Intel - <u>10M02DCU324C8G Datasheet</u>

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	125
Number of Logic Elements/Cells	2000
Total RAM Bits	110592
Number of I/O	160
Number of Gates	-
Voltage - Supply	1.15V ~ 1.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	324-LFBGA
Supplier Device Package	324-UBGA (15x15)
Purchase URL	https://www.e-xfl.com/product-detail/intel/10m02dcu324c8g

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Operating Conditions

Intel MAX 10 devices are rated according to a set of defined parameters. To maintain the highest possible performance and reliability of the Intel MAX 10 devices, you must consider the operating requirements described in this section.

Absolute Maximum Ratings

This section defines the maximum operating conditions for Intel MAX 10 devices. The values are based on experiments conducted with the devices and theoretical modeling of breakdown and damage mechanisms. The functional operation of the device is not implied for these conditions.

Caution: Conditions outside the range listed in the absolute maximum ratings tables may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

Single Supply Devices Absolute Maximum Ratings

Table 2. Absolute Maximum Ratings for Intel MAX 10 Single Supply Devices

Symbol	Parameter	Min	Мах	Unit
V _{CC_ONE}	Supply voltage for core and periphery through on-die voltage regulator	-0.5	3.9	V
V _{CCIO}	Supply voltage for input and output buffers	-0.5	3.9	V
V _{CCA}	Supply voltage for phase-locked loop (PLL) regulator and analog-to- digital converter (ADC) block (analog)	-0.5	3.9	V

Dual Supply Devices Absolute Maximum Ratings

Table 3. Absolute Maximum Ratings for Intel MAX 10 Dual Supply Devices

Symbol	Parameter	Min	Мах	Unit
V _{CC}	Supply voltage for core and periphery	-0.5	1.63	V
V _{CCIO}	Supply voltage for input and output buffers	-0.5	3.9	V
V _{CCA}	Supply voltage for PLL regulator (analog)	-0.5	3.41	V
	•			continued

Series OCT without Calibration Specifications

Table 13. Series OCT without Calibration Specifications for Intel MAX 10 Devices

This table shows the variation of on-chip termination (OCT) without calibration across process, voltage, and temperature (PVT).

Description	V _{CCIO} (V)	Resistance	Unit	
		-C7, -I6, -I7, -A6, -A7	-C8	
Series OCT without calibration	3.00	±35	±30	%
	2.50	±35	±30	%
	1.80	±40	±35	%
	1.50	±40	±40	%
	1.35	±40	±50	%
	1.20	±45	±60	%

Series OCT with Calibration at Device Power-Up Specifications

Table 14. Series OCT with Calibration at Device Power-Up Specifications for Intel MAX 10 Devices

OCT calibration is automatically performed at device power-up for OCT enabled I/Os.

Description	V _{CCIO} (V)	Calibration Accuracy	Unit
Series OCT with calibration at device power-up	3.00	±12	%
	2.50	±12	%
	1.80	±12	%
	1.50	±12	%
	1.35	±12	%
	1.20	±12	%

OCT Variation after Calibration at Device Power-Up

The OCT resistance may vary with the variation of temperature and voltage after calibration at device power-up.

Use the following table and equation to determine the final OCT resistance considering the variations after calibration at device power-up.

Table 15. OCT Variation after Calibration at Device Power-Up for Intel MAX 10 Devices

This table lists the change percentage of the OCT resistance with voltage and temperature.

Description	Nominal Voltage	dR/dT (%/°C)	dR/dV (%/mV)
OCT variation after calibration at device power-up	3.00	0.25	-0.027
	2.50	0.245	-0.04
	1.80	0.242	-0.079
	1.50	0.235	-0.125
	1.35	0.229	-0.16
	1.20	0.197	-0.208

Figure 1. Equation for OCT Resistance after Calibration at Device Power-Up

 $\Delta R_V = (V_2 - V_1) \times 1000 \times dR/dV$ $\Delta R_T = (T_2 - T_1) \times dR/dT$ For $\Delta R_X < 0$; $MF_X = 1/(|\Delta R_X|/100 + 1)$ For $\Delta R_X > 0$; $MF_X = \Delta R_X/100 + 1$ $MF = MF_V \times MF_T$ $R_{final} = R_{initial} \times MF$

The definitions for equation are as follows:

- T₁ is the initial temperature.
- T₂ is the final temperature.
- MF is multiplication factor.
- R_{initial} is initial resistance.
- R_{final} is final resistance.

