. PV_{DD} should have a filtered input. Please see the PLL section of this specification for an example circuit. There are three PV_{DD} inputs, one for each PLL. A filter circuit should used on each PV_{DD} input.

5.5 Clock Timing Specifications

The clock module configures the device for one of several clocking methods. Clocking modes include internal phase-locked loop (PLL) clocking with an external clock reference or an external crystal reference supported by an internal crystal amplifier. The PLL can also be disabled, and an external oscillator can directly clock the device.

The specifications in Table 9 are for the CLKIN input pin (EXTAL input driven by an external clock reference). The duty cycle specification is based on an acceptable tolerance for the PLL, which yields 50% duty-cycle internal clocks to all on-chip peripherals. The MCF5445x devices use the input clock signal as its synchronous bus clock for PCI. A poor duty cycle on the input clock, may affect the overall timing margin to external devices. If negative edge logic is used to interface to PCI, providing a 50% duty-cycle input clock aids in simplifying overall system design.

² Valid for all parts, EXCEPT the MCF54452YVR200.

³ Valid just the MCF54452YVR200 part number.

Worst-case tristate leakage current with only one I/O pin high. Since all I/Os share power when high, the leakage current is distributed among them. With all I/Os high, this spec reduces to ±2 μA min/max.

⁵ Refer to the *MCF54455 Reference Manual* signals description chapter for pins having weak internal pull-up devices.

⁶ This parameter is characterized before qualification rather than 100% tested.

⁷ All functional non-supply pins are internally clamped to V_{SS} and their respective V_{DD}.

Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.

Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{in} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure the external V_{DD} load shunts current greater than the maximum injection current. This is the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low which would reduce overall power consumption. Also, at power-up, the system clock is not present during the power-up sequence until the PLL has attained lock.

Item	Specification	Min	Max	Unit
C1	Cycle time	15	40	ns
1 / C1	Frequency	25	66.66	MHz
C2	Rise time (20% of vdd to 80% of vdd)	-	2	ns
C3	Fall time (80% of vdd to 20% of vdd)	-	2	ns
C4	Duty cycle (at 50% of vdd)	40	60	%

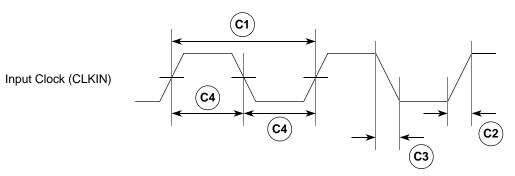


Figure 7. Input Clock Timing Diagram

Table 10. PLL Electrical Characteristics

Num	Characteristic	Symbol	Min. Value	Max. Value	Unit
1	PLL Reference Frequency Range Crystal reference External reference	f _{ref_crystal} f _{ref_ext}	16 16	40 66.66	MHz MHz
2	Core/System Frequency	f _{sys}	512 Hz ¹	266.67 MHz	_
	Core/System Clock Period	t _{sys}	_	1/f _{sys}	ns
19	VCO Frequency ($f_{vco} = f_{ref} \times PFDR$)	f _{vco}	300	540	MHz
3	Crystal Start-up Time ^{2, 3}	t _{cst}	_	10	ms
4	EXTAL Input High Voltage Crystal Mode ⁴ All other modes (External, Limp)	V _{IHEXT} V _{IHEXT}	V _{XTAL} + 0.4 E _{VDD} /2 + 0.4		V V
5	EXTAL Input Low Voltage Crystal Mode ⁴ All other modes (External, Limp)	V _{ILEXT} V _{ILEXT}	_	V _{XTAL} - 0.4 E _{VDD} /2 - 0.4	V V
6	EXTAL Input Rise & Fall Time (20% to 80% E _{VDD}) (External, Limp)		1	2	ns
7	PLL Lock Time ^{3, 5}	t _{lpll}	_	50000	CLKIN
8	Duty Cycle of reference ³ (External, Limp)	t _{dc}	40	60	%
9	XTAL Current	I _{XTAL}	1	3	mA
10	Total on-chip stray capacitance on XTAL	C _{S_XTAL}	_	1.5	pF

MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8

Table 10. PLL Electrical Characteristics (continued)

