

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Petails Product Status Core Processor Core Size Speed Connectivity	Obsolete ARM7® 16/32-Bit 55MHz
Core Processor Core Size Speed Connectivity	ARM7 ® 16/32-Bit
Core Size Speed Connectivity	16/32-Bit
Speed Connectivity	
Connectivity	55MHz
	55
	I ² C, SPI, SSC, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 1.95V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	48-QFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/atmel/at91sam7s16-mu

- Debug Unit (DBGU)
 - 2-wire UART and Support for Debug Communication Channel interrupt, Programmable ICE Access Prevention
 - Mode for General Purpose 2-wire UART Serial Communication
- Periodic Interval Timer (PIT)
 - 20-bit Programmable Counter plus 12-bit Interval Counter
- Windowed Watchdog (WDT)
 - 12-bit key-protected Programmable Counter
 - Provides Reset or Interrupt Signals to the System
 - Counter May Be Stopped While the Processor is in Debug State or in Idle Mode
- Real-time Timer (RTT)
 - 32-bit Free-running Counter with Alarm
 - Runs Off the Internal RC Oscillator
- One Parallel Input/Output Controller (PIOA)
 - Thirty-two (SAM7S512/256/128/64/321/161) or twenty-one (SAM7S32/16) Programmable I/O Lines Multiplexed with up to Two Peripheral I/Os
 - Input Change Interrupt Capability on Each I/O Line
 - Individually Programmable Open-drain, Pull-up resistor and Synchronous Output
- Eleven (SAM7S512/256/128/64/321/161) or Nine (SAM7S32/16) Peripheral DMA Controller (PDC) Channels
- One USB 2.0 Full Speed (12 Mbits per Second) Device Port (Except for the SAM7S32/16).
 - On-chip Transceiver, 328-byte Configurable Integrated FIFOs
- One Synchronous Serial Controller (SSC)
 - Independent Clock and Frame Sync Signals for Each Receiver and Transmitter
 - I2S Analog Interface Support, Time Division Multiplex Support
 - High-speed Continuous Data Stream Capabilities with 32-bit Data Transfer
- Two (SAM7S512/256/128/64/321/161) or One (SAM7S32/16) Universal Synchronous/Asynchronous Receiver Transmitters (USART)
 - Individual Baud Rate Generator, IrDA® Infrared Modulation/Demodulation
 - Support for ISO7816 T0/T1 Smart Card, Hardware Handshaking, RS485 Support
 - Full Modem Line Support on USART1 (SAM7S512/256/128/64/321/161)
- One Master/Slave Serial Peripheral Interface (SPI)
 - 8- to 16-bit Programmable Data Length, Four External Peripheral Chip Selects
- One Three-channel 16-bit Timer/Counter (TC)
 - Three External Clock Input and Two Multi-purpose I/O Pins per Channel (SAM7S512/256/128/64/321/161)
 - One External Clock Input and Two Multi-purpose I/O Pins for the first Two Channels Only (SAM7S32/16)
 - Double PWM Generation, Capture/Waveform Mode, Up/Down Capability
- One Four-channel 16-bit PWM Controller (PWMC)
- One Two-wire Interface (TWI)
 - Master Mode Support Only, All Two-wire Atmel EEPROMs and I²C Compatible Devices Supported (SAM7S512/256/128/64/321/32)
 - Master, Multi-Master and Slave Mode Support, All Two-wire Atmel EEPROMs and I²C Compatible Devices Supported (SAM7S161/16)
- One 8-channel 10-bit Analog-to-Digital Converter, Four Channels Multiplexed with Digital I/Os
- SAM-BA[™] Boot Assistant
 - Default Boot program
 - Interface with SAM-BA Graphic User Interface
- IEEE® 1149.1 JTAG Boundary Scan on All Digital Pins
- 5V-tolerant I/Os, including Four High-current Drive I/O lines, Up to 16 mA Each (SAM7S161/16 I/Os Not 5V-tolerant)
- Power Supplies
 - Embedded 1.8V Regulator, Drawing up to 100 mA for the Core and External Components
 - 3.3V or 1.8V VDDIO I/O Lines Power Supply, Independent 3.3V VDDFLASH Flash Power Supply
 - 1.8V VDDCORE Core Power Supply with Brown-out Detector

- Fully Static Operation: Up to 55 MHz at 1.65V and 85. C Worst Case Conditions
- Available in 64-lead LQFP Green or 64-pad QFN Green Package (SAM7S512/256/128/64/321/161) and 48-lead LQFP Green or 48-pad QFN Green Package (SAM7S32/16)

1. Description

Atmel's SAM7S is a series of low pincount Flash microcontrollers based on the 32-bit ARM RISC processor. It features a high-speed Flash and an SRAM, a large set of peripherals, including a USB 2.0 device (except for the SAM7S32 and SAM7S16), and a complete set of system functions minimizing the number of external components. The device is an ideal migration path for 8-bit microcontroller users looking for additional performance and extended memory.