Pin Capacitance

Table 16. Pin Capacitance for Intel MAX 10 Devices

Symbol	Parameter	Maximum	Unit
C _{IOB}	Input capacitance on bottom I/O pins	8	pF
C _{IOLRT}	Input capacitance on left/right/top I/O pins	7	pF
C _{LVDSB}	Input capacitance on bottom I/O pins with dedicated LVDS output $^{(9)}$	8	pF
C _{ADCL}	Input capacitance on left I/O pins with ADC input $^{(10)}$	9	pF
C _{VREFLRT}	Input capacitance on left/right/top dual purpose V_{REF} pin when used as V_{REF} or user I/O pin $^{(11)}$	48	pF
C _{VREFB}	Input capacitance on bottom dual purpose V_{REF} pin when used as V_{REF} or user I/O pin	50	pF
C _{CLKB}	Input capacitance on bottom dual purpose clock input pins (12)	7	pF
C _{CLKLRT}	Input capacitance on left/right/top dual purpose clock input pins (12)	6	pF

Internal Weak Pull-Up Resistor

All I/O pins, except configuration, test, and JTAG pins, have an option to enable weak pull-up.

- ⁽¹¹⁾ When V_{REF} pin is used as regular input or output, F_{max} performance is reduced due to higher pin capacitance. Using the V_{REF} pin capacitance specification from device datasheet, perform SI analysis on your board setup to determine the F_{max} of your system.
- ⁽¹²⁾ 10M40 and 10M50 devices have dual purpose clock input pins at top/bottom I/O banks.

⁽⁹⁾ Dedicated LVDS output buffer is only available at bottom I/O banks.

⁽¹⁰⁾ ADC pins are only available at left I/O banks.

Single-Ended SSTL, HSTL, and HSUL I/O Reference Voltage Specifications

I/O Standard		V _{CCIO} (V)			V _{REF} (V)			V _{TT} (V) ⁽¹⁴⁾				
	Min	Тур	Max	Min	Тур	Max	Min	Тур	Мах			
SSTL-2 Class I, II	2.375	2.5	2.625	1.19	1.25	1.31	V _{REF} - 0.04	V _{REF}	V _{REF} + 0.04			
SSTL-18 Class I, II	1.7	1.8	1.9	0.833	0.9	0.969	V _{REF} - 0.04	V _{REF}	V _{REF} + 0.04			
SSTL-15 Class I, II	1.425	1.5	1.575	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$			
SSTL-135 Class I, II	1.283	1.35	1.45	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$			
HSTL-18 Class I, II	1.71	1.8	1.89	0.85	0.9	0.95	0.85	0.9	0.95			
HSTL-15 Class I, II	1.425	1.5	1.575	0.71	0.75	0.79	0.71	0.75	0.79			
HSTL-12 Class I, II	1.14	1.2	1.26	$0.48 \times V_{\text{CCIO}}$ (15)	$0.5 \times V_{CCIO}$ (15)	$0.52 \times V_{CCIO}$ (15)	_	$0.5 \times V_{CCIO}$	_			
				$0.47 \times V_{CCIO}$	$0.5 \times V_{CCIO}$ ⁽¹⁶⁾	$0.53 \times V_{CCIO}$						
HSUL-12	1.14	1.2	1.3	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	—	_	-			

Table 21. Single-Ended SSTL, HSTL, and HSUL I/O Reference Voltage Specifications for Intel MAX 10 Devices

 $^{(14)}$ V_{TT} of transmitting device must track V_{REF} of the receiving device.

- ⁽¹⁵⁾ Value shown refers to DC input reference voltage, $V_{REF(DC)}$.
- ⁽¹⁶⁾ Value shown refers to AC input reference voltage, $V_{REF(AC)}$.