Num	Characteristic	Symbol	Min. Value	Max. Value	Unit
11	Total on-chip stray capacitance on EXTAL	C _{S_EXTAL}	_	1.5	pF
12	Crystal capacitive load	C _L	See crystal spec		
13	Discrete load capacitance for XTAL Discrete load capacitance for EXTAL	C _{L_XTAL} C _{L_EXTAL}	_	$\begin{array}{c} 2\times (C_L -\\ C_{S_XTAL} -\\ C_{S_EXTAL} -\\ C_{S_PCB})^6 \end{array}$	pF
14	Frequency un-LOCK Range	f _{UL}	-4.0	4.0	% f _{sys}
15	Frequency LOCK Range	f _{LCK}	-2.0	2.0	% f _{sys}
17	CLKOUT Period Jitter, ^{3, 4, 7} Measured at f _{SYS} Max Peak-to-peak Jitter (Clock edge to clock edge) Long Term Jitter	C _{jitter}		10 TBD	% FB_CLK % FB_CLK

The minimum system frequency is the minimum input clock divided by the maximum low-power divider (16 MHz ÷ 32,768). When the PLL is enabled, the minimum system frequency (f_{sys}) is 150 MHz.

⁶ C_{S PCB} is the measured PCB stray capacitance on EXTAL and XTAL.

5.6 Reset Timing Specifications

Table 11 lists specifications for the reset timing parameters shown in Figure 8.

Table 11. Reset and Configuration Override Timing

Num	Characteristic	Min	Max	Unit
R1 ¹	RESET valid to CLKIN (setup)	9	_	ns
R2	CLKIN to RESET invalid (hold)	1.5	_	ns
R3	RESET valid time ²	5	_	CLKIN cycles
R4	CLKIN to RSTOUT valid	_	10	ns
R5	RSTOUT valid to Configuration Override inputs valid	0	_	ns
R6	Configuration Override inputs valid to RSTOUT invalid (setup)	20	_	CLKIN cycles
R7	Configuration Override inputs invalid after RSTOUT invalid (hold)	0	_	ns
R8	RSTOUT invalid to Configuration Override inputs High Impedance	_	1	CLKIN cycles

RESET and Configuration Override data lines are synchronized internally. Setup and hold times must be met only if recognition on a particular clock is required.

² This parameter is guaranteed by characterization before qualification rather than 100% tested. Applies to external clock reference only.

Proper PC board layout procedures must be followed to achieve specifications.

⁴ This parameter is guaranteed by design rather than 100% tested.

⁵ This specification is the PLL lock time only and does not include oscillator start-up time.

Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{sys}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via PLL V_{DD}, EV_{DD}, and V_{SS} and variation in crystal oscillator frequency increase the Cjitter percentage for a given interval.

During low power STOP, the synchronizers for the RESET input are bypassed and RESET is asserted asynchronously to the system. Thus, RESET must be held a minimum of 100 ns.

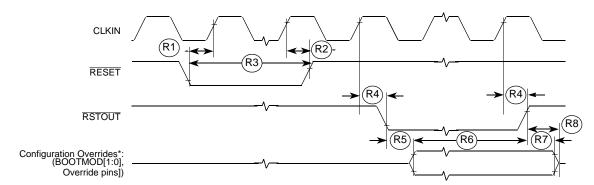


Figure 8. RESET and Configuration Override Timing

5.7 FlexBus Timing Specifications

A multi-function external bus interface called FlexBus is provided with basic functionality to interface to slave-only devices up to a maximum bus frequency of 66MHz. It can be directly connected to asynchronous or synchronous devices such as external boot ROMs, flash memories, gate-array logic, or other simple target (slave) devices with little or no additional circuitry. For asynchronous devices, a simple chip-select based interface can be used.

All processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency or an integer divider of that frequency.

The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Flexbus output clock (FB_CLK). All other timing relationships can be derived from these values.

Num	Characteristic	Min	Max	Unit	Notes
	Frequency of Operation	25	66.66	MHz	
FB1	Clock Period	15	40	ns	
FB2	Output Valid	_	7.0	ns	1
FB3	Output Hold	1.0	_	ns	1
FB4	Input Setup	3.0	_	ns	2
FB5	Input Hold	0	_	ns	2

Table 12. FlexBus AC Timing Specifications

NOTE

The processor drives the data lines during the first clock cycle of the transfer with the full 32-bit address. This may be ignored by standard connected devices using non-multiplexed address and data buses. However, some applications may find this feature beneficial.

