

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

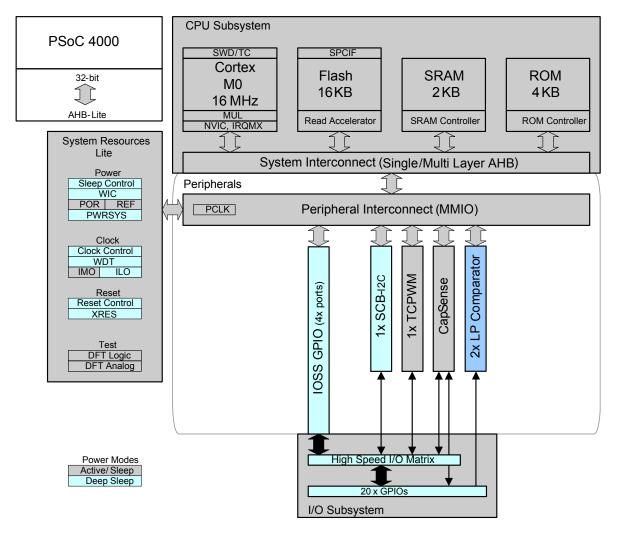
Details

-XF

Product Status	Obsolete
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	16MHz
Connectivity	I ² C
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	20
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	D/A 1x7b, 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	24-UFQFN Exposed Pad
Supplier Device Package	24-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4014lqs-422

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


Contents

Block Diagram	3
Functional Description	3
Functional Overview	
CPU and Memory Subsystem	4
System Resources	4
Analog Blocks	5
Fixed Function Digital	
GPIO	5
Special Function Peripherals	5
Pinouts	6
Power	8
Unregulated External Supply	8
Regulated External Supply	8
Development Support	9
Documentation	9
Online	9
Tools	9
Electrical Specifications	10
Absolute Maximum Ratings	10
Device Level Specifications	11

Analog Peripherals	
Digital Peripherals	
Memory	
System Resources	
Ordering Information	
Part Numbering Conventions	
Packaging	
Package Outline Drawings	24
Acronyms	
Document Conventions	
Units of Measure	
Document History Page	
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	
Products	
PSoC® Solutions	
Cypress Developer Community	
Technical Support	

Block Diagram

Functional Description

PSoC 4000 devices include extensive support for programming, testing, debugging, and tracing both hardware and firmware.

The ARM Serial-Wire Debug (SWD) interface supports all programming and debug features of the device.

Complete debug-on-chip functionality enables full-device debugging in the final system using the standard production device. It does not require special interfaces, debugging pods, simulators, or emulators. Only the standard programming connections are required to fully support debug.

The PSoC Creator IDE provides fully integrated programming and debug support for the PSoC 4000 devices. The SWD interface is fully compatible with industry-standard third-party tools. The PSoC 4000 family provides a level of security not possible with multi-chip application solutions or with microcontrollers. It has the following advantages:

Allows disabling of debug features

- Robust flash protection
- Allows customer-proprietary functionality to be implemented in on-chip programmable blocks

The debug circuits are enabled by default and can only be disabled in firmware. If they are not enabled, the only way to re-enable them is to erase the entire device, clear flash protection, and reprogram the device with new firmware that enables debugging.

Additionally, all device interfaces can be permanently disabled (device security) for applications concerned about phishing attacks due to a maliciously reprogrammed device or attempts to defeat security by starting and interrupting flash programming sequences. All programming, debug, and test interfaces are disabled when maximum device security is enabled. Therefore, PSoC 4000, with device security enabled, will have only limited capability for failure analysis. This is a trade-off the PSoC 4000 allows the customer to make.

Functional Overview

CPU and Memory Subsystem

CPU

The Cortex-M0 CPU in the PSoC 4000 is part of the 32-bit MCU subsystem, which is optimized for low-power operation with extensive clock gating. Most instructions are 16 bits in length and the CPU executes a subset of the Thumb-2 instruction set. This enables fully compatible, binary, upward migration of the code to higher performance processors, such as the Cortex-M3 and M4. It includes a nested vectored interrupt controller (NVIC) block with eight interrupt inputs and also includes a Wakeup Interrupt Controller (WIC). The WIC can wake the processor from the Deep Sleep mode, allowing power to be switched off to the main processor when the chip is in the Deep Sleep mode.