The embedded Flash memory can be programmed in-system via the JTAG-ICE interface or via a parallel interface on a production programmer prior to mounting. Built-in lock bits and a security bit protect the firmware from accidental overwrite and preserves its confidentiality.

The SAM7S Series system controller includes a reset controller capable of managing the power-on sequence of the microcontroller and the complete system. Correct device operation can be monitored by a built-in brownout detector and a watchdog running off an integrated RC oscillator.

The SAM7S Series are general-purpose microcontrollers. Their integrated USB Device port makes them ideal devices for peripheral applications requiring connectivity to a PC or cellular phone. Their aggressive price point and high level of integration pushes their scope of use far into the cost-sensitive, high-volume consumer market.

1.1 Configuration Summary of the SAM7S512, SAM7S256, SAM7S128, SAM7S64, SAM7S321, SAM7S32, SAM7S161 and SAM7S16

The SAM7S512, SAM7S256, SAM7S128, SAM7S64, SAM7S321, SAM7S32, SAM7S161 and SAM7S16 differ in memory size, peripheral set and package. Table 1-1 summarizes the configuration of the six devices.

Except for the SAM7S32/16, all other SAM7S devices are package and pinout compatible.

Table 1-1. Configuration Summary

	- June 1		,	1								_
SAM7S512	512 Kbytes	Master	dual plane	64 Kbytes	1	2 ⁽¹⁾ (2)	2	11	3	Yes	32	LQFP/ QFN 64
SAM7S256	256 Kbytes	Master	single plane	64 Kbytes	1	2 ⁽¹⁾ (2)	2	11	3	Yes	32	LQFP/ QFN 64
SAM7S128	128 Kbytes	Master	single plane	32 Kbytes	1	2 ^{(1) (2)}	2	11	3	Yes	32	LQFP/ QFN 64
SAM7S64	64 Kbytes	Master	single plane	16 Kbytes	1	2 ⁽²⁾	2	11	3	Yes	32	LQFP/ QFN 64
SAM7S321	32 Kbytes	Master	single plane	8 Kbytes	1	2 ⁽²⁾	2	11	3	Yes	32	LQFP/ QFN 64
SAM7S32	32 Kbytes	Master	single plane	8 Kbytes	not present	1	1	9	3 ⁽³⁾	Yes	21	LQFP/ QFN 48
SAM7S161	16 Kbytes	Master/ Slave	single plane	4 Kbytes	1	2 ⁽²⁾	2	11	3	No	32	LQFP
SAM7S16	16 Kbytes	Master/ Slave	single plane	4 Kbytes	not present	1	1	9	3 ⁽³⁾	No	21	LQFP/ QFN 48

Notes: 1. Fractional Baud Rate.

- 2. Full modem line support on USART1.
- 3. Only two TC channels are accessible through the PIO.

Table 3-1. Signal Description List (Continued)

DDM	USB Device Port Data -	Analog		not present on SAM7S32/16
DDP	USB Device Port Data +	Analog		not present on SAM7S32/16
		"	l .	
SCK0 - SCK1	Serial Clock	I/O		SCK1 not present on SAM7S32/16
TXD0 - TXD1	Transmit Data	I/O		TXD1 not present on SAM7S32/16
RXD0 - RXD1	Receive Data	Input		RXD1 not present on SAM7S32/16
RTS0 - RTS1	Request To Send	Output		RTS1 not present on SAM7S32/16
CTS0 - CTS1	Clear To Send	Input		CTS1 not present on SAM7S32/16
DCD1	Data Carrier Detect	Input		not present on SAM7S32/16
DTR1	Data Terminal Ready	Output		not present on SAM7S32/16
DSR1	Data Set Ready	Input		not present on SAM7S32/16
RI1	Ring Indicator	Input		not present on SAM7S32/16
		·		
TD	Transmit Data	Output		
RD	Receive Data	Input		
TK	Transmit Clock	I/O		
RK	Receive Clock	I/O		
TF	Transmit Frame Sync	I/O		
RF	Receive Frame Sync	I/O		
		·		
TCLK0 - TCLK2	External Clock Inputs	Input		TCLK1 and TCLK2 not present on SAM7S32/16
TIOA0 - TIOA2	I/O Line A	I/O		TIOA2 not present on SAM7S32/16
TIOB0 - TIOB2	I/O Line B	I/O		TIOB2 not present on SAM7S32/16
PWM0 - PWM3	PWM Channels	Output		
MISO	Master In Slave Out	I/O		
MOSI	Master Out Slave In	I/O		
SPCK	SPI Serial Clock	I/O		
NPCS0	SPI Peripheral Chip Select 0	I/O	Low	
NPCS1-NPCS3	SPI Peripheral Chip Select 1 to 3	Output	Low	