The address and data busses are muxed between the FlexBus and PCI controller. At the end of the read and write bus cycles the address signals are indeterminate.

MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8

Specification is valid for all FB_AD[31:0], FB_BS[3:0], FB_CS[3:0], FB_OE, FB_R/W, FB_TBST, FB_TSIZ[1:0], and FB_TS.

² Specification is valid for all FB_AD[31:0] and FB_TA.

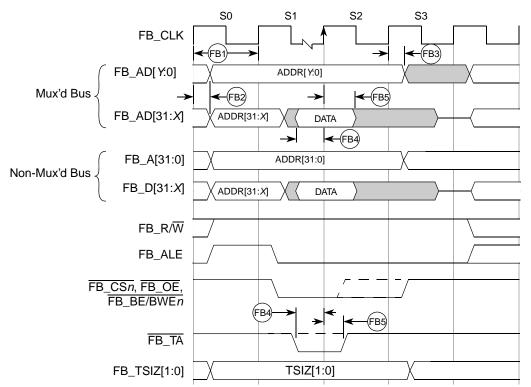


Figure 9. FlexBus Read Timing

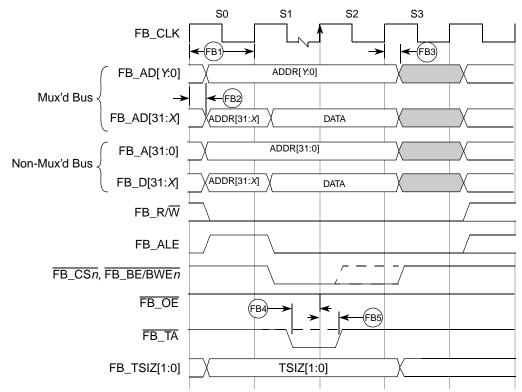


Figure 10. Flexbus Write Timing

MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8

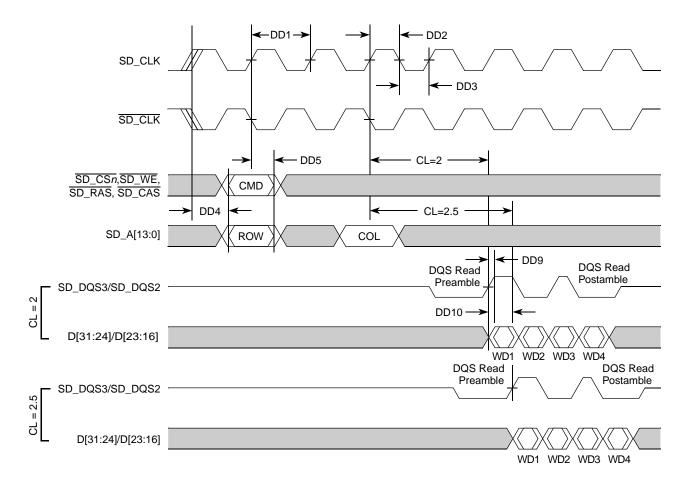


Figure 12. DDR Read Timing

5.9 PCI Bus Timing Specifications

The PCI bus on the device is PCI 2.2 compliant. The following timing numbers are mostly from the PCI 2.2 spec. Refer to the PCI 2.2 spec for a more detailed timing analysis.

Num	Characteristic	33 MHz ³		66 MHz ³		
Num		Min	Max	Min	Max	Unit
	Frequency of Operation	_	33.33	33.33	66.66	MHz
P1	Clock Period	30	_	15	30	ns
P2	Bused PCI signals — input setup	7.0	_	3.0	_	ns
P3	PCI_GNT[3:0]/PCI_REQ[3:0] — input setup	10.0	_	5.0	_	ns
P4	All PCI signals — input hold	0	_	0	_	ns
P5	Bused PCI signals — output valid	_	11.0	_	6.0	ns

Table 14. PCI Timing Specifications^{1,2}

MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8

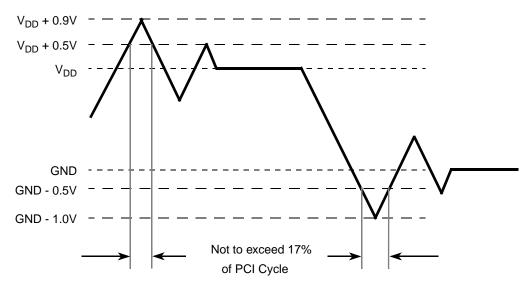


Figure 14. Overshoot and Undershoot Limits

5.10 ULPI Timing Specifications

The ULPI interface is fully compliant with the industry standard UTMI+ Low Pin Interface. Control and data timing requirements for the ULPI pins are given in Table 15. These timings apply to synchronous mode only. All timings are measured with respect to the clock as seen at the USB_CLKIN pin on the MCF5445x. The ULPI PHY is the source of the 60MHz clock.

