

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

ĿXFI

| Product Status             | Obsolete                                                                      |
|----------------------------|-------------------------------------------------------------------------------|
| Core Processor             | ARM7®                                                                         |
| Core Size                  | 16/32-Bit                                                                     |
| Speed                      | 55MHz                                                                         |
| Connectivity               | I <sup>2</sup> C, SPI, SSC, UART/USART, USB                                   |
| Peripherals                | Brown-out Detect/Reset, DMA, POR, PWM, WDT                                    |
| Number of I/O              | 32                                                                            |
| Program Memory Size        | 32KB (32K x 8)                                                                |
| Program Memory Type        | FLASH                                                                         |
| EEPROM Size                | -                                                                             |
| RAM Size                   | 8K x 8                                                                        |
| Voltage - Supply (Vcc/Vdd) | 1.65V ~ 1.95V                                                                 |
| Data Converters            | A/D 8x10b                                                                     |
| Oscillator Type            | Internal                                                                      |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                             |
| Mounting Type              | Surface Mount                                                                 |
| Package / Case             | 64-VFQFN Exposed Pad                                                          |
| Supplier Device Package    | 64-QFN (9x9)                                                                  |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/at91sam7s321-mu-999 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## 3. Signal Description

## Table 3-1.Signal Description List

|             | ·                                               | l.     |      |                                   |
|-------------|-------------------------------------------------|--------|------|-----------------------------------|
| VDDIN       | Voltage and ADC Regulator Power Supply<br>Input | Power  |      | 3.0 to 3.6V                       |
| VDDOUT      | Voltage Regulator Output                        | Power  |      | 1.85V nominal                     |
| VDDFLASH    | Flash Power Supply                              | Power  |      | 3.0V to 3.6V                      |
| VDDIO       | I/O Lines Power Supply                          | Power  |      | 3.0V to 3.6V or 1.65V to 1.95V    |
| VDDCORE     | Core Power Supply                               | Power  |      | 1.65V to 1.95V                    |
| VDDPLL      | PLL                                             | Power  |      | 1.65V to 1.95V                    |
| GND         | Ground                                          | Ground |      |                                   |
|             |                                                 |        |      |                                   |
| XIN         | Main Oscillator Input                           | Input  |      |                                   |
| XOUT        | Main Oscillator Output                          | Output |      |                                   |
| PLLRC       | PLL Filter                                      | Input  |      |                                   |
| PCK0 - PCK2 | Programmable Clock Output                       | Output |      |                                   |
|             |                                                 |        |      |                                   |
| тск         | Test Clock                                      | Input  |      | No pull-up resistor               |
| TDI         | Test Data In                                    | Input  |      | No pull-up resistor               |
| TDO         | Test Data Out                                   | Output |      |                                   |
| TMS         | Test Mode Select                                | Input  |      | No pull-up resistor               |
| JTAGSEL     | JTAG Selection                                  | Input  |      | Pull-down resistor <sup>(1)</sup> |
|             |                                                 |        |      |                                   |
| ERASE       | Flash and NVM Configuration Bits Erase Command  | Input  | High | Pull-down resistor <sup>(1)</sup> |
|             |                                                 |        |      |                                   |
| NRST        | Microcontroller Reset                           | I/O    | Low  | Open-drain with pull-Up resistor  |
| TST         | Test Mode Select                                | Input  | High | Pull-down resistor <sup>(1)</sup> |
|             |                                                 |        |      |                                   |
| DRXD        | Debug Receive Data                              | Input  |      |                                   |
| DTXD        | Debug Transmit Data                             | Output |      |                                   |
|             |                                                 | •      |      |                                   |
| IRQ0 - IRQ1 | External Interrupt Inputs                       | Input  |      | IRQ1 not present on SAM7S32/16    |
| FIQ         | Fast Interrupt Input                            | Input  |      |                                   |
|             |                                                 |        |      | 1                                 |
| PA0 - PA31  | Parallel IO Controller A                        | I/O    |      | Pulled-up input at reset          |
|             |                                                 |        |      | PA0 - PA20 only on SAM7S32/16     |

## Table 3-1. Signal Description List (Continued)

| TWD           | Two-wire Serial Data  | I/O    |      |                                   |
|---------------|-----------------------|--------|------|-----------------------------------|
| ТѠСК          | Two-wire Serial Clock | I/O    |      |                                   |
|               |                       |        |      |                                   |
| AD0-AD3       | Analog Inputs         | Analog |      | Digital pulled-up inputs at reset |
| AD4-AD7       | Analog Inputs         | Analog |      | Analog Inputs                     |
| ADTRG         | ADC Trigger           | Input  |      |                                   |
| ADVREF        | ADC Reference         | Analog |      |                                   |
|               |                       |        |      |                                   |
| PGMEN0-PGMEN2 | Programming Enabling  | Input  |      |                                   |
| PGMM0-PGMM3   | Programming Mode      | Input  |      |                                   |
| PGMD0-PGMD15  | Programming Data      | I/O    |      | PGMD0-PGMD7 only on SAM7S32/16    |
| PGMRDY        | Programming Ready     | Output | High |                                   |
| PGMNVALID     | Data Direction        | Output | Low  |                                   |
| PGMNOE        | Programming Read      | Input  | Low  |                                   |
| PGMCK         | Programming Clock     | Input  |      |                                   |
| PGMNCMD       | Programming Command   | Input  | Low  |                                   |