The CPU also includes a debug interface, the SWD interface, which is a 2-wire form of JTAG. The debug configuration used for PSoC 4000 has four breakpoint (address) comparators and two watchpoint (data) comparators.

Flash

The PSoC 4000 device has a flash module with a flash accelerator, tightly coupled to the CPU to improve average access times from the flash block. The low-power flash block is designed to deliver zero wait-state (WS) access time at 16 MHz. The flash accelerator delivers 85% of the single-cycle SRAM access performance on average.

SRAM

Two KB of SRAM are provided with zero wait-state access at 16 MHz.

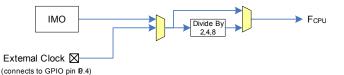
SROM

A supervisory ROM that contains boot and configuration routines is provided.

System Resources

Power System

The power system is described in detail in the section on Power on page 8. It provides an assurance that voltage levels are as required for each respective mode and either delays mode entry (for example, on power-on reset (POR)) until voltage levels are as required for proper functionality, or generates resets (for example, on brown-out detection). The PSoC 4000 operates with a single external supply over the range of either 1.8 V \pm 5% (externally regulated) or 1.8 to 5.5 V (internally regulated) and has three different power modes, transitions between which are managed by the power system. The PSoC 4000 provides Active, Sleep, and Deep Sleep low-power modes.


All subsystems are operational in Active mode. The CPU subsystem (CPU, flash, and SRAM) is clock-gated off in Sleep mode, while all peripherals and interrupts are active with instantaneous wake-up on a wake-up event. In Deep Sleep mode, the high-speed clock and associated circuitry is switched off; wake-up from this mode takes 35 μ S.

Clock System

The PSoC 4000 clock system is responsible for providing clocks to all subsystems that require clocks and for switching between different clock sources without glitching. In addition, the clock system ensures that there are no metastable conditions.

The clock system for the PSoC 4000 consists of the internal main oscillator (IMO) and the internal low-frequency oscillator (ILO) and provision for an external clock.

Figure 1. PSoC 4000 MCU Clocking Architecture

The F_{CPU} signal can be divided down to generate synchronous clocks for the analog and digital peripherals. There are four clock dividers for the PSoC 4000, each with 16-bit divide capability The 16-bit capability allows flexible generation of fine-grained frequency values and is fully supported in PSoC Creator.

IMO Clock Source

The IMO is the primary source of internal clocking in the PSoC 4000. It is trimmed during testing to achieve the specified accuracy. The IMO default frequency is 24 MHz and it can be adjusted from 24 to 48 MHz in steps of 4 MHz. The IMO tolerance with Cypress-provided calibration settings is $\pm 2\%$ (24 and 32 MHz).

ILO Clock Source

The ILO is a very low power, 40-kHz oscillator, which is primarily used to generate clocks for the watchdog timer (WDT) and peripheral operation in Deep Sleep mode. ILO-driven counters can be calibrated to the IMO to improve accuracy. Cypress provides a software component, which does the calibration.

Watchdog Timer

A watchdog timer is implemented in the clock block running from the ILO; this allows watchdog operation during Deep Sleep and generates a watchdog reset if not serviced before the set timeout occurs. The watchdog reset is recorded in a Reset Cause register, which is firmware readable.

Reset

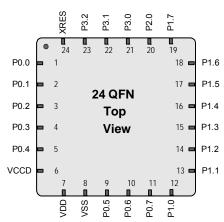
The PSoC 4000 can be reset from a variety of sources including a software reset. Reset events are asynchronous and guarantee reversion to a known state. The reset cause is recorded in a register, which is sticky through reset and allows software to determine the cause of the reset. An XRES pin is reserved for external reset on the 24-pin package. An internal POR is provided on the 16-pin package. The XRES pin has an internal pull-up resistor that is always enabled.

Voltage Reference

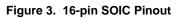
The PSoC 4000 reference system generates all internally required references. A 1.2-V voltage reference is provided for the comparator. The IDACs are based on a $\pm 5\%$ reference.

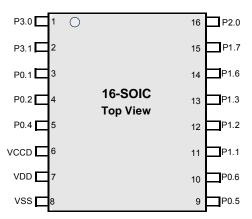
Descriptions of the Pin functions are as follows:

VDD: Power supply for both analog and digital sections.


VSS: Ground pin.


