

Smmarof Feates

- Up to 12 Mbytes External Address Space for Code and Data
 - Programmable External Bus Characteristics for Different Address Ranges
 - Multiplexed or Demultiplexed External Address/Data Buses
 - Selectable Address Bus Width
 - 16-Bit or 8-Bit Data Bus Width
 - Five Programmable Chip-Select Signals
 - Hold- and Hold-Acknowledge Bus Arbitration Support
- Up to 103 General Purpose I/O Lines, partly with Selectable Input Thresholds and Hysteresis
- On-Chip Bootstrap Loader
- Supported by a Large Range of Development Tools like C-Compilers, Macro-Assembler Packages, Emulators, Evaluation Boards, HLL-Debuggers, Simulators, Logic Analyzer Disassemblers, Programming Boards
- On-Chip Debug Support via JTAG Interface
- 144-Pin Green TQFP Package, 0.5 mm (19.7 mil) pitch (RoHS compliant)

Odeing Infomaton

The ordering code for Infineon microcontrollers provides an exact reference to the required product. This ordering code identifies:

- the derivative itself, i.e. its function set, the temperature range, and the supply voltage
- the package and the type of delivery.

For the available ordering codes for the XC167 please refer to the **PodutCat**log **Micoconbles**, which summarizes all available microcontroller variants.

Note: The ordering codes for Mask-ROM versions are defined for each product after verification of the respective ROM code.

This document describes several derivatives of the XC167 group. **Table 1** enumerates these derivatives and summarizes the differences. As this document refers to all of these derivatives, some descriptions may not apply to a specific product.

For simplicity all versions are referred to by the term **XC167** throughout this document.

Table 2	2 F	Pin Defin	itonsand For	ctons (cont'd)
Syn- bol	Pin Nm.	Inp Op	Facton	
P3		IO	Port 3 is a programm state) or o driver). Th or special)	15-bit bidirectional I/O port. Each pin can be ed for input (output driver in high-impedance utput (configurable as push/pull or open drain e input threshold of Port 3 is selectable (standard
P3.0	59	 0 	TOIN TXD1 EX1IN	CAPCOM1 Timer T0 Count Input, ASC1 Clock/Data Output (Async./Sync), Fast External Interrupt 1 Input (alternate pin B)
P3.1	60	0 I/O I	T6OUT RxD1 EX1IN	GPT2 Timer T6 Toggle Latch Output, ASC1 Data Input (Async.) or Inp./Outp. (Sync.), Fast External Interrupt 1 Input (alternate pin A)
P3.2 P3.3	61 62	I O	CAPIN T3OUT	GPT2 Register CAPREL Capture Input GPT1 Timer T3 Toggle Latch Output
P3.4	63	1	T3EUD	GPT1 Timer T3 External Up/Down Control Input
P3.5	64			GP11 Timer 14 Count/Gate/Reload/Capture Inp
P3.6	65			GPT1 Timer T3 Count/Gate Input
гз.1 D2 9	67			SSC0 Master Paceivo/Slave Transmit In/Out
P3 9	68	1/0	MTSRO	SSC0 Master-Transmit/Slave-Receive Out/In
P3.10	69	0	TxD0 EX2IN	ASC0 Clock/Data Output (Async./Sync.), Fast External Interrupt 2 Input (alternate pin B)
P3.11	70	I/O I	RxD0 EX2IN	ASC0 Data Input (Async.) or Inp./Outp. (Sync.), Fast External Interrupt 2 Input (alternate pin A)
P3.12	75	0 0 I	BHE WRH EX3IN	External Memory High Byte Enable Signal, External Memory High Byte Write Strobe, Fast External Interrupt 3 Input (alternate pin B)
P3.13	76	I/O I	SCLK0 EX3IN	SSC0 Master Clock Output/Slave Clock Input., Fast External Interrupt 3 Input (alternate pin A)
P3.15	77	0 0	CLKOUT FOUT	Master Clock Output, Programmable Frequency Output
ТСК	71	1	Debug Sys	stem: JTAG Clock Input
TDI	72	I	Debug Sys	stem: JTAG Data In
TDO	73	0	Debug Sys	stem: JTAG Data Out
TMS	74	I	Debug Sys	stem: JTAG Test Mode Selection