Note: 1. Refer to Section 6. "I/O Lines Considerations" on page 14.

#### 48-lead LQFP and 48-pad QFN Package Outlines 4.3

Figure 4-3 and Figure 4-4 show the orientation of the 48-lead LQFP and the 48-pad QFN package. A detailed mechanical description is given in the section Mechanical Characteristics of the full datasheet.

#### Figure 4-3. 48-lead LQFP Package (Top View)



Figure 4-4. 48-pad QFN Package (Top View)



#### 48-lead LQFP and 48-pad QFN Pinout 4.4

| Table - | 4-2. SAM7S32/16 Pi | nout <sup>(1)</sup> |               |   |    |             |   |    |           |
|---------|--------------------|---------------------|---------------|---|----|-------------|---|----|-----------|
| 1       | ADVREF             | 13                  | VDDIO         |   | 25 | TDI         |   | 37 | TDO       |
| 2       | GND                | 14                  | PA16/PGMD4    |   | 26 | PA6/PGMNOE  |   | 38 | JTAGSEL   |
| 3       | AD4                | 15                  | PA15/PGMD3    |   | 27 | PA5/PGMRDY  |   | 39 | TMS       |
| 4       | AD5                | 16                  | PA14/PGMD2    |   | 28 | PA4/PGMNCMD |   | 40 | ТСК       |
| 5       | AD6                | 17                  | PA13/PGMD1    |   | 29 | NRST        |   | 41 | VDDCORE   |
| 6       | AD7                | 18                  | VDDCORE       |   | 30 | TST         |   | 42 | ERASE     |
| 7       | VDDIN              | 19                  | PA12/PGMD0    |   | 31 | PA3         |   | 43 | VDDFLASH  |
| 8       | VDDOUT             | 20                  | PA11/PGMM3    |   | 32 | PA2/PGMEN2  |   | 44 | GND       |
| 9       | PA17/PGMD5/AD0     | 21                  | PA10/PGMM2    |   | 33 | VDDIO       |   | 45 | XOUT      |
| 10      | PA18/PGMD6/AD1     | 22                  | PA9/PGMM1     |   | 34 | GND         |   | 46 | XIN/PGMCK |
| 11      | PA19/PGMD7/AD2     | 23                  | PA8/PGMM0     | ] | 35 | PA1/PGMEN1  | 1 | 47 | PLLRC     |
| 12      | PA20/AD3           | 24                  | PA7/PGMNVALID | Ī | 36 | PA0/PGMEN0  | 1 | 48 | VDDPLL    |



## 5. Power Considerations

## 5.1 Power Supplies

The SAM7S Series has six types of power supply pins and integrates a voltage regulator, allowing the device to be supplied with only one voltage. The six power supply pin types are:

- VDDIN pin. It powers the voltage regulator and the ADC; voltage ranges from 3.0V to 3.6V, 3.3V nominal.
- VDDOUT pin. It is the output of the 1.8V voltage regulator.
- VDDIO pin. It powers the I/O lines and the USB transceivers; dual voltage range is supported. Ranges from 3.0V to 3.6V, 3.3V nominal or from 1.65V to 1.95V, 1.8V nominal. Note that supplying less than 3.0V to VDDIO prevents any use of the USB transceivers.
- VDDFLASH pin. It powers a part of the Flash and is required for the Flash to operate correctly; voltage ranges from 3.0V to 3.6V, 3.3V nominal.
- VDDCORE pins. They power the logic of the device; voltage ranges from 1.65V to 1.95V, 1.8V typical. It can be connected to the VDDOUT pin with decoupling capacitor. VDDCORE is required for the device, including its embedded Flash, to operate correctly.

During startup, core supply voltage (VDDCORE) slope must be superior or equal to 6V/ms.

• VDDPLL pin. It powers the oscillator and the PLL. It can be connected directly to the VDDOUT pin.

No separate ground pins are provided for the different power supplies. Only GND pins are provided and should be connected as shortly as possible to the system ground plane.

In order to decrease current consumption, if the voltage regulator and the ADC are not used, VDDIN, ADVREF, AD4, AD5, AD6 and AD7 should be connected to GND. In this case VDDOUT should be left unconnected.