VCCD: Regulated digital supply (1.8 V ±5%).


Pins belonging to Ports 0, 1, and 2 can all be used as CSD sense and shield pins can be connected to AMUXBUS A or B or can all be used as GPIO pins that can be driven by the firmware.


Pins on Port 3 can be used as GPIO, in addition to their alternate functions listed above.

The following packages are provided: 24-pin QFN and 16-pin SOIC.

Development Support

The PSoC 4000 family has a rich set of documentation, development tools, and online resources to assist you during your development process. Visit www.cypress.com/go/psoc4 to find out more.

Documentation

A suite of documentation supports the PSoC 4000 family to ensure that you can find answers to your questions quickly. This section contains a list of some of the key documents.

Software User Guide: A step-by-step guide for using PSoC Creator. The software user guide shows you how the PSoC Creator build process works in detail, how to use source control with PSoC Creator, and much more.

Component Datasheets: The flexibility of PSoC allows the creation of new peripherals (components) long after the device has gone into production. Component data sheets provide all of the information needed to select and use a particular component, including a functional description, API documentation, example code, and AC/DC specifications.

Application Notes: PSoC application notes discuss a particular application of PSoC in depth; examples include brushless DC motor control and on-chip filtering. Application notes often

include example projects in addition to the application note document.

Technical Reference Manual: The Technical Reference Manual (TRM) contains all the technical detail you need to use a PSoC device, including a complete description of all PSoC registers. The TRM is available in the Documentation section at www.cypress.com/psoc4.

Online

In addition to print documentation, the Cypress PSoC forums connect you with fellow PSoC users and experts in PSoC from around the world, 24 hours a day, 7 days a week.

Tools

With industry standard cores, programming, and debugging interfaces, the PSoC 4000 family is part of a development tool ecosystem. Visit us at www.cypress.com/go/psoccreator for the latest information on the revolutionary, easy to use PSoC Creator IDE, supported third party compilers, programmers, debuggers, and development kits.

Electrical Specifications

Absolute Maximum Ratings

Table 2. Absolute Maximum Ratings^[1]

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID1	V _{DDD_ABS}	Digital supply relative to V _{SS}	-0.5	-	6	V	
SID2	V _{CCD_ABS}	Direct digital core voltage input relative to V_{SS}	-0.5	_	1.95	V	
SID3	V _{GPIO_ABS}	GPIO voltage	-0.5	_	V _{DD} +0.5	V	
SID4	I _{GPIO_ABS}	Maximum current per GPIO	-25	-	25	mA	
SID5	I _{GPIO_injection}	GPIO injection current, Max for V _{IH} > V _{DDD} , and Min for V _{IL} < V _{SS}	-0.5	_	0.5	mA	Current injected per pin
BID44	ESD_HBM	Electrostatic discharge human body model	2200	_	_	V	
BID45	ESD_CDM	Electrostatic discharge charged device model	500	-	-	V	
BID46	LU	Pin current for latch-up	-140	_	140	mA	

Note

 Usage above the absolute maximum conditions listed in Table 1 may cause permanent damage to the device. Exposure to Absolute Maximum conditions for extended periods of time may affect device reliability. The Maximum Storage Temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature Storage Life. When used below Absolute Maximum conditions but above normal operating conditions, the device may not operate to specification.

Device Level Specifications

All specifications are valid for –40 °C \leq T_A \leq 85 °C for A grade devices and –40 °C \leq T_A \leq 105 °C for S grade devices, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

Table 3. DC Specifications

Typical values measured at V_{DD} = 3.3 V and 25 °C.