Table 2	2 Pin Definitonsand Factons (cont'd)							
Syn- bol	Pin Nm.	Inp Op	Fucton					
P4		IO	 Port 4 is an 8-bit bidirectional I/O port. Each pin can be programmed for input (output driver in high-impedance state) or output (configurable as push/pull or open drain driver). The input threshold of Port 4 is selectable (standard or special). Port 4 can be used to output the segment address lines, the 					
			optional chip select lines, and for serial interface lines: ¹⁾					
P4.0	80	0	A16 Least Significant Segment Address Line					
P4.1	81	0	A17 Segment Address Line					
P4.2	82	0	A18 Segment Address Line					
P4.3	83	0	A19 Segment Address Line					
P4.4	84	0	A20 Segment Address Line,					
		1	CAN2_RxD CAN Node 2 Receive Data Input,					
		1	EX5IN Fast External Interrupt 5 Input (alternate pin B)					
P4.5	85	0	A21 Segment Address Line,					
		1	CAN1_RxD CAN Node 1 Receive Data Input,					
		1	EX4IN Fast External Interrupt 4 Input (alternate pin B)					
P4.6	86	0	A22 Segment Address Line,					
		0	CAN1_TxD CAN Node 1 Transmit Data Output,					
		1	EX5IN Fast External Interrupt 5 Input (alternate pin A)					
P4.7	87	0	A23 Most Significant Segment Address Line,					
		1	CAN1_RxD CAN Node 1 Receive Data Input,					
		0	CAN2_TxD CAN Node 2 Transmit Data Output,					
		I	EX4IN Fast External Interrupt 4 Input (alternate pin A)					

Table 2	Piı	n Definit	onsand Fuctons (cont'd)
Syn- bol	Pin Nm.	Inp Op	Facton
XTAL2 XTAL1	137 138	O I	 XTAL2: Output of the main oscillator amplifier circuit XTAL1: Input to the main oscillator amplifier and input to the internal clock generator To clock the device from an external source, drive XTAL1, while leaving XTAL2 unconnected. Minimum and maximum high/low and rise/fall times specified in the AC Characteristics must be observed. Note: Input pin XTAL1 belongs to the core voltage domain. Therefore, input voltages must be within the range defined for Vacu.
XTAL3 XTAL4	140 141	I O	 XTAL3: Input to the auxiliary (32-kHz) oscillator amplifier XTAL4: Output of the auxiliary (32-kHz) oscillator amplifier circuit To clock the device from an external source, drive XTAL3, while leaving XTAL4 unconnected. Minimum and maximum high/low and rise/fall times specified in the AC Characteristics must be observed. Note: Input pin XTAL3 belongs to the core voltage domain. Therefore, input voltages must be within the range defined for Vac.
RSTIN	142	1	Reset Input with Schmitt-Trigger characteristics. A low-level at this pin while the oscillator is running resets the XC167. A spike filter suppresses input pulses < 10 ns. Input pulses > 100 ns safely pass the filter. The minimum duration for a safe recognition should be 100 ns + 2 CPU clock cycles. Note: The reset duration must be sufficient to let the hardware configuration signals settle. <u>External circuitry must guarantee low-level at the RSTIN pin at least until both power supply voltages have reached the operating range.</u>
BRK OUT	143	0	Debug System: Break Out
BRKIN	144	I	Debug System: Break In
NC	1, 2, 107 - 110	-	No connection. It is recommended not to connect these pins to the PCB.