## 5.2 Power Consumption

The SAM7S Series has a static current of less than 60  $\mu$ A on VDDCORE at 25°C, including the RC oscillator, the voltage regulator and the power-on reset. When the brown-out detector is activated, 20  $\mu$ A static current is added.

The dynamic power consumption on VDDCORE is less than 50 mA at full speed when running out of the Flash. Under the same conditions, the power consumption on VDDFLASH does not exceed 10 mA.

## 5.3 Voltage Regulator

The SAM7S Series embeds a voltage regulator that is managed by the System Controller.

In Normal Mode, the voltage regulator consumes less than 100 µA static current and draws 100 mA of output current.

The voltage regulator also has a Low-power Mode. In this mode, it consumes less than 25 µA static current and draws 1 mA of output current.

Adequate output supply decoupling is mandatory for VDDOUT to reduce ripple and avoid oscillations. The best way to achieve this is to use two capacitors in parallel: one external 470 pF (or 1 nF) NPO capacitor must be connected between VDDOUT and GND as close to the chip as possible. One external 2.2  $\mu$ F (or 3.3  $\mu$ F) X7R capacitor must be connected between VDDOUT and GND.

Adequate input supply decoupling is mandatory for VDDIN in order to improve startup stability and reduce source voltage drop. The input decoupling capacitor should be placed close to the chip. For example, two capacitors can be used in parallel: 100 nF NPO and 4.7 µF X7R.

## 5.4 Typical Powering Schematics

The SAM7S Series supports a 3.3V single supply mode. The internal regulator is connected to the 3.3V source and its output feeds VDDCORE and the VDDPLL. Figure 5-1 shows the power schematics to be used for USB bus-powered systems.



## 6. I/O Lines Considerations

## 6.1 JTAG Port Pins

TMS, TDI and TCK are schmitt trigger inputs. TMS and TCK are 5-V tolerant, TDI is not. TMS, TDI and TCK do not integrate a pull-up resistor.

TDO is an output, driven at up to VDDIO, and has no pull-up resistor.

The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level. The JTAGSEL pin integrates a permanent pull-down resistor of about 15 k $\Omega$  to GND, so that it can be left unconnected for normal operations.

## 6.2 Test Pin

The TST pin is used for manufacturing test, fast programming mode or SAM-BA Boot Recovery of the SAM7S Series when asserted high. The TST pin integrates a permanent pull-down resistor of about 15 k $\Omega$  to GND, so that it can be left unconnected for normal operations.

To enter fast programming mode, the TST pin and the PA0 and PA1 pins should be tied high and PA2 tied to low.

To enter SAM-BA Boot Recovery, the TST pin and the PA0, PA1 and PA2 pins should be tied high for at least 10 seconds. Then a power cycle of the board is mandatory.

Driving the TST pin at a high level while PA0 or PA1 is driven at 0 leads to unpredictable results.

## 6.3 Reset Pin

The NRST pin is bidirectional with an open drain output buffer. It is handled by the on-chip reset controller and can be driven low to provide a reset signal to the external components or asserted low externally to reset the microcontroller. There is no constraint on the length of the reset pulse, and the reset controller can guarantee a minimum pulse length. This allows connection of a simple push-button on the pin NRST as system user reset, and the use of the signal NRST to reset all the components of the system.

The NRST pin integrates a permanent pull-up resistor to VDDIO.

## 6.4 ERASE Pin

The ERASE pin is used to re-initialize the Flash content and some of its NVM bits. It integrates a permanent pull-down resistor of about 15 k $\Omega$  to GND, so that it can be left unconnected for normal operations.

## 6.5 PIO Controller A Lines

- All the I/O lines PA0 to PA31on SAM7S512/256/128/64/321 (PA0 to PA20 on SAM7S32) are 5V-tolerant and all
  integrate a programmable pull-up resistor.
- All the I/O lines PA0 to PA31 on SAM7S161 (PA0 to PA20 on SAM7S16) are **not** 5V-tolerant and all integrate a programmable pull-up resistor.

Programming of this pull-up resistor is performed independently for each I/O line through the PIO controllers.

5V-tolerant means that the I/O lines can drive voltage level according to VDDIO, but can be driven with a voltage of up to 5.5V. However, driving an I/O line with a voltage over VDDIO while the programmable pull-up resistor is enabled will create a current path through the pull-up resistor from the I/O line to VDDIO. Care should be taken, in particular at reset, as all the I/O lines default to input with the pull-up resistor enabled at reset.

## 6.6 I/O Line Drive Levels

The PIO lines PA0 to PA3 are high-drive current capable. Each of these I/O lines can drive up to 16 mA permanently. The remaining I/O lines can draw only 8 mA.