Spec ID#	Parameter	Description	Min	Тур	Max ^[2]	Units	Details/ Conditions
SID53	V _{DD}	Power supply input voltage	1.8	-	5.5	V	With regulator enabled
SID255	V _{DD}	Power supply input voltage (V _{CCD} = V _{DD})	1.71	-	1.89	V	Internally unregulated supply
SID54	V _{DDIO}	V _{DDIO} domain supply	1.71	-	V_{DD}	V	
SID55	C _{EFC}	External regulator voltage bypass	-	0.1	-	μF	X5R ceramic or better
SID56	C _{EXC}	Power supply bypass capacitor	-	1	-	μF	X5R ceramic or better
Active Mode,	V _{DD} = 1.8 to 5.5	V					
SID9	I _{DD5}	Execute from flash; CPU at 6 MHz	-	2.0	2.85	mA	
SID12	I _{DD8}	Execute from flash; CPU at 12 MHz	-	3.2	3.75	mA	
SID16	I _{DD11}	Execute from flash; CPU at 16 MHz	-	4.0	4.5	mA	
Sleep Mode, V	_{DDD} = 1.71 to 5.	5 V					
SID25	I _{DD20}	I ² C wakeup, WDT on. 6 MHz	-	1.1	-	mA	
SID25A	I _{DD20A}	I ² C wakeup, WDT on. 12 MHz	-	1.4	-	mA	
Deep Sleep M	ode, V _{DD} = 1.8 t	o 3.6 V (Regulator on)					
SID31	I _{DD26}	I ² C wakeup and WDT on	-	2.5	8.2	μA	
Deep Sleep M	ode, V _{DD} = 3.6 t	o 5.5 V (Regulator on)					
SID34	I _{DD29}	I ² C wakeup and WDT on	-	2.5	12	μA	
Deep Sleep M	ode, V _{DD} = V _{CCI}	₀ = 1.71 to 1.89 V (Regulator bypassed)					
SID37	I _{DD32}	I ² C wakeup and WDT on	-	2.5	9.2	μA	
XRES Current							
SID307	I _{DD_XR}	Supply current while XRES asserted	_	2	5	mA	

2. Maximum values corresponds to values at higher temperature (105 °C).

Table 4. AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID48	F _{CPU}	CPU frequency	DC	-	16	MHz	$1.71 \leq V_{DD} \leq 5.5$
SID49 ^[3]	T _{SLEEP}	Wakeup from Sleep mode	_	0	_	μs	
SID50 ^[3]	T _{DEEPSLEEP}	Wakeup from Deep Sleep mode	_	35	_	μs	

GPIO

Table 5. GPIO DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID57	V _{IH} ^[4]	Input voltage high threshold	0.7 × V _{DDD}	-	-	V	CMOS Input
SID58	V _{IL}	Input voltage low threshold	-	-	0.3 × V _{DDD}	V	CMOS Input
SID241	V _{IH} ^[4]	LVTTL input, V _{DDD} < 2.7 V	0.7× V _{DDD}	-	-	V	
SID242	V _{IL}	LVTTL input, V _{DDD} < 2.7 V	-	-	0.3 × V _{DDD}	V	
SID243	V _{IH} ^[4]	LVTTL input, $V_{DDD} \ge 2.7 V$	2.0	-	-	V	
SID244	V _{IL}	LVTTL input, $V_{DDD} \ge 2.7 V$	-	-	0.8	V	
SID59	V _{OH}	Output voltage high level	V _{DDD} -0.6	-	-	V	I _{OH} = 4 mA at 3 V V _{DDD}
SID60	V _{OH}	Output voltage high level	V _{DDD} -0.5	-	-	V	I _{OH} = 1 mA at 1.8 V V _{DDD}
SID61	V _{OL}	Output voltage low level	-	-	0.6	V	I _{OL} = 4 mA at 1.8 V V _{DDD}
SID62	V _{OL}	Output voltage low level	-	-	0.6	V	I _{OL} = 10 mA at 3 V V _{DDD}
SID62A	V _{OL}	Output voltage low level	-	-	0.4	V	I _{OL} = 3 mA at 3 V V _{DDD}
SID63	R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ	
SID64	R _{PULLDOWN}	Pull-down resistor	3.5	5.6	8.5	kΩ	
SID65	IIL	Input leakage current (absolute value)	-	-	2	nA	25 °C, V _{DDD} = 3.0 V
SID66	C _{IN}	Input capacitance	-	3	7	pF	
SID67 ^[5]	V _{HYSTTL}	Input hysteresis LVTTL	15	40	-	mV	$V_{DDD} \ge 2.7 \text{ V}$
SID68 ^[5]	V _{HYSCMOS}	Input hysteresis CMOS	0.05 × V _{DDD}	-	_	mV	V _{DD} < 4.5 V
SID68A ^[5]	V _{HYSCMOS5V5}	Input hysteresis CMOS	200	-	-	mV	V _{DD} > 4.5 V
SID69 ^[5]	I _{DIODE}	Current through protection diode to V_{DD}/V_{SS}	-	-	100	μA	
SID69A ^[5]	I _{TOT_GPIO}	Maximum total source or sink chip current	-	-	85	mA	

Notes

Guaranteed by characterization.
 V_{IH} must not exceed V_{DDD} + 0.2 V.
 Guaranteed by characterization.