Table 2	Pi	n Defini	tonsand Fuctons (cont'd)
Syn- bol	Pin Non.	Inp Op	Facton
V_{AREF}	41	-	Reference voltage for the A/D converter.
V_{AGND}	42	-	Reference ground for the A/D converter.
V _{DDI}	48, 78, 135	_	Digital Core Supply Voltage (On-Chip Modules): +2.5 V during normal operation and idle mode. Please refer to the Opeting Conditions .
V _{DDP}	6, 20, 28, 58, 88, 103, 125	-	Digital Pad Supply Voltage (Pin Output Drivers): +5 V during normal operation and idle mode. Please refer to the Opatng Conditons .
V _{SSI}	47, 79, 136, 139	_	Digital Gond Connect decoupling capacitors to adjacent $V_{\text{DD}}/V_{\text{SS}}$ pin pairs as close as possible to the pins.
V _{SSP}	5, 19, 27, 89, 104, 126	-	All V_{SS} pins must be connected to the ground-line or ground- plane.

1) The CAN interface lines are assigned to ports P4, P7, and P9 under software control.

The EBC also controls accesses to resources connected to the on-chip LXBus. The LXBus is an internal representation of the external bus and allows accessing integrated peripherals and modules in the same way as external components.

The TwinCAN module is connected and accessed via the LXBus.

and rotate instructions are always processed during one machine cycle independent of the number of bits to be shifted. Also multiplication and most MAC instructions execute in one single cycle. All multiple-cycle instructions have been optimized so that they can be executed very fast as well: for example, a division algorithm is performed in 18 to 21 CPU cycles, depending on the data and division type. Four cycles are always visible, the rest runs in the background. Another pipeline optimization, the branch target prediction, allows eliminating the execution time of branch instructions if the prediction was correct.

The CPU has a register context consisting of up to three register banks with 16 wordwide GPRs each at its disposal. The global register bank is physically allocated within the onchip DPRAM area. A Context Pointer (CP) register determines the base address of the active global register bank to be accessed by the CPU at any time. The number of register banks is only restricted by the available internal RAM space. For easy parameter passing, a register bank may overlap others.

A system stack of up to 32 Kwords is provided as a storage for temporary data. The system stack can be allocated to any location within the address space (preferably in the on-chip RAM area), and it is accessed by the CPU via the stack pointer (SP) register. Two separate SFRs, STKOV and STKUN, are implicitly compared against the stack pointer value upon each stack access for the detection of a stack overflow or underflow.

The high performance offered by the hardware implementation of the CPU can efficiently be utilized by a programmer via the highly efficient XC167 instruction set which includes the following instruction classes:

- Standard Arithmetic Instructions
- DSP-Oriented Arithmetic Instructions
- Logical Instructions
- Boolean Bit Manipulation Instructions
- Compare and Loop Control Instructions
- Shift and Rotate Instructions
- Prioritize Instruction
- Data Movement Instructions
- System Stack Instructions
- Jump and Call Instructions
- Return Instructions
- System Control Instructions
- Miscellaneous Instructions

The basic instruction length is either 2 or 4 bytes. Possible operand types are bits, bytes and words. A variety of direct, indirect or immediate addressing modes are provided to specify the required operands.