However, the total current drawn by all the I/O lines cannot exceed 150 mA (100 mA for SAM7S32/16).



- Fast access time, 30 MHz single-cycle access in Worst Case conditions
- Page programming time: 6 ms, including page auto-erase
- Page programming without auto-erase: 3 ms
- Full chip erase time: 15 ms
- 10,000 write cycles, 10-year data retention capability
- 16 lock bits, protecting 16 sectors of 32 pages
- Protection Mode to secure contents of the Flash
- 16 Kbytes of Fast SRAM
  - Single-cycle access at full speed

### 8.5 SAM7S321/32

- 32 Kbytes of Flash Memory, single plane
  - 256 pages of 128 bytes
  - Fast access time, 30 MHz single-cycle access in Worst Case conditions
  - Page programming time: 6 ms, including page auto-erase
  - Page programming without auto-erase: 3 ms
  - Full chip erase time: 15 ms
  - 10,000 write cycles, 10-year data retention capability
  - 8 lock bits, protecting 8 sectors of 32 pages
  - Protection Mode to secure contents of the Flash
- 8 Kbytes of Fast SRAM
  - Single-cycle access at full speed

### 8.6 SAM7S161/16

- 16 Kbytes of Flash Memory, single plane
  - 256 pages of 64 bytes
  - Fast access time, 30 MHz single-cycle access in Worst Case conditions
  - Page programming time: 6 ms, including page auto-erase
  - Page programming without auto-erase: 3 ms
  - Full chip erase time: 15 ms
  - 10,000 write cycles, 10-year data retention capability
  - 8 lock bits, protecting 8 sectors of 32 pages
  - Protection Mode to secure contents of the Flash
- 4 Kbytes of Fast SRAM
  - Single-cycle access at full speed

## 8.8 Embedded Flash

#### 8.8.1 Flash Overview

- The Flash of the SAM7S512 is organized in two banks (dual plane) of 1024 pages of 256 bytes. The 524,288 bytes are organized in 32-bit words.
- The Flash of the SAM7S256 is organized in 1024 pages (single plane) of 256 bytes. The 262,144 bytes are organized in 32-bit words.
- The Flash of the SAM7S128 is organized in 512 pages (single plane) of 256 bytes. The 131,072 bytes are organized in 32-bit words.
- The Flash of the SAM7S64 is organized in 512 pages (single plane) of 128 bytes. The 65,536 bytes are organized in 32-bit words.
- The Flash of the SAM7S321/32 is organized in 256 pages (single plane) of 128 bytes. The 32,768 bytes are organized in 32-bit words.
- The Flash of the SAM7S161/16 is organized in 256 pages (single plane) of 64 bytes. The 16,384 bytes are organized in 32-bit words.
- The Flash of the SAM7S512/256/128 contains a 256-byte write buffer, accessible through a 32-bit interface.
- The Flash of the SAM7S64/321/32/161/16 contains a 128-byte write buffer, accessible through a 32-bit interface.

The Flash benefits from the integration of a power reset cell and from the brownout detector. This prevents code corruption during power supply changes, even in the worst conditions.

When Flash is not used (read or write access), it is automatically placed into standby mode.

#### 8.8.2 Embedded Flash Controller

The Embedded Flash Controller (EFC) manages accesses performed by the masters of the system. It enables reading the Flash and writing the write buffer. It also contains a User Interface, mapped within the Memory Controller on the APB. The User Interface allows:

- programming of the access parameters of the Flash (number of wait states, timings, etc.)
- starting commands such as full erase, page erase, page program, NVM bit set, NVM bit clear, etc.
- getting the end status of the last command
- getting error status
- programming interrupts on the end of the last commands or on errors

The Embedded Flash Controller also provides a dual 32-bit prefetch buffer that optimizes 16-bit access to the Flash. This is particularly efficient when the processor is running in Thumb mode.

Two EFCs are embedded in the SAM7S512 to control each bank of 256 Kbytes. Dual plane organization allows concurrent Read and Program. Read from one memory plane may be performed even while program or erase functions are being executed in the other memory plane.

One EFC is embedded in the SAM7S256/128/64/32/321/161/16 to control the single plane 256/128/64/32/16 Kbytes.

The 8 NVM bits are software programmable through the EFC User Interface. The command "Set Lock Bit" enables the protection. The command "Clear Lock Bit" unlocks the lock region.

Asserting the ERASE pin clears the lock bits, thus unlocking the entire Flash.

#### 8.8.3.6 SAM7S161/16

The Embedded Flash Controller manages 8 lock bits to protect 8 regions of the flash against inadvertent flash erasing or programming commands. The SAM7S161/16 contains 8 lock regions and each lock region contains 32 pages of 64 bytes. Each lock region has a size of 2 Kbytes.