I/O Standard	V _{CCI0} (V)			V _{DIF(D}	c) (V)	V _{X(AC)} (V)				V _{DIF(AC)} (V)		
	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min
HSTL-18 Class I, II	1.71	1.8	1.89	0.2	—	0.85	—	0.95	0.85	—	0.95	0.4
HSTL-15 Class I, II	1.425	1.5	1.575	0.2	_	0.71	-	0.79	0.71	_	0.79	0.4
HSTL-12 Class I, II	1.14	1.2	1.26	0.16	V _{CCIO}	$0.48 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	0.52 × V _{CCIO}	0.48 × V _{CCIO}	$0.5 \times V_{CCIO}$	0.52 × V _{CCIO}	0.3
HSUL-12	1.14	1.2	1.3	0.26	_	0.5 × V _{CCIO} – 0.12	$0.5 \times V_{CCIO}$	0.5 × V _{CCIO} + 0.12	0.4 × V _{CCIO}	0.5 × V _{CCIO}	0.6 × V _{CCIO}	0.44

Table 24. Differential HSTL and HSUL I/O Standards Specifications for Intel MAX 10 Devices

Differential I/O Standards Specifications

Table 25. Differential I/O Standards Specifications for Intel MAX 10 Devices

I/O Standard		V _{CCIO} (V)		V _{ID} ((mV)	V _{ICM} (V) ⁽¹⁸⁾			V _{OD} (mV) ⁽¹⁹⁾⁽²⁰⁾			V _{OS} (V) ⁽¹⁹⁾		
	Min	Тур	Max	Min	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max
LVPECL (21)	2.375	2.5	2.625	100	-	0.05	$D_{MAX} \leq 500 \text{ Mbps}$	1.8	—	—	-	—	—	-
						0.55	$500 \text{ Mbps} \leq D_{MAX} \leq 700 \text{ Mbps}$	1.8						
						1.05	D _{MAX} > 700 Mbps	1.55						
LVDS	2.375	2.5	2.625	100	-	0.05	$D_{MAX} \leq 500 \text{ Mbps}$	1.8	247	-	600	1.125	1.25	1.375
						0.55	500 Mbps $\leq D_{MAX} \leq$ 700 Mbps	1.8						
						,		•	•				cont	inued

 $^{(18)}$ V_{IN} range: 0 V \leq V_{IN} \leq 1.85 V.

⁽¹⁹⁾ R_L range: $90 \leq R_L \leq 110 \Omega$.

 $^{(20)}$ Low V_{OD} setting is only supported for RSDS standard.

⁽²¹⁾ LVPECL input standard is only supported at clock input. Output standard is not supported.

I/O Standard		V _{CCIO} (V)		V_{ID} ((mV)	V _{ICM} (V) ⁽¹⁸⁾			V _{OD}	(mV) ⁽¹⁹)(20)	v	os (V) (1	9)
	Min	Тур	Max	Min	Max	Min	Min Condition		Min	Тур	Max	Min	Тур	Max
						1.05	D _{MAX} > 700 Mbps	1.55						
BLVDS (22)	2.375	2.5	2.625	100	-	-	-	-	-	_	-	_	-	—
mini-LVDS ⁽²³⁾	2.375	2.5	2.625	_	-	-	-	-	300	-	600	1	1.2	1.4
RSDS (23)	2.375	2.5	2.625	-	-	-	-	-	100	200	600	0.5	1.2	1.5
PPDS (Row I/Os) (23)	2.375	2.5	2.625	_	-	_	_	-	100	200	600	0.5	1.2	1.4
TMDS ⁽²⁴⁾	2.375	2.5	2.625	100	-	0.05	$D_{MAX} \leq 500 \text{ Mbps}$	1.8	-	_	-	_	-	—
						0.55	500 Mbps ≤ D _{MAX} ≤ 700 Mbps	1.8						
						1.05	D _{MAX} > 700 Mbps	1.55						
Sub-LVDS (25)	1.71	1.8	1.89	100	-	0.55	-	1.25		(26)		0.8	0.9	1
SLVS	2.375	2.5	2.625	100	-	0.05	-	1.1		(26)			(27)	•
													cont	inued

- $\begin{array}{ll} \end{tabular} \hline (18) & V_{IN} \mbox{ range: } 0 \ V \leq V_{IN} \leq 1.85 \ V. \\ \end{tabular} \\ \end{tabular} (19) & R_L \mbox{ range: } 90 \leq R_L \leq 110 \ \Omega. \\ \end{tabular} \\ \end{tabular} \\ \end{tabular} (20) & Low \ V_{OD} \mbox{ setting is only supported for RSDS standard}. \end{array}$