Table 3-1. Signal Description List (Continued)

Table 3-1. Signal L	rescription List (Continued)			
		"	l .	
TWD	Two-wire Serial Data	I/O		
TWCK	Two-wire Serial Clock	I/O		
AD0-AD3	Analog Inputs	Analog		Digital pulled-up inputs at reset
AD4-AD7	Analog Inputs	Analog		Analog Inputs
ADTRG	ADC Trigger	Input		
ADVREF	ADC Reference	Analog		
PGMEN0-PGMEN2	Programming Enabling	Input		
PGMM0-PGMM3	Programming Mode	Input		
PGMD0-PGMD15	Programming Data	I/O		PGMD0-PGMD7 only on SAM7S32/16
PGMRDY	Programming Ready	Output	High	
PGMNVALID	Data Direction	Output	Low	
PGMNOE	Programming Read	Input	Low	
PGMCK	Programming Clock	Input		
PGMNCMD	Programming Command	Input	Low	

Note: 1. Refer to Section 6. "I/O Lines Considerations" on page 14.

5. Power Considerations

5.1 Power Supplies

The SAM7S Series has six types of power supply pins and integrates a voltage regulator, allowing the device to be supplied with only one voltage. The six power supply pin types are:

- VDDIN pin. It powers the voltage regulator and the ADC; voltage ranges from 3.0V to 3.6V, 3.3V nominal.
- VDDOUT pin. It is the output of the 1.8V voltage regulator.
- VDDIO pin. It powers the I/O lines and the USB transceivers; dual voltage range is supported. Ranges from 3.0V to 3.6V, 3.3V nominal or from 1.65V to 1.95V, 1.8V nominal. Note that supplying less than 3.0V to VDDIO prevents any use of the USB transceivers.
- VDDFLASH pin. It powers a part of the Flash and is required for the Flash to operate correctly; voltage ranges from 3.0V to 3.6V, 3.3V nominal.
- VDDCORE pins. They power the logic of the device; voltage ranges from 1.65V to 1.95V, 1.8V typical. It can be connected to the VDDOUT pin with decoupling capacitor. VDDCORE is required for the device, including its embedded Flash, to operate correctly.

During startup, core supply voltage (VDDCORE) slope must be superior or equal to 6V/ms.

VDDPLL pin. It powers the oscillator and the PLL. It can be connected directly to the VDDOUT pin.

No separate ground pins are provided for the different power supplies. Only GND pins are provided and should be connected as shortly as possible to the system ground plane.

In order to decrease current consumption, if the voltage regulator and the ADC are not used, VDDIN, ADVREF, AD4, AD5, AD6 and AD7 should be connected to GND. In this case VDDOUT should be left unconnected.

5.2 Power Consumption

The SAM7S Series has a static current of less than 60 μ A on VDDCORE at 25°C, including the RC oscillator, the voltage regulator and the power-on reset. When the brown-out detector is activated, 20 μ A static current is added.

The dynamic power consumption on VDDCORE is less than 50 mA at full speed when running out of the Flash. Under the same conditions, the power consumption on VDDFLASH does not exceed 10 mA.

5.3 Voltage Regulator

The SAM7S Series embeds a voltage regulator that is managed by the System Controller.

In Normal Mode, the voltage regulator consumes less than 100 µA static current and draws 100 mA of output current.

The voltage regulator also has a Low-power Mode. In this mode, it consumes less than 25 μ A static current and draws 1 mA of output current.

Adequate output supply decoupling is mandatory for VDDOUT to reduce ripple and avoid oscillations. The best way to achieve this is to use two capacitors in parallel: one external 470 pF (or 1 nF) NPO capacitor must be connected between VDDOUT and GND as close to the chip as possible. One external 2.2 μ F (or 3.3 μ F) X7R capacitor must be connected between VDDOUT and GND.

Adequate input supply decoupling is mandatory for VDDIN in order to improve startup stability and reduce source voltage drop. The input decoupling capacitor should be placed close to the chip. For example, two capacitors can be used in parallel: 100 nF NPO and $4.7 \mu\text{F X7R}$.

5.4 Typical Powering Schematics

The SAM7S Series supports a 3.3V single supply mode. The internal regulator is connected to the 3.3V source and its output feeds VDDCORE and the VDDPLL. Figure 5-1 shows the power schematics to be used for USB bus-powered systems.