If a locked-region's erase or program command occurs, the command is aborted and the LOCKE bit in the MC\_FSR register rises and the interrupt line rises if the LOCKE bit has been written at 1 in the MC\_FMR register.

The 8 NVM bits are software programmable through the EFC User Interface. The command "Set Lock Bit" enables the protection. The command "Clear Lock Bit" unlocks the lock region.

Asserting the ERASE pin clears the lock bits, thus unlocking the entire Flash.

Table 8-1 summarizes the configuration of the eight devices.

| SAM7S512    | 32 | 64 | 256 bytes |
|-------------|----|----|-----------|
| SAM7S256    | 16 | 64 | 256 bytes |
| SAM7S128    | 8  | 64 | 256 bytes |
| SAM7S64     | 16 | 32 | 128 bytes |
| SAM7S321/32 | 8  | 32 | 128 bytes |
| SAM7S161/16 | 8  | 32 | 64 bytes  |

#### Table 8-1. Flash Configuration Summary

#### 8.8.4 Security Bit Feature

The SAM7S Series features a security bit, based on a specific NVM Bit. When the security is enabled, any access to the Flash, either through the ICE interface or through the Fast Flash Programming Interface, is forbidden. This ensures the confidentiality of the code programmed in the Flash.

This security bit can only be enabled, through the Command "Set Security Bit" of the EFC User Interface. Disabling the security bit can only be achieved by asserting the ERASE pin at 1, and after a full flash erase is performed. When the security bit is deactivated, all accesses to the flash are permitted.

It is important to note that the assertion of the ERASE pin should always be longer than 50 ms.

As the ERASE pin integrates a permanent pull-down, it can be left unconnected during normal operation. However, it is safer to connect it directly to GND for the final application.

#### 8.8.5 Non-volatile Brownout Detector Control

Two general purpose NVM (GPNVM) bits are used for controlling the brownout detector (BOD), so that even after a power loss, the brownout detector operations remain in their state.

These two GPNVM bits can be cleared or set respectively through the commands "Clear General-purpose NVM Bit" and "Set General-purpose NVM Bit" of the EFC User Interface.

- GPNVM Bit 0 is used as a brownout detector enable bit. Setting the GPNVM Bit 0 enables the BOD, clearing it
  disables the BOD. Asserting ERASE clears the GPNVM Bit 0 and thus disables the brownout detector by default.
- The GPNVM Bit 1 is used as a brownout reset enable signal for the reset controller. Setting the GPNVM Bit 1 enables the brownout reset when a brownout is detected, Clearing the GPNVM Bit 1 disables the brownout reset. Asserting ERASE disables the brownout reset by default.



# Figure 9-2. System Controller Block Diagram (SAM7S32/16)



## 9.1 Reset Controller

The Reset Controller is based on a power-on reset cell and one brownout detector. It gives the status of the last reset, indicating whether it is a power-up reset, a software reset, a user reset, a watchdog reset or a brownout reset. In addition, it controls the internal resets and the NRST pin open-drain output. It allows to shape a signal on the NRST line, guaranteeing that the length of the pulse meets any requirement.

Note that if NRST is used as a reset output signal for external devices during power-off, the brownout detector must be activated.

#### 9.1.1 Brownout Detector and Power-on Reset

The SAM7S Series embeds a brownout detection circuit and a power-on reset cell. Both are supplied with and monitor VDDCORE. Both signals are provided to the Flash to prevent any code corruption during power-up or power-down sequences or if brownouts occur on the VDDCORE power supply.

The power-on reset cell has a limited-accuracy threshold at around 1.5V. Its output remains low during power-up until VDDCORE goes over this voltage level. This signal goes to the reset controller and allows a full re-initialization of the device.

The brownout detector monitors the VDDCORE level during operation by comparing it to a fixed trigger level. It secures system operations in the most difficult environments and prevents code corruption in case of brownout on the VDDCORE.

#### Only VDDCORE is monitored.

When the brownout detector is enabled and VDDCORE decreases to a value below the trigger level (Vbot-, defined as Vbot - hyst/2), the brownout output is immediately activated.

When VDDCORE increases above the trigger level (Vbot+, defined as Vbot + hyst/2), the reset is released. The brownout detector only detects a drop if the voltage on VDDCORE stays below the threshold voltage for longer than about 1µs.

The threshold voltage has a hysteresis of about 50 mV, to ensure spike free brownout detection. The typical value of the brownout detector threshold is 1.68V with an accuracy of  $\pm$  2% and is factory calibrated.

The brownout detector is low-power, as it consumes less than 20  $\mu$ A static current. However, it can be deactivated to save its static current. In this case, it consumes less than 1 $\mu$ A. The deactivation is configured through the GPNVM bit 0 of the Flash.