Table 6. GPIO AC Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID70	T _{RISEF}	Rise time in fast strong mode	2	-	12	ns	3.3 V V _{DDD} , Cload = 25 pF
SID71	T _{FALLF}	Fall time in fast strong mode	2	-	12	ns	3.3 V V _{DDD} , Cload = 25 pF
SID72	T _{RISES}	Rise time in slow strong mode	10	-	60	-	3.3 V V _{DDD} , Cload = 25 pF
SID73	T _{FALLS}	Fall time in slow strong mode	10	-	60	-	3.3 V V _{DDD} , Cload = 25 pF
SID74	F _{GPIOUT1}	GPIO F _{OUT} ; 3.3 V \leq V _{DDD} \leq 5.5 V. Fast strong mode.	-	-	16	MHz	90/10%, 25 pF load, 60/40 duty cycle
SID75	F _{GPIOUT2}	GPIO F_{OUT} ; 1.71 V \leq V _{DDD} \leq 3.3 V. Fast strong mode.	-	-	16	MHz	90/10%, 25 pF load, 60/40 duty cycle
SID76	F _{GPIOUT3}	GPIO F_{OUT} ; 3.3 V \leq V _{DDD} \leq 5.5 V. Slow strong mode.	-	-	7	MHz	90/10%, 25 pF load, 60/40 duty cycle
SID245	F _{GPIOUT4}	GPIO F_{OUT} ; 1.71 V \leq V _{DDD} \leq 3.3 V. Slow strong mode.	-	-	3.5	MHz	90/10%, 25 pF load, 60/40 duty cycle
SID246	F _{GPIOIN}	GPIO input operating frequency; 1.71 V \leq V _{DDD} \leq 5.5 V	-	-	16	MHz	90/10% V _{IO}

XRES

Table 7. XRES DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID77	V _{IH}	Input voltage high threshold	0.7 × V _{DDD}	-	_	V	CMOS Input
SID78	V _{IL}	Input voltage low threshold	_	-	0.3 × V _{DDD}	V	CMOS Input
SID79	R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ	
SID80	C _{IN}	Input capacitance	-	3	7	pF	
SID81 ^[6]	V _{HYSXRES}	Input voltage hysteresis	-	05*V _{DD}	-	mV	Typical hysteresis is 200 mV for V _{DD} > 4.5V

Table 8. XRES AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID83 ^[6]	T _{RESETWIDTH}	Reset pulse width	5	-	-	μs	
BID#194 ^[6]	TRESETWAKE	Wake-up time from reset release	-	-	3	ms	

Note 6. Guaranteed by characterization.

Analog Peripherals

Comparator

Table 9. Comparator DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID330 ^[6]	I _{CMP1}	Block current, High Bandwidth mode	-	-	110	μA	
SID331 ^[6]	I _{CMP2}	Block current, Low Power mode	-	-	85	μA	
SID332 ^[6]	V _{OFFSET1}	Offset voltage, High Bandwidth mode	-	10	30	mV	
SID333 ^[6]	V _{OFFSET2}	Offset voltage, Low Power mode	_	10	30	V	
SID334 ^[6]	Z _{CMP}	DC input impedance of comparator	35	-	_	MΩ	
SID338 ^[6]	VINP_COMP	Comparator input range	0	-	3.6	V	Max input voltage is lower of 3.6 V or V _{DD}

Table 10. Comparator AC Specifications (Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID336 ^[6]		Response Time High Bandwidth mode, 50-mV overdrive	-	-	90	ns	
SID337 ^[6]		Response Time Low Power mode, 50-mV overdrive	-	_	110	ns	

βC

Table 13. Fixed I²C DC Specifications^[8]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID149	I _{I2C1}	Block current consumption at 100 kHz	-	-	25	μA	
SID150	I _{I2C2}	Block current consumption at 400 kHz	-	-	135	μA	
SID152	I _{I2C4}	I ² C enabled in Deep Sleep mode	-	-	2.5	μA	

Table 14. Fixed I²C AC Specifications^[8]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID153	F _{I2C1}	Bit rate	-	-	400	Kbps	

Note 8. Guaranteed by characterization.