7.4 Peripheral DMA Controller

- Handles data transfer between peripherals and memories
- Eleven channels: SAM7S512/256/128/64/321/161
- Nine channels: SAM7S32/16
 - Two for each USART
 - Two for the Debug Unit
 - Two for the Serial Synchronous Controller
 - Two for the Serial Peripheral Interface
 - One for the Analog-to-digital Converter
- Low bus arbitration overhead
 - One Master Clock cycle needed for a transfer from memory to peripheral
 - Two Master Clock cycles needed for a transfer from peripheral to memory
- Next Pointer management for reducing interrupt latency requirements
- Peripheral DMA Controller (PDC) priority is as follows (from the highest priority to the lowest):

Receive	DBGU
Receive	USART0
Receive	USART1
Receive	SSC
Receive	ADC
Receive	SPI
Transmit	DBGU
Transmit	USART0
Transmit	USART1
Transmit	SSC
Transmit	SPI

- Fast access time, 30 MHz single-cycle access in Worst Case conditions
- Page programming time: 6 ms, including page auto-erase
- Page programming without auto-erase: 3 ms
- Full chip erase time: 15 ms
- 10,000 write cycles, 10-year data retention capability
- 16 lock bits, protecting 16 sectors of 32 pages
- Protection Mode to secure contents of the Flash
- 16 Kbytes of Fast SRAM
 - Single-cycle access at full speed

8.5 SAM7S321/32

- 32 Kbytes of Flash Memory, single plane
 - 256 pages of 128 bytes
 - Fast access time, 30 MHz single-cycle access in Worst Case conditions
 - Page programming time: 6 ms, including page auto-erase
 - Page programming without auto-erase: 3 ms
 - Full chip erase time: 15 ms
 - 10,000 write cycles, 10-year data retention capability
 - 8 lock bits, protecting 8 sectors of 32 pages
 - Protection Mode to secure contents of the Flash
- 8 Kbvtes of Fast SRAM
 - Single-cycle access at full speed

8.6 SAM7S161/16

- 16 Kbytes of Flash Memory, single plane
 - 256 pages of 64 bytes
 - Fast access time, 30 MHz single-cycle access in Worst Case conditions
 - Page programming time: 6 ms, including page auto-erase
 - Page programming without auto-erase: 3 ms
 - Full chip erase time: 15 ms
 - 10,000 write cycles, 10-year data retention capability
 - 8 lock bits, protecting 8 sectors of 32 pages
 - Protection Mode to secure contents of the Flash
- 4 Kbytes of Fast SRAM
 - Single-cycle access at full speed

8.7 Memory Mapping

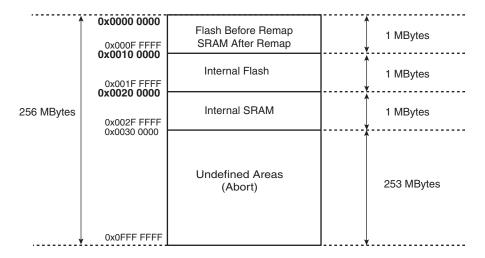
8.7.1 Internal SRAM

- The SAM7S512 embeds a high-speed 64-Kbyte SRAM bank.
- The SAM7S256 embeds a high-speed 64-Kbyte SRAM bank.
- The SAM7S128 embeds a high-speed 32-Kbyte SRAM bank.
- The SAM7S64 embeds a high-speed 16-Kbyte SRAM bank.
- The SAM7S321 embeds a high-speed 8-Kbyte SRAM bank.
- The SAM7S32 embeds a high-speed 8-Kbyte SRAM bank.
- The SAM7S161 embeds a high-speed 4-Kbyte SRAM bank.
- The SAM7S16 embeds a high-speed 4-Kbyte SRAM bank

After reset and until the Remap Command is performed, the SRAM is only accessible at address 0x0020 0000. After Remap, the SRAM also becomes available at address 0x0.

8.7.2 Internal ROM

The SAM7S Series embeds an Internal ROM. The ROM contains the FFPI and the SAM-BA program.


The internal ROM is not mapped by default.

8.7.3 Internal Flash

- The SAM7S512 features two contiguous banks (dual plane) of 256 Kbytes of Flash.
- The SAM7S256 features one bank (single plane) of 256 Kbytes of Flash.
- The SAM7S128 features one bank (single plane) of 128 Kbytes of Flash.
- The SAM7S64 features one bank (single plane) of 64 Kbytes of Flash.
- The SAM7S321/32 features one bank (single plane) of 32 Kbytes of Flash.
- The SAM7S161/16 features one bank (single plane) of 16 Kbytes of Flash.