(cont'd)		
Conbl	Vecbr	Тар
Regi e r	Locaton ¹⁾	Nmber
CC2_CC29IC	xx'0110 _H	44 _H / 68 _D
CC2_CC30IC	xx'0114 _H	45 _H / 69 _D
CC2_CC31IC	xx'0118 _H	46 _H / 70 _D
CC1_T0IC	xx'0080 _H	20 _H / 32 _D
CC1_T1IC	xx'0084 _H	21 _H / 33 _D
CC2_T7IC	xx'00F4 _H	3D _H / 61 _D
CC2_T8IC	xx'00F8 _H	3E _H / 62 _D
GPT12E_T2IC	xx'0088 _H	22 _H / 34 _D
GPT12E_T3IC	xx'008C _H	23 _H / 35 _D
GPT12E_T4IC	xx'0090 _H	24 _H / 36 _D
GPT12E_T5IC	xx'0094 _H	25 _H / 37 _D
GPT12E_T6IC	xx'0098 _H	26 _H / 38 _D
GPT12E_CRIC	xx'009C _H	27 _H / 39 _D
ADC_CIC	xx'00A0 _H	28 _H / 40 _D
ADC_EIC	xx'00A4 _H	29 _H / 41 _D
ASC0_TIC	xx'00A8 _H	2A _H / 42 _D
ASC0_TBIC	xx'011C _H	47 _H / 71 _D
ASC0_RIC	xx'00AC _H	2B _H / 43 _D
ASC0_EIC	xx'00B0 _H	2C _H / 44 _D
ASC0_ABIC	xx'017C _H	5F _H / 95 _D
SSC0_TIC	xx'00B4 _H	2D _H / 45 _D
SSC0_RIC	xx'00B8 _H	2E _H / 46 _D
SSC0_EIC	xx'00BC _H	2F _H / 47 _D
IIC_DTIC	xx'0100 _H	40 _H / 64 _D
IIC_PEIC	xx'0104 _H	41 _H / 65 _D
PLLIC	xx'010C _H	43 _H / 67 _D
ASC1_TIC	xx'0120 _H	48 _H / 72 _D
ASC1_TBIC	xx'0178 _H	5E _H / 94 _D
ASC1_RIC	xx'0124 _H	49 _H / 73 _D
ASC1_EIC	xx'0128 _H	4A _H / 74 _D
	(confd) Regibr CC2_CC29IC CC2_CC30IC CC2_CC31IC CC1_T0IC CC1_T1IC CC2_T7IC CC2_T8IC GPT12E_T2IC GPT12E_T3IC GPT12E_T4IC GPT12E_T6IC GPT12E_T6IC GPT12E_CRIC ADC_CIC ADC_EIC ASC0_TIC ASC0_TIC SSC0_TIC SSC0_EIC IIC_DTIC IIC_PEIC PLLIC ASC1_TIC ASC1_EIC ASC1_EIC	Contol Vector Locaton ¹⁾ CC2_CC29IC xx'0110 _H CC2_CC30IC xx'0114 _H CC2_CC31IC xx'0114 _H CC2_CC31IC xx'0118 _H CC1_T0IC xx'0080 _H CC1_T1IC xx'0084 _H CC2_T7IC xx'00F4 _H CC2_T8IC xx'0084 _H GPT12E_T2IC xx'0088 _H GPT12E_T2IC xx'0084 _H GPT12E_T3IC xx'0090 _H GPT12E_T4IC xx'0090 _H GPT12E_T6IC xx'0094 _H GPT12E_T6IC xx'0094 _H GPT12E_CRIC xx'0094 _H ADC_CIC xx'0004 _H ADC_EIC xx'00A4 _H ASC0_TIC xx'00A4 _H ASC0_TIC xx'00A6 _H ASC0_RIC xx'00A6 _H ASC0_RIC xx'00B4 _H SSC0_RIC xx'0104 _H PLLIC

3.10 A/D Conger

For analog signal measurement, a 10-bit A/D converter with 16 multiplexed input channels and a sample and hold circuit has been integrated on-chip. It uses the method of successive approximation. The sample time (for loading the capacitors) and the conversion time is programmable (in two modes) and can thus be adjusted to the external circuitry. The A/D converter can also operate in 8-bit conversion mode, where the conversion time is further reduced.

Overrun error detection/protection is provided for the conversion result register (ADDAT): either an interrupt request will be generated when the result of a previous conversion has not been read from the result register at the time the next conversion is complete, or the next conversion is suspended in such a case until the previous result has been read.

For applications which require less analog input channels, the remaining channel inputs can be used as digital input port pins.

The A/D converter of the XC167 supports four different conversion modes. In the standard Single Channel conversion mode, the analog level on a specified channel is sampled once and converted to a digital result. In the Single Channel Continuous mode, the analog level on a specified channel is repeatedly sampled and converted without software intervention. In the Auto Scan mode, the analog levels on a prespecified number of channels are sequentially sampled and converted. In the Auto Scan Continuous mode, the prespecified channels are repeatedly sampled and converted. In addition, the conversion of a specific channel can be inserted (injected) into a running sequence without disturbing this sequence. This is called Channel Injection Mode.