NOTE

The USB controller requires a 60-MHz clock, even if using the on-chip FS/LS transceiver instead of the ULPI interface. In this case, the 60-MHz clock can be generated by the PLL or input on the USB_CLKIN pin.

Num	Characteristic	Min	Nominal	Max	Units
	USB_CLKIN operating frequency	_	60	_	MHz
	USB_CLKIN duty cycle	_	50	_	%
U1	USB_CLKIN clock period	_	16.67	_	ns
U2	Input Setup (control and data)	5.0	_	_	ns
U3	Input Hold (control and data)	1.0	_	_	ns
U4	Output Valid (control and data)	_	_	9.5	ns
U5	Output Hold (control and data)	1.0	_	_	

Table 15. ULPI Interface Timing

Table 19. I ² C Output Timing Specifications between SCL and SDA (continued)

Num	Characteristic		Max	Units
16 ¹	Clock high time	10	_	t _{SYS}
I7 ¹	Data setup time	2	_	t _{SYS}
18 ¹	Start condition setup time (for repeated start condition only)	20	_	t _{SYS}
19 ¹	Stop condition setup time	10	_	t _{SYS}

Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the maximum frequency (IFDR = 0x20) results in minimum output timings as shown in Table 19. The I²C interface is designed to scale the actual data transition time to move it to the middle of the SCL low period. The actual position is affected by the prescale and division values programmed into the IFDR. However, the numbers given in Table 19 are minimum values.

Specified at a nominal 50-pF load.

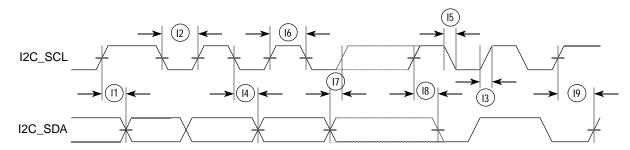


Figure 18. I²C Input/Output Timings

5.13 Fast Ethernet Timing Specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

5.13.1 Receive Signal Timing Specifications

The following timing specs meet the requirements for MII and 7-Wire style interfaces for a range of transceiver devices.

Table 20. Receive Signal Timing

Num	Characteristic	MII Mode		RMII Mode		Unit	
Num		Min	Max	Min	Max	Onit	
_	RXCLK frequency	_	25	_	50	MHz	
E1	RXD[n:0], RXDV, RXER to RXCLK setup ¹	5	_	4	_	ns	
E2	RXCLK to RXD[n:0], RXDV, RXER hold ¹	5	_	2	_	ns	
E3	RXCLK pulse width high	35%	65%	35%	65%	RXCLK period	
E4	RXCLK pulse width low	35%	65%	35%	65%	RXCLK period	

¹ In MII mode, n = 3; In RMII mode, n = 1

MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8

Because I2C_SCL and I2C_SDA are open-collector-type outputs, which the processor can only actively drive low, the time I2C_SCL or I2C_SDA take to reach a high level depends on external signal capacitance and pull-up resistor values.

A6

Α7

5.15 ATA Interface Timing Specifications

The ATA controller is compatible with the ATA/ATAPI-6 industry standard. Refer to the *ATA/ATAPI-6 Specficiation* and the ATA controller chapter of the *MCF54455 Reference Manual* for timing diagrams of the various modes of operation.

The timings of the various ATA data transfer modes are determined by a set of timing equations described in the ATA section of the *MCF54455 Reference Manual*. These timing equations must be fulfilled for the ATA host to meet timing. Table 25 provides implementation specific timing parameters necessary to complete the timing equations.