At any time, the Flash is mapped to address 0x0010 0000. It is also accessible at address 0x0 after the reset and before the Remap Command.

Figure 8-2. Internal Memory Mapping

8.8 Embedded Flash

8.8.1 Flash Overview

- The Flash of the SAM7S512 is organized in two banks (dual plane) of 1024 pages of 256 bytes. The 524,288 bytes are organized in 32-bit words.
- The Flash of the SAM7S256 is organized in 1024 pages (single plane) of 256 bytes. The 262,144 bytes are organized in 32-bit words.
- The Flash of the SAM7S128 is organized in 512 pages (single plane) of 256 bytes. The 131,072 bytes are organized in 32-bit words.
- The Flash of the SAM7S64 is organized in 512 pages (single plane) of 128 bytes. The 65,536 bytes are organized in 32-bit words.
- The Flash of the SAM7S321/32 is organized in 256 pages (single plane) of 128 bytes. The 32,768 bytes are organized in 32-bit words.
- The Flash of the SAM7S161/16 is organized in 256 pages (single plane) of 64 bytes. The 16,384 bytes are organized in 32-bit words.
- The Flash of the SAM7S512/256/128 contains a 256-byte write buffer, accessible through a 32-bit interface.
- The Flash of the SAM7S64/321/32/161/16 contains a 128-byte write buffer, accessible through a 32-bit interface.

The Flash benefits from the integration of a power reset cell and from the brownout detector. This prevents code corruption during power supply changes, even in the worst conditions.

When Flash is not used (read or write access), it is automatically placed into standby mode.

8.8.2 Embedded Flash Controller

The Embedded Flash Controller (EFC) manages accesses performed by the masters of the system. It enables reading the Flash and writing the write buffer. It also contains a User Interface, mapped within the Memory Controller on the APB. The User Interface allows:

- programming of the access parameters of the Flash (number of wait states, timings, etc.)
- starting commands such as full erase, page erase, page program, NVM bit set, NVM bit clear, etc.
- getting the end status of the last command
- getting error status
- programming interrupts on the end of the last commands or on errors

The Embedded Flash Controller also provides a dual 32-bit prefetch buffer that optimizes 16-bit access to the Flash. This is particularly efficient when the processor is running in Thumb mode.

Two EFCs are embedded in the SAM7S512 to control each bank of 256 Kbytes. Dual plane organization allows concurrent Read and Program. Read from one memory plane may be performed even while program or erase functions are being executed in the other memory plane.

One EFC is embedded in the SAM7S256/128/64/32/321/161/16 to control the single plane 256/128/64/32/16 Kbytes.

8.8.6 Calibration Bits

Eight NVM bits are used to calibrate the brownout detector and the voltage regulator. These bits are factory configured and cannot be changed by the user. The ERASE pin has no effect on the calibration bits.

8.9 Fast Flash Programming Interface

The Fast Flash Programming Interface allows programming the device through either a serial JTAG interface or through a multiplexed fully-handshaked parallel port. It allows gang-programming with market-standard industrial programmers.

The FFPI supports read, page program, page erase, full erase, lock, unlock and protect commands.

The Fast Flash Programming Interface is enabled and the Fast Programming Mode is entered when the TST pin and the PA0 and PA1 pins are all tied high and PA2 is tied low.

8.10 SAM-BA Boot Assistant

The SAM-BA® Boot Recovery restores the SAM-BA Boot in the first two sectors of the on-chip Flash memory. The SAM-BA Boot recovery is performed when the TST pin and the PA0, PA1 and PA2 pins are all tied high for 10 seconds. Then, a power cycle of the board is mandatory.

The SAM-BA Boot Assistant is a default Boot Program that provides an easy way to program in situ the on-chip Flash memory.

The SAM-BA Boot Assistant supports serial communication through the DBGU or through the USB Device Port. (The SAM7S32/16 have no USB Device Port.)

- Communication through the DBGU supports a wide range of crystals from 3 to 20 MHz via software autodetection.
- Communication through the USB Device Port is limited to an 18.432 MHz crystal. (

The SAM-BA Boot provides an interface with SAM-BA Graphic User Interface (GUI).

9. System Controller

The System Controller manages all vital blocks of the microcontroller: interrupts, clocks, power, time, debug and reset.

The System Controller peripherals are all mapped to the highest 4 Kbytes of address space, between addresses 0xFFFF F000 and 0xFFFF FFFF.

Figure 9-1 on page 26 and Figure 9-2 on page 27 show the product specific System Controller Block Diagrams.

Figure 8-1 on page 20 shows the mapping of the of the User Interface of the System Controller peripherals. Note that the memory controller configuration user interface is also mapped within this address space.