## 9.2 Clock Generator

The Clock Generator embeds one low-power RC Oscillator, one Main Oscillator and one PLL with the following characteristics:

- RC Oscillator ranges between 22 kHz and 42 kHz
- Main Oscillator frequency ranges between 3 and 20 MHz
- Main Oscillator can be bypassed
- PLL output ranges between 80 and 220 MHz

It provides SLCK, MAINCK and PLLCK.

#### Figure 9-3. Clock Generator Block Diagram



## 9.3 Power Management Controller

The Power Management Controller uses the Clock Generator outputs to provide:

- the Processor Clock PCK
- the Master Clock MCK
- the USB Clock UDPCK (not present on SAM7S32/16)
- all the peripheral clocks, independently controllable
- three programmable clock outputs

The Master Clock (MCK) is programmable from a few hundred Hz to the maximum operating frequency of the device.

The Processor Clock (PCK) switches off when entering processor idle mode, thus allowing reduced power consumption while waiting for an interrupt.

- One set of Chip ID Registers
- One Interface providing ICE Access Prevention
- Two-pin UART
  - Implemented features are compatible with the USART
  - Programmable Baud Rate Generator
  - Parity, Framing and Overrun Error
  - Automatic Echo, Local Loopback and Remote Loopback Channel Modes
- Debug Communication Channel Support
  - Offers visibility of COMMRX and COMMTX signals from the ARM Processor
- Chip ID Registers
  - Identification of the device revision, sizes of the embedded memories, set of peripherals
  - Chip ID is 0x270B0A40 for AT91SAM7S512 Rev A
  - Chip ID is 0x270B0A4F for AT91SAM7S512 Rev B
  - Chip ID is 0x270D0940 for AT91SAM7S256 Rev A
  - Chip ID is 0x270B0941 for AT91SAM7S256 Rev B
  - Chip ID is 0x270B0942 for AT91SAM7S256 Rev C
  - Chip ID is TBD for AT91SAM7S256 Rev D
  - Chip ID is 0x270C0740 for AT91SAM7S128 Rev A
  - Chip ID is 0x270A0741 for AT91SAM7S128 Rev B
  - Chip ID is 0x270A0742 for AT91SAM7S128 Rev C
  - Chip ID is TBD for AT91SAM7S128 Rev D
  - Chip ID is 0x27090540 for AT91SAM7S64 Rev A
  - Chip ID is 0x27090543 for AT91SAM7S64 Rev B
  - Chip ID is 0x27090544 for AT91SAM7S64 Rev C
  - Chip ID is 0x27080342 for AT91SAM7S321 Rev A
  - Chip ID is 0x27080340 for AT91SAM7S32 Rev A
  - Chip ID is 0x27080341 for AT91SAM7S32 Rev B
  - Chip ID is 0x27050241 for AT9SAM7S161 Rev A
  - Chip ID is 0x27050240 for AT91SAM7S16 Rev A

Note: Refer to the errata section of the datasheet for updates on chip ID.

## 9.6 Periodic Interval Timer

20-bit programmable counter plus 12-bit interval counter

## 9.7 Watchdog Timer

- 12-bit key-protected Programmable Counter running on prescaled SCLK
- Provides reset or interrupt signals to the system
- Counter may be stopped while the processor is in debug state or in idle mode

## 9.8 Real-time Timer

- 32-bit free-running counter with alarm running on prescaled SCLK
- Programmable 16-bit prescaler for SLCK accuracy compensation

## 10. Peripherals

## 10.1 User Interface

The User Peripherals are mapped in the 256 MBytes of address space between 0xF000 0000 and 0xFFFF EFFF. Each peripheral is allocated 16 Kbytes of address space.

A complete memory map is provided in Figure 8-1 on page 20.

## 10.2 Peripheral Identifiers

The SAM7S Series embeds a wide range of peripherals. Table 10-1 defines the Peripheral Identifiers of the SAM7S512/256/128/64/321/161. Table 10-2 defines the Peripheral Identifiers of the SAM7S32/16. A peripheral identifier is required for the control of the peripheral interrupt with the Advanced Interrupt Controller and for the control of the peripheral clock with the Power Management Controller.