I/O Standard	V _{CCIO} (V) V _{ID} (mV)			V _{ICM} (V) ⁽¹⁸⁾			V _{OD}	(mV) ⁽¹⁹)(20)	V _{OS} (V) ⁽¹⁹⁾				
	Min	Тур	Max	Min	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max
HiSpi	2.375	2.5	2.625	100	-	0.05	$D_{MAX} \leq 500 \text{ Mbps}$	1.8	—	-	—	—	_	-
						0.55	$500 \text{ Mbps } \leq D_{MAX} \leq 700 \text{ Mbps}$	1.8						
						1.05	D _{MAX} > 700 Mbps	1.55						

Related Information

Intel MAX 10 LVDS SERDES I/O Standards Support, Intel MAX 10 High-Speed LVDS I/O User Guide Provides the list of I/O standards supported in single supply and dual supply devices.

Switching Characteristics

This section provides the performance characteristics of Intel MAX 10 core and periphery blocks.

- (22) No fixed V_{IN}, V_{OD}, and V_{OS} specifications for Bus LVDS (BLVDS). They are dependent on the system topology.
- ⁽²³⁾ Mini-LVDS, RSDS, and Point-to-Point Differential Signaling (PPDS) standards are only supported at the output pins for Intel MAX 10 devices.
- ⁽²⁴⁾ Supported with requirement of an external level shift
- ⁽²⁵⁾ Sub-LVDS input buffer is using 2.5 V differential buffer.
- ⁽²⁶⁾ Differential output depends on the values of the external termination resistors.
- ⁽²⁷⁾ Differential output offset voltage depends on the values of the external termination resistors.

⁽²⁰⁾ Low V_{OD} setting is only supported for RSDS standard.

Core Performance Specifications

Clock Tree Specifications

Table 26. Clock Tree Specifications for Intel MAX 10 Devices

Device		Performance					
	-16	-A6, -C7	-17	-A7	-C8		
10M02	450	416	416	382	402	MHz	
10M04	450	416	416	382	402	MHz	
10M08	450	416	416	382	402	MHz	
10M16	450	416	416	382	402	MHz	
10M25	450	416	416	382	402	MHz	
10M40	450	416	416	382	402	MHz	
10M50	450	416	416	382	402	MHz	

PLL Specifications

Table 27. PLL Specifications for Intel MAX 10 Devices

 $V_{\text{CCD_PLL}}$ should always be connected to V_{CCINT} through decoupling capacitor and ferrite bead.

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{IN} ⁽²⁸⁾	Input clock frequency	_	5	—	472.5	MHz
f _{INPFD}	Phase frequency detector (PFD) input frequency	—	5	—	325	MHz
						continued

⁽²⁸⁾ This parameter is limited in the Intel Quartus Prime software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{VCO} ⁽²⁹⁾	PLL internal voltage-controlled oscillator (VCO) operating range	_	600	_	1300	MHz
f _{INDUTY}	Input clock duty cycle	-	40	-	60	%
t _{INJITTER_CCJ} (30)	Input clock cycle-to-cycle jitter	$F_{INPFD} \ge 100 \text{ MHz}$	-	-	0.15	UI
		F_{INPFD} < 100 MHz	-	-	±750	ps
f _{OUT_EXT} ⁽²⁸⁾	PLL output frequency for external clock output	-	-	-	472.5	MHz
f _{OUT}	PLL output frequency to global clock	-6 speed grade	-	-	472.5	MHz
		-7 speed grade	-	-	450	MHz
		-8 speed grade	-	-	402.5	MHz
toutduty	Duty cycle for external clock output	Duty cycle set to 50%	45	50	55	%
t _{LOCK}	Time required to lock from end of device configuration	_	_	_	1	ms
t _{DLOCK}	Time required to lock dynamically	After switchover, reconfiguring any non-post-scale counters or delays, or when areset is deasserted	_	_	1	ms
toutjitter_period_io	Regular I/O period jitter	F _{OUT} ≥ 100 MHz	-	-	650	ps
		F _{OUT} < 100 MHz	-	-	75	mUI
t _{OUTJITTER_CCJ_IO} (31)	Regular I/O cycle-to-cycle jitter	F _{OUT} ≥ 100 MHz	-	-	650	ps
		F _{OUT} < 100 MHz	-	-	75	mUI
		•				continued

⁽²⁹⁾ The VCO frequency reported by the Intel Quartus Prime software in the PLL summary section of the compilation report takes into consideration the VCO post-scale counter κ value. Therefore, if the counter κ has a value of 2, the frequency reported can be lower than the f_{VCO} specification.