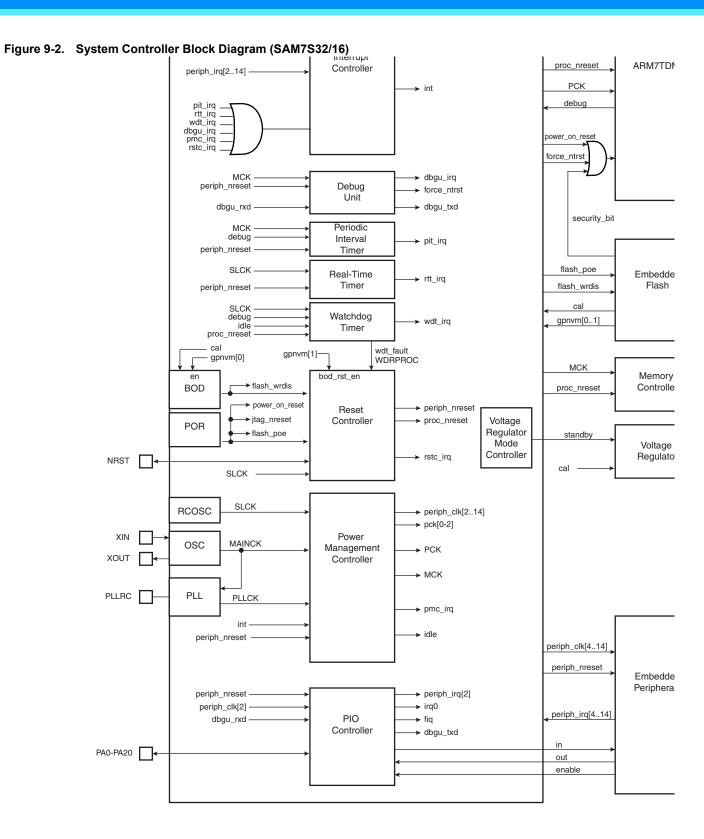
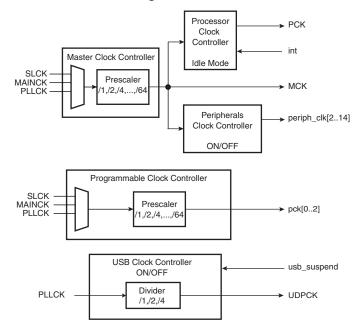



Figure 9-4. Power Management Controller Block Diagram

9.4 Advanced Interrupt Controller

- Controls the interrupt lines (nIRQ and nFIQ) of an ARM Processor
- Individually maskable and vectored interrupt sources
 - Source 0 is reserved for the Fast Interrupt Input (FIQ)
 - Source 1 is reserved for system peripherals RTT, PIT, EFC, PMC, DBGU, etc.)
 - Other sources control the peripheral interrupts or external interrupts
 - Programmable edge-triggered or level-sensitive internal sources
 - Programmable positive/negative edge-triggered or high/low level-sensitive external sources
- 8-level Priority Controller
 - Drives the normal interrupt of the processor
 - Handles priority of the interrupt sources
 - Higher priority interrupts can be served during service of lower priority interrupt
- Vectoring
 - Optimizes interrupt service routine branch and execution
 - One 32-bit vector register per interrupt source
 - Interrupt vector register reads the corresponding current interrupt vector
- Protect Mode
 - Easy debugging by preventing automatic operations
- Fast Forcing
 - Permits redirecting any interrupt source on the fast interrupt
- General Interrupt Mask
 - Provides processor synchronization on events without triggering an interrupt

9.5 Debug Unit

- Comprises:
 - One two-pin UART
 - One Interface for the Debug Communication Channel (DCC) support

- One set of Chip ID Registers
- One Interface providing ICE Access Prevention
- Two-pin UART
 - Implemented features are compatible with the USART
 - Programmable Baud Rate Generator
 - Parity, Framing and Overrun Error
 - Automatic Echo, Local Loopback and Remote Loopback Channel Modes
- Debug Communication Channel Support
 - Offers visibility of COMMRX and COMMTX signals from the ARM Processor
- Chip ID Registers
 - Identification of the device revision, sizes of the embedded memories, set of peripherals
 - Chip ID is 0x270B0A40 for AT91SAM7S512 Rev A
 - Chip ID is 0x270B0A4F for AT91SAM7S512 Rev B
 - Chip ID is 0x270D0940 for AT91SAM7S256 Rev A
 - Chip ID is 0x270B0941 for AT91SAM7S256 Rev B
 - Chip ID is 0x270B0942 for AT91SAM7S256 Rev C
 - Chip ID is TBD for AT91SAM7S256 Rev D
 - Chip ID is 0x270C0740 for AT91SAM7S128 Rev A
 - Chip ID is 0x270A0741 for AT91SAM7S128 Rev B
 - Chip ID is 0x270A0742 for AT91SAM7S128 Rev C
 - Chip ID is TBD for AT91SAM7S128 Rev D
 - Chip ID is 0x27090540 for AT91SAM7S64 Rev A
 - Chip ID is 0x27090543 for AT91SAM7S64 Rev B
 - Chip ID is 0x27090544 for AT91SAM7S64 Rev C
 - Chip ID is 0x27080342 for AT91SAM7S321 Rev A
 - Chip ID is 0x27080340 for AT91SAM7S32 Rev A
 - Chip ID is 0x27080341 for AT91SAM7S32 Rev B
 - Chip ID is 0x27050241 for AT9SAM7S161 Rev A
 - Chip ID is 0x27050240 for AT91SAM7S16 Rev A