| 0       | AIC                 | Advanced Interrupt Controller | FIQ  |
|---------|---------------------|-------------------------------|------|
| 1       | SYSC <sup>(1)</sup> | System                        |      |
| 2       | PIOA                | Parallel I/O Controller A     |      |
| 3       | Reserved            |                               |      |
| 4       | ADC <sup>(1)</sup>  | Analog-to Digital Converter   |      |
| 5       | SPI                 | Serial Peripheral Interface   |      |
| 6       | US0                 | USART 0                       |      |
| 7       | US1                 | USART 1                       |      |
| 8       | SSC                 | Synchronous Serial Controller |      |
| 9       | TWI                 | Two-wire Interface            |      |
| 10      | PWMC                | PWM Controller                |      |
| 11      | UDP                 | USB Device Port               |      |
| 12      | TC0                 | Timer/Counter 0               |      |
| 13      | TC1                 | Timer/Counter 1               |      |
| 14      | TC2                 | Timer/Counter 2               |      |
| 15 - 29 | Reserved            |                               |      |
| 30      | AIC                 | Advanced Interrupt Controller | IRQ0 |
| 31      | AIC                 | Advanced Interrupt Controller | IRQ1 |

### Table 10-1. Peripheral Identifiers (SAM7S512/256/128/64/321/161)

Note: 1. Setting SYSC and ADC bits in the clock set/clear registers of the PMC has no effect. The System Controller is continuously clocked. The ADC clock is automatically started for the first conversion. In Sleep Mode the ADC clock is automatically stopped after each conversion.

Note: 1. Setting SYSC and ADC bits in the clock set/clear registers of the PMC has no effect. The System Controller is continuously clocked. The ADC clock is automatically started for the first conversion. In Sleep Mode the ADC clock is automatically stopped after each conversion.

## 11. Package Drawings

The SAM7S series devices are available in LQFP and QFN package types.

## 11.1 LQFP Packages

### Figure 11-1. 48-and 64-lead LQFP Package Drawing



| Queebal |      |           |                |          |            |       |
|---------|------|-----------|----------------|----------|------------|-------|
| Symbol  |      |           |                |          |            |       |
| А       | -    | _         | 1.60           | _        | -          | 0.063 |
| A1      | 0.05 | _         | 0.15           | 0.002    | _          | 0.006 |
| A2      | 1.35 | 1.40      | 1.45           | 0.053    | 0.055      | 0.057 |
| D       |      | 9.00 BSC  |                |          | 0.354 BSC  |       |
| D1      |      | 7.00 BSC  |                |          | 0.276 BSC  |       |
| E       |      | 9.00 BSC  |                |          | 0.354 BSC  |       |
| E1      |      | 7.00 BSC  |                |          | 0.276 BSC  |       |
| R2      | 0.08 | _         | 0.20           | 0.003    | _          | 0.008 |
| R1      | 0.08 | _         | _              | 0.003    | _          | _     |
| q       | 0°   | 3.5°      | 7°             | 0°       | 3.5°       | 7°    |
| θ1      | 0°   | _         | _              | 0°       | _          | _     |
| θ2      | 11°  | 12°       | 13°            | 11°      | 12°        | 13°   |
| θ3      | 11°  | 12°       | 13°            | 11°      | 12°        | 13°   |
| с       | 0.09 | _         | 0.20           | 0.004    | _          | 0.008 |
| L       | 0.45 | 0.60      | 0.75           | 0.018    | 0.024      | 0.030 |
| L1      |      | 1.00 REF  |                |          | 0.039 REF  |       |
| S       | 0.20 | _         | _              | 0.008    | _          | _     |
| b       | 0.17 | 0.20      | 0.27           | 0.007    | 0.008      | 0.011 |
| е       |      | 0.50 BSC. |                |          | 0.020 BSC. |       |
| D2      |      | 5.50      |                |          | 0.217      |       |
| E2      |      | 5.50      |                |          | 0.217      |       |
|         |      | Toleranc  | es of Form and | Position |            |       |
| aaa     |      | 0.20      |                |          | 0.008      |       |
| bbb     | 0.20 |           |                | 0.008    |            |       |
| CCC     |      | 0.08      |                |          | 0.003      |       |
| ddd     |      | 0.08      |                |          | 0.003      |       |

Table 11-1. 48-lead LQFP Package Dimensions (in mm)

|        | -    |          |                |           |           |       |
|--------|------|----------|----------------|-----------|-----------|-------|
| Symbol |      |          |                |           |           |       |
| Symbol |      |          |                |           |           |       |
| А      | -    | -        | 090            | -         | -         | 0.035 |
| A1     | -    | -        | 0.050          | -         | -         | 0.002 |
| A2     | _    | 0.65     | 0.70           | _         | 0.026     | 0.028 |
| A3     |      | 0.20 REF | •              |           | 0.008 REF | •     |
| b      | 0.18 | 0.20     | 0.23           | 0.007     | 0.008     | 0.009 |
| D      |      | 7.00 bsc |                | 0.276 bsc |           |       |
| D2     | 5.45 | 5.60     | 5.75           | 0.215     | 0.220     | 0.226 |
| E      |      | 7.00 bsc |                | 0.276 bsc |           |       |
| E2     | 5.45 | 5.60     | 5.75           | 0.215     | 0.220     | 0.226 |
| L      | 0.35 | 0.40     | 0.45           | 0.014     | 0.016     | 0.018 |
| е      |      | 0.50 bsc | 0.020 bsc      |           |           |       |
| R      | 0.09 | _        | _              | 0.004     | _         | _     |
|        |      | Toleranc | es of Form and | Position  |           |       |
| ааа    | 0.10 |          |                |           | 0.004     |       |
| bbb    | 0.10 |          |                | 0.004     |           |       |
| ссс    |      | 0.05     |                |           | 0.002     |       |