The Peripheral Event Controller (PEC) may be used to automatically store the conversion results into a table in memory for later evaluation, without requiring the overhead of entering and exiting interrupt routines for each data transfer.

After each reset and also during normal operation the ADC automatically performs calibration cycles. This automatic self-calibration constantly adjusts the converter to changing operating conditions (e.g. temperature) and compensates process variations.

These calibration cycles are part of the conversion cycle, so they do not affect the normal operation of the A/D converter.

In order to decouple analog inputs from digital noise and to avoid input trigger noise those pins used for analog input can be disconnected from the digital IO or input stages under software control. This can be selected for each pin separately via register P5DIDIS (Port 5 Digital Input Disable).

The Auto-Power-Down feature of the A/D converter minimizes the power consumption when no conversion is in progress.

3.15 Wathdog Timer

The Watchdog Timer represents one of the fail-safe mechanisms which have been implemented to prevent the controller from malfunctioning for longer periods of time.

The Watchdog Timer is always enabled after a reset of the chip, and can be disabled until the EINIT instruction has been executed (compatible mode), or it can be disabled and enabled at any time by executing instructions DISWDT and ENWDT (enhanced mode). Thus, the chip's start-up procedure is always monitored. The software has to be designed to restart the Watchdog Timer before it overflows. If, due to hardware or software related failures, the software fails to do so, the Watchdog Timer overflows and generates an internal hardware reset and pulls the RSTOUT pin low in order to allow external hardware components to be reset.

The Watchdog Timer is a 16-bit timer, clocked with the system clock divided by 2/4/128/256. The high byte of the Watchdog Timer register can be set to a prespecified reload value (stored in WDTREL) in order to allow further variation of the monitored time interval. Each time it is serviced by the application software, the high byte of the Watchdog Timer is reloaded and the low byte is cleared. Thus, time intervals between 13 σ s and 419 ms can be monitored (@ 40 MHz).

The default Watchdog Timer interval after reset is 3.28 ms (@ 40 MHz).

3.18 PoerManagement

The XC167 provides several means to control the power it consumes either at a given time or averaged over a certain timespan. Three mechanisms can be used (partly in parallel):

• **PoerSaing Modes** switch the XC167 into a special operating mode (control via instructions).

Idle Mode stops the CPU while the peripherals can continue to operate.

Sleep Mode and Power Down Mode stop all clock signals and all operation (RTC may optionally continue running). Sleep Mode can be terminated by external interrupt signals.

• Clock Geneaton Management controls the distribution and the frequency of internal and external clock signals. While the clock signals for currently inactive parts of logic are disabled automatically, the user can reduce the XC167's CPU clock frequency which drastically reduces the consumed power.

External circuitry can be controlled via the programmable frequency output FOUT.

• **Peipeal Management** permits temporary disabling of peripheral modules (control via register SYSCON3). Each peripheral can separately be disabled/enabled.

The on-chip RTC supports intermittent operation of the XC167 by generating cyclic wake-up signals. This offers full performance to quickly react on action requests while the intermittent sleep phases greatly reduce the average power consumption of the system.