Note: Refer to the errata section of the datasheet for updates on chip ID.

9.6 Periodic Interval Timer

20-bit programmable counter plus 12-bit interval counter

9.7 Watchdog Timer

- 12-bit key-protected Programmable Counter running on prescaled SCLK
- Provides reset or interrupt signals to the system
- Counter may be stopped while the processor is in debug state or in idle mode

9.8 Real-time Timer

- 32-bit free-running counter with alarm running on prescaled SCLK
- Programmable 16-bit prescaler for SLCK accuracy compensation

Table 10-4. Multiplexing on PIO Controller A (SAM7S32/16)

Table 10-4.	wuttplexing on F	210 Controller A (SA	IVI 7 3 3 2 / 10)	
PA0	PWM0	TIOA0	High-Drive	
PA1	PWM1	TIOB0	High-Drive	
PA2	PWM2	SCK0	High-Drive	
PA3	TWD	NPCS3	High-Drive	
PA4	TWCK	TCLK0		
PA5	RXD0	NPCS3		
PA6	TXD0	PCK0		
PA7	RTS0	PWM3		
PA8	CTS0	ADTRG		
PA9	DRXD	NPCS1		
PA10	DTXD	NPCS2		
PA11	NPCS0	PWM0		
PA12	MISO	PWM1		
PA13	MOSI	PWM2		
PA14	SPCK	PWM3		
PA15	TF	TIOA1		
PA16	TK	TIOB1		
PA17	TD	PCK1	AD0	
PA18	RD	PCK2	AD1	
PA19	RK	FIQ	AD2	
PA20	RF	IRQ0	AD3	

10.8 Serial Synchronous Controller

- Provides serial synchronous communication links used in audio and telecom applications
- Contains an independent receiver and transmitter and a common clock divider
- Offers a configurable frame sync and data length
- Receiver and transmitter can be programmed to start automatically or on detection of different event on the frame sync signal
- Receiver and transmitter include a data signal, a clock signal and a frame synchronization signal

10.9 Timer Counter

- Three 16-bit Timer Counter Channels
 - Two output compare or one input capture per channel (except for SAM7S32/16 which have only two channels connected to the PIO)
- Wide range of functions including:
 - Frequency measurement
 - Event counting
 - Interval measurement
 - Pulse generation
 - Delay timing
 - Pulse Width Modulation
 - Up/down capabilities
- Each channel is user-configurable and contains:
 - Three external clock inputs (The SAM7S32/16 have one)
 - Five internal clock inputs, as defined in Table 10-5

Table 10-5. Timer Counter Clocks Assignment

TIMER_CLOCK1	MCK/2
TIMER_CLOCK2	MCK/8
TIMER_CLOCK3	MCK/32
TIMER_CLOCK4	MCK/128
TIMER_CLOCK5	MCK/1024

- Two multi-purpose input/output signals
- Two global registers that act on all three TC channels

10.10 PWM Controller

- Four channels, one 16-bit counter per channel
- Common clock generator, providing thirteen different clocks
 - One Modulo n counter providing eleven clocks
 - Two independent linear dividers working on modulo n counter outputs
- Independent channel programming
 - Independent enable/disable commands
 - Independent clock selection
 - Independent period and duty cycle, with double buffering
 - Programmable selection of the output waveform polarity

Programmable center or left aligned output waveform

10.11 USB Device Port (Does not pertain to SAM7S32/16)

- USB V2.0 full-speed compliant, 12 Mbits per second.
- Embedded USB V2.0 full-speed transceiver
- Embedded 328-byte dual-port RAM for endpoints
- Four endpoints
 - Endpoint 0: 8 bytes
 - Endpoint 1 and 2: 64 bytes ping-pong
 - Endpoint 3: 64 bytes
 - Ping-pong Mode (two memory banks) for isochronous and bulk endpoints
- Suspend/resume logic