Memory

Table 15. Flash DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID173	V _{PE}	Erase and program voltage	1.71	Ι	5.5	V	

Table 16. Flash AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID174	T _{ROWWRITE} ^[9]	Row (block) write time (erase and program)	_	-	20	ms	Row (block) = 128 bytes
SID175	T _{ROWERASE} ^[9]	Row erase time	-	_	13	ms	
SID176	T _{ROWPROGRAM} ^[9]	Row program time after erase	-	-	7	ms	
SID178	T _{BULKERASE} ^[9]	Bulk erase time (16 KB)	-	-	15	ms	
SID180 ^[10]	T _{DEVPROG} ^[9]	Total device program time	-	-	7.5	seconds	
SID181 ^[10]	F _{END}	Flash endurance	100 K	-	-	cycles	
SID182 ^[10]	F _{RET}	Flash retention. T _A ≤ 55 °C, 100 K P/E cycles	20 ^[11]	-	-	years	
SID182A ^{[10}]		Flash retention. $T_A \le 85 \text{ °C}$, 10 K P/E cycles	10 ^[12]	-	-	years	

System Resources

Power-on Reset (POR)

Table 17. Power On Reset (PRES)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.CLK#6	SR_POWER_UP	Power supply slew rate	1	-	67	V/ms	At power-up
SID185 ^[10]	V _{RISEIPOR}	Rising trip voltage	0.80	_	1.5	V	
SID186 ^[10]	V _{FALLIPOR}	Falling trip voltage	0.70	-	1.4	V	

Table 18. Brown-out Detect (BOD) for V_{CCD}

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
	V _{FALLPPOR}	BOD trip voltage in active and sleep modes	1.48	-	1.62	V	
SID192 ^[10]	V _{FALLDPSLP}	BOD trip voltage in Deep Sleep	1.11	-	1.5	V	

Notes

 It can take as much as 20 milliseconds to write to Flash. During this time the device should not be Reset, or Flash operations will be interrupted and cannot be relied on to have completed. Reset sources include the XRES pin, software resets, CPU lockup states and privilege violations, improper power supply levels, and watchdogs. Make certain that these are not inadvertently activated.

10. Guaranteed by characterization.

11. Cypress provides a retention calculator to calculate the retention lifetime based on customers' individual temperature profiles for operation over the -40 °C to +105 °C ambient temperature range. Contact customercare@cypress.com.

12. Cypress provides a retention calculator to calculate the retention lifetime based on customers' individual temperature profiles for operation over the -40 °C to +105 °C ambient temperature range. Contact customercare@cypress.com.

Table 24. External Clock Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID305 ^[14]	ExtClkFreq	External clock input frequency	0	-	16	MHz	
SID306 ^[14]	ExtClkDuty	Duty cycle; measured at V _{DD/2}	45	-	55	%	

Table 25. Block Specs

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID262 ^[14]	T _{CLKSWITCH}	System clock source switching time	3	Ι	4	Periods	

Note 14. Guaranteed by characterization.

Ordering Information

The PSoC 4000 part numbers and features are listed in the following table.

MPN					Featu	ires				Pacl	kage	Operating Te	emperature
	Max CPU Speed (MHz)	Flash (KB)	SRAM (KB)	CapSense	7-bit IDAC	8-bit IDAC	Comparators	TCPWM Blocks	SCB (12C)	16-SOIC	24-QFN	–40 to +85 °C	40 to +105 °C
CY8C4014SXA-421	16	16	2	~	1	1	1	1	1	~	-	~	-
CY8C4014LQA-422	16	16	2	~	1	1	1	1	1	_	~	V	-
CY8C4014SXS-421	16	16	2	~	1	1	1	1	1	~	-	_	~
CY8C4014LQS-422	16	16	2	~	1	1	1	1	1	-	~	_	~

Part Numbering Conventions

PSoC 4 devices follow the part numbering convention described in the following table. All fields are single-character alphanumeric (0, 1, 2, ..., 9, A,B, ..., Z) unless stated otherwise.

The part numbers are of the form CY8C4ABCDEF-XYZ where the fields are defined as follows.