Table 8 In	taton SetSmmay (cont'd)	
Mnemonic	Desition Bigs	•
ROL/ROR	Rotate left/right direct word GPR	2
ASHR	Arithmetic (sign bit) shift right direct word GPR	2
MOV(B)	Move word (byte) data	2/4
MOVBS/Z	Move byte operand to word op. with sign/zero extension	2/4
JMPA/I/R	Jump absolute/indirect/relative if condition is met	4
JMPS	Jump absolute to a code segment	4
JB(C)	Jump relative if direct bit is set (and clear bit)	4
JNB(S)	Jump relative if direct bit is not set (and set bit)	4
CALLA/I/R	Call absolute/indirect/relative subroutine if condition is met	4
CALLS	Call absolute subroutine in any code segment	4
PCALL	Push direct word register onto system stack and call absolute subroutine	4
TRAP	Call interrupt service routine via immediate trap number	2
PUSH/POP	Push/pop direct word register onto/from system stack	2
SCXT	Push direct word register onto system stack and update register with word operand	4
RET(P)	Return from intra-segment subroutine (and pop direct word register from system stack)	2
RETS	Return from inter-segment subroutine	2
RETI	Return from interrupt service subroutine	2
SBRK	Software Break	2
SRST	Software Reset	4
IDLE	Enter Idle Mode	4
PWRDN	Enter Power Down Mode (supposes NMI-pin being low)	4
SRVWDT	Service Watchdog Timer	4
DISWDT/ENWD	DT Disable/Enable Watchdog Timer	4
EINIT	End-of-Initialization Register Lock	4
ATOMIC	Begin ATOMIC sequence	2
EXTR	Begin EXTended Register sequence	2
EXTP(R)	Begin EXTended Page (and Register) sequence	2/4
EXTS(R)	Begin EXTended Segment (and Register) sequence	2/4

Electcal Paametes

Sample time and conversion time of the XC167's A/D Converter are programmable. In compatibility mode, the above timing can be calculated using **Table 15**. The limit values for $f_{\rm BC}$ must not be exceeded when selecting ADCTC.

able 15 A/D CongerCompton Table							
ADCON.15 4 (ADCTC)	A/D Conger Bais: Clock free	ADCON.13 2 (ADSTC)	Sam þe Time				
00	$f_{SYS} / 4$	00	$t_{\rm BC} \Delta 8$				
01	<i>f</i> _{SYS} / 2	01	t _{BC} Δ 16				
10	<i>f</i> _{SYS} / 16	10	t _{BC} Δ 32				
11	f _{SYS} / 8	11	t _{BC} Δ 64				

1) These selections are available in compatibility mode. An improved mechanism to control the ADC input clock can be selected.

ConverTiming Eamle:

Assumptions:	$f_{\sf SYS}$	= 40 MHz (i.e. <i>t</i> _{SYS} = 25 ns), ADCTC = '01', ADSTC = '00'
Basic clock	$f_{\rm BC}$	$= f_{SYS} / 2 = 20 \text{ MHz}$, i.e. $t_{BC} = 50 \text{ ns}$
Sample time	t _S	$= t_{\rm BC} \Delta 8 = 400 \rm ns$
Conversion 10-bi	t:	
With post-calibr.	t _{C10P}	= 52 $\Delta t_{\rm BC}$ + $t_{\rm S}$ + 6 $\Delta t_{\rm SYS}$ = (2600 + 400 + 150) ns = 3.15 σ s
Post-calibr. off	<i>t</i> _{C10}	= 40 $\Delta t_{\rm BC}$ + $t_{\rm S}$ + 6 $\Delta t_{\rm SYS}$ = (2000 + 400 + 150) ns = 2.55 σ s
Conversion 8-bit:		
With post-calibr.	t _{C8P}	= 44 Δt_{BC} + t_{S} + 6 Δt_{SYS} = (2200 + 400 + 150) ns = 2.75 σ s
Post-calibr. off	t _{C8}	= 32 $\Delta t_{\rm BC}$ + $t_{\rm S}$ + 6 $\Delta t_{\rm SYS}$ = (1600 + 400 + 150) ns = 2.15 σ s

Electcal Paamees

4.4 AC Paamees

4.4.1 Definiton of Intenal Timing

The internal operation of the XC167 is controlled by the internal master clock f_{MC} .

The master clock signal $f_{\rm MC}$ can be generated from the oscillator clock signal $f_{\rm OSC}$ via different mechanisms. The duration of master clock periods (TCMs) and their variation (and also the derived external timing) depend on the used mechanism to generate $f_{\rm MC}$. This influence must be regarded when calculating the timings for the XC167.