10.12 Analog-to-digital Converter

- 8-channel ADC
- 10-bit 384 Ksamples/sec. or 8-bit 583 Ksamples/sec. Successive Approximation Register ADC
- ±2 LSB Integral Non Linearity, ±1 LSB Differential Non Linearity
- Integrated 8-to-1 multiplexer, offering eight independent 3.3V analog inputs
- External voltage reference for better accuracy on low voltage inputs
- Individual enable and disable of each channel
- Multiple trigger source
 - Hardware or software trigger
 - External trigger pin
 - Timer Counter 0 to 2 outputs TIOA0 to TIOA2 trigger
- Sleep Mode and conversion sequencer
 - Automatic wakeup on trigger and back to sleep mode after conversions of all enabled channels
- Four of eight analog inputs shared with digital signals

Table 11-2. 64-lead LQFP Package Dimensions (in mm)

IDIC 11-2.	04-leau LQFF F	ackage Dilliens	10113 (111 111111)				
Symbol							
Α	_	_	1.60	_	_	0.063	
A1	0.05	_	0.15	0.002	_	0.006	
A2	1.35	1.40	1.45	0.053	0.055	0.057	
D		12.00 BSC			0.472 BSC		
D1		10.00 BSC			0.383 BSC		
Е		12.00 BSC			0.472 BSC		
E1		10.00 BSC			0.383 BSC		
R2	0.08	-	0.20	0.003	_	0.008	
R1	0.08	-	_	0.003	_	_	
q	0°	3.5°	7°	0°	3.5°	7°	
θ_1	0°	-	=	0°	_	=	
θ_2	11°	12°	13°	11°	12°	13°	
θ_3	11°	12°	13°	11°	12°	13°	
С	0.09	-	0.20	0.004	_	0.008	
L	0.45	0.60	0.75	0.018	0.024	0.030	
L1		1.00 REF		0.039 REF			
S	0.20	-	_	0.008	_	_	
b	0.17	0.20	0.27	0.007	800.0	0.011	
е		0.50 BSC.		0.020 BSC.			
D2		7.50		0.285			
E2	7.50			0.285			
		Tolerance	es of Form and	d Position			
aaa	0.20			0.008			
bbb	0.20			0.008			
ccc		0.08			0.003		
ddd		0.08			0.003		

Table 11-3. 48-pad QFN Package Dimensions (in mm)

	o paa qiiri ac		(,				
Symbol							
А	_	_	090	_	_	0.035	
A1	_	_	0.050	_	_	0.002	
A2	_	0.65	0.70	_	0.026	0.028	
A3	0.20 REF			0.008 REF			
b	0.18	0.20	0.23	0.007	0.008	0.009	
D	7.00 bsc			0.276 bsc			
D2	5.45	5.60	5.75	0.215	0.220	0.226	
E		7.00 bsc		0.276 bsc			
E2	5.45	5.60	5.75	0.215	0.220	0.226	
L	0.35	0.40	0.45	0.014	0.016	0.018	
е		0.50 bsc		0.020 bsc			
R	0.09	_	_	0.004	_	1	
Tolerances of Form and Position							
aaa	0.10			0.004			
bbb	0.10			0.004			
ccc	0.05			0.002			

Atmel Corporation

1600 Technology Drive San Jose, CA 95110 USA

Tel: (+1) (408) 441-0311 **Fax:** (+1) (408) 487-2600

www.atmel.com

Atmel Asia Limited

Unit 01-5 & 16, 19F BEA Tower, Millennium City 5 418 Kwun Tong Roa Kwun Tong, Kowloon

HONG KONG **Tel:** (+852) 2245-6100

Fax: (+852) 2722-1369

Atmel Munich GmbH

Business Campus Parkring 4 D-85748 Garching b. Munich

GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621

Atmel Japan G.K.

16F Shin-Osaki Kangyo Bldg 1-6-4 Osaki, Shinagawa-ku

Tokyo 141-0032

JAPAN

Tel: (+81) (3) 6417-0300 **Fax:** (+81) (3) 6417-0370

© 2012 Atmel Corporation. All rights reserved. / Rev.: 6175KS-ATARM-25-Oct-12

Atmel[®], Atmel logo and combinations thereof, Enabling Unlimited Possibilities[®], SAM-BA[®] and others, are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Windows[®] and others are registered trademarks or trademarks of Microsoft Corporation in the US and/or in other countries. ARM[®], the ARM Powered[®] logo, ARM7TDMI[®], Thumb[®], and others are registered trademarks or trademarks of ARM Limited. Other terms and product names may be the trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.