#### Table 11-3. 48-pad QFN Package Dimensions (in mm)





|         | "Features", "Debug Unit (DBGU)" updated with "Mode for General Purpose 2-wire UART Serial Communication"                                | 5846 |  |  |  |  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------|------|--|--|--|--|
|         | Section 7.4 "Peripheral DMA Controller", added list of PDC priorities.                                                                  |      |  |  |  |  |
|         | Section 9. "System Controller", Figure 9-1 and Figure 9-2 RTT is reset by "power_on_reset".                                             |      |  |  |  |  |
| 6175GS  | Section 9.1.1 "Brownout Detector and Power-on Reset", fourth paragraph reduced.                                                         | 5685 |  |  |  |  |
|         | Section 9.5 "Debug Unit", the list; Section I "Chip ID Registers", chip IDs updated, added SAM7S32 Rev B and SAM7S64 Rev B to the list. |      |  |  |  |  |
|         | Section 12. "SAM7S Ordering Information", Updated product ordering information by MRL A and MRL B versions.                             |      |  |  |  |  |
| 617549  | Section 6.2 "Test Pin", added to SAM-BA Boot recovery procedure, a power cycle of the board is mandatory.                               |      |  |  |  |  |
| 0173113 | Section 8.10 "SAM-BA Boot Assistant", added to SAM-BA Boot recovery procedure, a power cycle of the board is mandatory.                 |      |  |  |  |  |
| 617519  | Section 9.5 "Debug Unit", Chip ID Registers list updated.                                                                               | 7185 |  |  |  |  |
| 017515  | MRL C column added to Table 12-1, "SAM7S Series Ordering Information".                                                                  |      |  |  |  |  |
|         | Product Series Naming Convention                                                                                                        |      |  |  |  |  |
|         | Except for part ordering and library references, AT91 prefix dropped from most nomenclature.                                            |      |  |  |  |  |
| 6175JS  | AT91SAM7S becomes SAM7S.                                                                                                                |      |  |  |  |  |
|         | Debug Unit:                                                                                                                             | 7045 |  |  |  |  |
|         | "Chip ID Registers" on page 31, Chip ID is 0x270B0A4F for AT91SAM7S512 Rev B                                                            | 7343 |  |  |  |  |
| 6175KS  | Section 9.5 "Debug Unit", Chip ID Registers list updated. Added Chip ID for SAM7S128 Rev D and SAM7S256 Rev D                           |      |  |  |  |  |
|         | Table 12-1, "SAM7S Series Ordering Information".Added SAM7S128 Rev D and SAM7S256 Rev D                                                 |      |  |  |  |  |

# Atmel Enabling Unlimited Possibilities<sup>®</sup>

Atmel Corporation 1600 Technology Drive San Jose, CA 95110 USA Tel: (+1) (408) 441-0311 Fax: (+1) (408) 487-2600 www.atmel.com Atmel Asia Limited Unit 01-5 & 16, 19F BEA Tower, Millennium City 5 418 Kwun Tong Roa Kwun Tong, Kowloon HONG KONG Tel: (+852) 2245-6100 Fax: (+852) 2722-1369 Atmel Munich GmbH Business Campus Parkring 4 D-85748 Garching b. Munich GERMANY Tel: (+49) 89-31970-0 Fax: (+49) 89-3194621 Atmel Japan G.K. 16F Shin-Osaki Kangyo Bldg 1-6-4 Osaki, Shinagawa-ku Tokyo 141-0032 JAPAN Tel: (+81) (3) 6417-0300 Fax: (+81) (3) 6417-0370

© 2012 Atmel Corporation. All rights reserved. / Rev.: 6175KS-ATARM-25-Oct-12

Atmel<sup>®</sup>, Atmel logo and combinations thereof, Enabling Unlimited Possibilities<sup>®</sup>, SAM-BA<sup>®</sup> and others, are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Windows<sup>®</sup> and others are registered trademarks or trademarks of Microsoft Corporation in the US and/or in other countries. ARM<sup>®</sup>, the ARM Powered<sup>®</sup> logo, ARM7TDMI<sup>®</sup>, Thumb<sup>®</sup>, and others are registered trademarks or trademarks of ARM Limited. Other terms and product names may be the trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.