Fige 15 Generaton Mechanis msforthe MaterClock

Note: The example for PLL operation shown in **Figure 15** refers to a PLL factor of 1:4, the example for prescaler operation refers to a divider factor of 2:1.

The used mechanism to generate the master clock is selected by register PLLCON.

CPU and EBC are clocked with the CPU clock signal f_{CPU} . The CPU clock can have the same frequency as the master clock ($f_{CPU} = f_{MC}$) or can be the master clock divided by two: $f_{CPU} = f_{MC}$ / 2. This factor is selected by bit CPSYS in register SYSCON1.

Electcal Paametes

4.4.2 On-chipFlab Opaton

The XC167's Flash module delivers data within a fixed access time (see Table 17).

Accesses to the Flash module are controlled by the PMI and take 1+WS clock cycles, where WS is the number of Flash access waitstates selected via bitfield WSFLASH in register IMBCTRL. The resulting duration of the access phase must cover the access time t_{ACC} of the Flash array. Therefore, the required Flash waitstates depend on the actual system frequency.

Note: The Flash access waitstates only affect non-sequential accesses. Due to prefetching mechanisms, the performance for sequential accesses (depending on the software structure) is only partially influenced by waitstates.

In typical applications, eliminating one waitstate increases the average performance by 5% ... 15%.

	oporating	, cona		עיקי		
Paameer	Synbol		Limit	Val e s	Unit	
			Min.	Tp N	lax	
Flash module access time	t _{ACC}	CC	-	-	50	ns
Programming time per 128-byte block	t _{PR}	CC	-	2 ¹⁾	5	ms
Erase time per sector	t _{ER}	CC	-	200 ¹⁾	500	ms

Table 17 Flab Chaaceits (Operating Conditions apply)

1) Programming and erase time depends on the system frequency. Typical values are valid for 40 MHz.

Example: For an operating frequency of 40 MHz (clock cycle = 25 ns), devices can be operated with 1 waitstate: ((1+1) \triangle 25 ns) \emptyset 50 ns.

 Table 18 indicates the interrelation of waitstates and system frequency.

Table 18Flab AccesWaites

Reiqed Waitates	Fr	eqncyRange for
$\overline{0 \text{ WS}}$ (WSFLASH = 00_{B})		$f_{\rm CPU}$ Ω 20 MHz
1 WS (WSFLASH = 01 _B)		$f_{\rm CPU}$ Ω 40 MHz

Note: The maximum achievable system frequency is limited by the properties of the respective derivative, i.e. 40 MHz (or 20 MHz for xxx-16F20F devices).

Electcal Paamees

4.4.3 Etenal Clock Die XTAL1

Table 19 Etenal Clock Div Chaaceite	cs	(0	Operating Co	onditions app	oly)
Paameer S	nbol		LimitVale	s Unit	
			Min.	Max	
Oscillator period	t _{OSC}	SR	25	250 ¹⁾	ns
High time ²⁾	<i>t</i> ₁	SR	6	-	ns
Low time ²⁾	<i>t</i> ₂	SR	6	-	ns
Rise time ²⁾	t ₃	SR	-	8	ns
Fall time ²⁾	<i>t</i> ₄	SR	-	8	ns

1) The maximum limit is only relevant for PLL operation to ensure the minimum input frequency for the PLL.

2) The clock input signal must reach the defined levels $V_{\rm ILC}$ and $V_{\rm IHC}$.

Fige 17 Etenal Clock Dire XTAL1

Note: If the on-chip oscillator is used together with a crystal or a ceramic resonator, the oscillator frequency is limited to a range of 4 MHz to 16 MHz.

It is strongly recommended to measure the oscillation allowance (negative resistance) in the final target system (layout) to determine the optimum parameters for the oscillator operation. Please refer to the limits specified by the crystal supplier.

When driven by an external clock signal it will accept the specified frequency range. Operation at lower input frequencies is possible but is verified by design only (not subject to production test).