Examples		CY8C	4	A	B	ç	D	Е	F	-	x	<u>x x</u>
	Cypress Prefix —											
4: PSoC4	Architecture —											
0 : 4000 Family	Family Group within Architecture —											
1 : 16 MHz	Speed Grade —											
4 : 16 KB	Flash Capacity —											
LQ: QFN SX: SOIC	Package Code —											
A: AEC-Q100, - 40 °C to +85 °C S: AEC-Q100, -40 °C to +105 °C												
	Peripheral Set —											

Packaging

Table 26. Package List

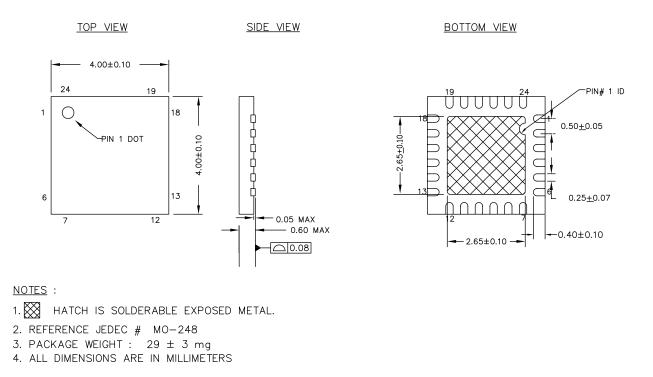
Spec ID#	Package	Description
BID#26	24-pin QFN	24-pin 4 x 4 x 0.6 mm QFN with 0.5-mm pitch
BID#40	16-pin SOIC	16-pin (150 Mil) SOIC

Table 27. Package Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Units
T _A	Operating ambient temperature	For A grade devices	-40	25.00	85	°C
T _A	Operating ambient temperature	For S grade devices	-40	25.00	105	°C
TJ	Operating junction temperature	For A grade devices	-40	-	100	°C
TJ	Operating junction temperature	For S grade devices	-40	-	120	°C
T _{JA}	Package θ_{JA} (24-pin QFN)		-	38.01	_	°C/W
T _{JA}	Package θ_{JA} (16-pin SOIC)		-	142.14	_	°C/W

Table 28. Solder Reflow Peak Temperature

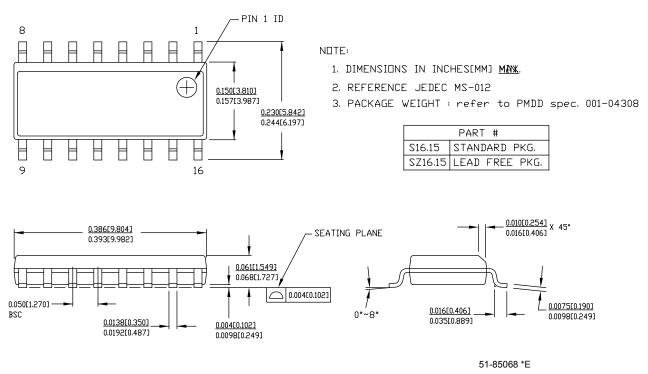
Package	Maximum Peak Temperature	Maximum Time at Peak Temperature
All	260 °C	30 seconds


Table 29. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-020

Package	MSL
All	MSL 3

Package Outline Drawings

Figure 6. 24-pin QFN (4 × 4 × 0.55 mm) LQ24A 2.65 × 2.65 E-Pad (Sawn) Package Outline, 001-13937



001-13937 *F

The center pad on the QFN package should be connected to ground (VSS) for best mechanical, thermal, and electrical performance. If not connected to ground, it should be electrically floating and not connected to any other signal.