Name Characteristic **Symbol** Unit **Notes** Min Max Setup time — ATA_IORDY to SYSCLK falling **A1** 4.0 ns t_{SUI} Hold time — ATA IORDY from SYSCLK falling A2 3.0 t_{HI} ns Setup time — ATA_DATA[15:0] to SYSCLK rising А3 4.0 t_{SU} ns 3 **A4** Propagation delay — SYSCLK rising to all outputs 7.0 ns t_{CO} 3 Α5 Output skew 1.5 t_{SKEW1} ns

4

ns

ns

2.0

3.5

 t_{I_DS}

t_{I DH}

Table 25. ATA Interface Timing Specifications 1,2

Setup time — ATA_DATA[15:0] valid to ATA_IORDY

Hold time — ATA_IORDY to ATA_DATA[15:0] invalid

5.16 DSPI Timing Specifications

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. Table 26 provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the *MCF54455 Reference Manual* for information on the modified transfer formats used for communicating with slower peripheral devices.

Table 26. DSPI Module AC Timing Specifications¹

Name	Characteristic	Symbol	Min	Max	Unit	Notes	
DS1	DSPI_SCK Cycle Time	t _{SCK}	4 x t _{SYS}	_	ns	2	
DS2	DSPI_SCK Duty Cycle	_	(t _{sck} ÷ 2) - 2.0	$(t_{sck} \div 2) + 2.0$	ns	3	
Master M	ode						
DS3	DSPI_PCSn to DSPI_SCK delay	t _{CSC}	(2 × t _{SYS}) - 1.5	_	ns	4	
DS4	DSPI_SCK to DSPI_PCSn delay	t _{ASC}	(2 × t _{SYS}) - 3.0	_	ns	5	
DS5	DSPI_SCK to DSPI_SOUT valid	_	_	5	ns		
DS6	DSPI_SCK to DSPI_SOUT invalid	_	-5	_	ns		
DS7	DSPI_SIN to DSPI_SCK input setup	_	9	_	ns		
DS8	DSPI_SCK to DSPI_SIN input hold	_	0	_	ns		
Slave Mo	Slave Mode						
DS9	DSPI_SCK to DSPI_SOUT valid	_	_	10	ns		

MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8

These parameters are guaranteed by design and not testable.

² All timings specified with a capacitive load of 40pF.

³ Applies to ATA_CS[1:0], ATA_DA[2:0], ATA_DIOR, ATA_DIOW, ATA_DMACK, ATA_DATA[15:0]

⁴ Applies to Ultra DMA data-in burst only

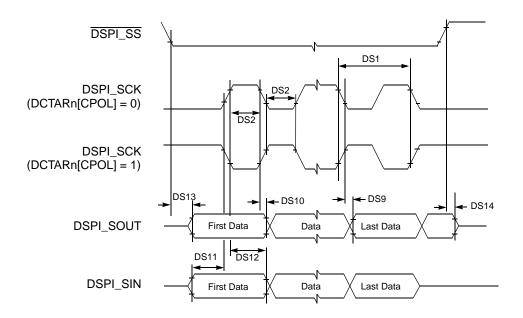


Figure 24. DSPI Classic SPI Timing—Slave Mode

5.17 **SBF Timing Specifications**

The Serial Boot Facility (SBF) provides a means to read configuration information and system boot code from a broad array of SPI-compatible EEPROMs, flashes, FRAMs, nVSRAMs, etc. Table 27 provides the AC timing specifications for the SBF.

Name	Characteristic	Symbol	Min	Max	Unit	Notes
SB1	SBF_CK Cycle Time	t _{SBFCK}	40		ns	1
SB2	SBF_CK High/Low Time	_	30%	_	t _{SBFCK}	
SB3	SBF_CS to SBF_CK delay	_	t _{SBFCK} - 2.0	_	ns	
SB4	SBF_CK to SBF_CS delay	_	t _{SBFCK} - 2.0	_	ns	
SB5	SBF_CK to SBF_DO valid	_	-5	_	ns	
SB6	SBF_CK to SBF_DO invalid	_	5	_	ns	
SB7	SBF_DI to SBF_SCK input setup	_	10	_	ns	
SB8	SBF_CK to SBF_DI input hold	_	0	_	ns	

Table 27. SBF AC Timing Specifications

At reset, the SBF_CK cycle time is $t_{REF} \times 67$. The first byte of data read from the serial memory contains a divider value that is used to set the SBF_CK cycle time for the duration of the serial boot process.

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516

2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130

www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English)

+49 89 92103 559 (German) +33 1 69 35 48 48 (French)

www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MCF54455

Rev. 8 02/2012 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007-2012. All rights reserved.