Figure 7. 16-pin SOIC (150 Mils) S16.15/SZ16.15 Package Outline, 51-85068

Acronyms

Table 30. Acronyms Used in this Document

Acronym	Description		
abus	analog local bus		
ADC	analog-to-digital converter		
AG	analog global		
АНВ	AMBA (advanced microcontroller bus archi- tecture) high-performance bus, an ARM data transfer bus		
ALU	arithmetic logic unit		
AMUXBUS	analog multiplexer bus		
API	application programming interface		
APSR	application program status register		
ARM®	advanced RISC machine, a CPU architecture		
ATM	automatic thump mode		
BW	bandwidth		
CAN	Controller Area Network, a communications protocol		
CMRR	common-mode rejection ratio		
CPU	central processing unit		
CRC	cyclic redundancy check, an error-checking protocol		
DAC	digital-to-analog converter, see also IDAC, VDAC		
DFB	digital filter block		
DIO	digital input/output, GPIO with only digital capabilities, no analog. See GPIO.		
DMIPS	Dhrystone million instructions per second		
DMA	direct memory access, see also TD		
DNL	differential nonlinearity, see also INL		
DNU	do not use		
DR	port write data registers		
DSI	digital system interconnect		
DWT	data watchpoint and trace		
ECC	error correcting code		
ECO	external crystal oscillator		
EEPROM	electrically erasable programmable read-only memory		
EMI	electromagnetic interference		
EMIF	external memory interface		
EOC	end of conversion		
EOF	end of frame		
EPSR	execution program status register		
ESD	electrostatic discharge		

Acronym	Description		
ETM	embedded trace macrocell		
FIR	finite impulse response, see also IIR		
FPB	flash patch and breakpoint		
FS	full-speed		
GPIO	general-purpose input/output, applies to a PSoC pin		
HVI	high-voltage interrupt, see also LVI, LVD		
IC	integrated circuit		
IDAC	current DAC, see also DAC, VDAC		
IDE	integrated development environment		
l ² C, or IIC	Inter-Integrated Circuit, a communications protocol		
lir	infinite impulse response, see also FIR		
ILO	internal low-speed oscillator, see also IMO		
IMO	internal main oscillator, see also ILO		
INL	integral nonlinearity, see also DNL		
I/O	input/output, see also GPIO, DIO, SIO, USBIO		
IPOR	initial power-on reset		
IPSR	interrupt program status register		
IRQ	interrupt request		
ITM	instrumentation trace macrocell		
LCD	liquid crystal display		
LIN	Local Interconnect Network, a communications protocol.		
LR	link register		
LUT	lookup table		
LVD	low-voltage detect, see also LVI		
LVI	low-voltage interrupt, see also HVI		
LVTTL	low-voltage transistor-transistor logic		
MAC	multiply-accumulate		
MCU	microcontroller unit		
MISO	master-in slave-out		
NC	no connect		
NMI	nonmaskable interrupt		
NRZ	non-return-to-zero		
NVIC	nested vectored interrupt controller		
NVL	nonvolatile latch, see also WOL		
opamp	operational amplifier		
PAL	programmable array logic, see also PLD		
PC	program counter		
PCB	printed circuit board		

Table 30. Acronyms Used in this Document (continued)

Document History Page (continued)

Description Title: Automotive PSoC [®] 4: PSoC 4000 Family Datasheet Programmable System-on-Chip (PSoC [®]) Document Number: 001-92145				
Revision	ECN	Orig. of Change	Submission Date	Description of Change
*B (cont.)	4594824	JICG	12/12/2014	Updated Packaging: Updated Table 27: Added values for T_J parameter corresponding to Condition "For A grade devices". Changed maximum value of T_J parameter corresponding to Condition "For S grade devices" from 100 °C to 120 °C. Removed T_{JC} parameter and its details.
*C	4615131	SNPR	01/06/2015	Changed status from Preliminary to Final.
*D	4669514	KUK	02/24/2015	Updated Ordering Information: No change in part numbers. Updated Part Numbering Conventions.
*E	5141209	KIKU	02/17/2016	Updated Block Diagram: Added Low Power Comparator block. Updated Pinouts: Updated Table 1: Updated details in "Name" column of pin 14 and pin 15 corresponding to 24-pin QFN and also updated details in "Alternate Functions" column corresponding to same pins. Updated details in "Name" column of pin 12 and pin 13 corresponding to 16-pin SOIC and also updated details in "Alternate Functions" column corresponding to same pins. Updated Packaging: Updated Package Outline Drawings: spec 001-13937 – Changed revision from *E to *F. Updated to new template.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Lighting & Power Control	cypress.com/powerpsoc
Memory	cypress.com/memory
PSoC	cypress.com/psoc
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless/RF	cypress.com/wireless

PSoC[®] Solutions

cypress.com/psoc PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/support

© Cypress Semiconductor Corporation, 2014-2016. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-92145 Rev. *E

Revised February 17, 2016

All products and company names mentioned in this document may be the trademarks of their respective holders.