⁽³⁰⁾ A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source, which is less than 200 ps.

⁽³¹⁾ Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.9999999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied.

True PPDS and Emulated PPDS_E_3R Transmitter Timing Specifications

Table 36. True PPDS and Emulated PPDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices

True PPDS transmitter is only supported at bottom I/O banks. Emulated PPDS transmitter is supported at the output pin of all I/O banks.

Symbol	Parameter	Mode	-16,	-A6, -C7,	-17		-A7		-C8			Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
f _{HSCLK}	Input clock frequency	×10	5	-	155	5	_	155	5	_	155	MHz
	performance pin)	×8	5	-	155	5	_	155	5	-	155	MHz
		×7	5	-	155	5	_	155	5	_	155	MHz
		×4	5	-	155	5	_	155	5	-	155	MHz
		×2	5	-	155	5	_	155	5	_	155	MHz
		×1	5	-	310	5	_	310	5	-	310	MHz
HSIODR	Data rate (high-speed	×10	100	-	310	100	_	310	100	-	310	Mbps
	1/O performance pin)	×8	80	-	310	80	_	310	80	_	310	Mbps
		×7	70	-	310	70	_	310	70	-	310	Mbps
		×4	40	-	310	40	_	310	40	_	310	Mbps
		×2	20	-	310	20	_	310	20	_	310	Mbps
		×1	10	-	310	10	_	310	10	-	310	Mbps
f _{HSCLK}	Input clock frequency	×10	5	-	150	5	_	150	5	_	150	MHz
	performance pin)	×8	5	-	150	5	_	150	5	_	150	MHz
		×7	5	-	150	5	_	150	5	_	150	MHz
		×4	5	-	150	5	_	150	5	_	150	MHz
		×2	5	-	150	5	_	150	5	_	150	MHz
		×1	5	-	300	5	_	300	5	_	300	MHz
HSIODR	Data rate (low-speed	×10	100	-	300	100	_	300	100	_	300	Mbps
	1/O performance pin)	×8	80	-	300	80	_	300	80	_	300	Mbps
		×7	70	-	300	70	-	300	70	_	300	Mbps
				•	•		•				con	tinued

True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications

Single Supply Devices True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications

Table 37. True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Single Supply Devices

True RSDS transmitter is only supported at bottom I/O banks. Emulated RSDS transmitter is supported at the output pin of all I/O banks.

Symbol	Parameter	Mode	-16,	-A6, -C7,	-17		-A7		-C8			Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
f _{HSCLK}	Input clock frequency	×10	5	_	50	5	_	50	5	_	50	MHz
	performance pin)	×8	5	-	50	5	-	50	5	_	50	MHz
		×7	5	_	50	5	_	50	5	_	50	MHz
		×4	5	—	50	5		50	5	-	50	MHz
		×2	5	—	50	5	-	50	5	_	50	MHz
		×1	5	—	100	5	-	100	5	_	100	MHz
HSIODR	Data rate (high-speed	×10	100	—	100	100		100	100	_	100	Mbps
	1/O performance pin)	×8	80	_	100	80	_	100	80	_	100	Mbps
		×7	70	—	100	70		100	70	-	100	Mbps
		×4	40	—	100	40	-	100	40	_	100	Mbps
		×2	20	—	100	20	-	100	20	_	100	Mbps
		×1	10	—	100	10		100	10	_	100	Mbps
f _{HSCLK}	Input clock frequency	×10	5	_	50	5	_	50	5	_	50	MHz
	performance pin)	×8	5	—	50	5	-	50	5	_	50	MHz
		×7	5	—	50	5		50	5	-	50	MHz
		×4	5	—	50	5	-	50	5	_	50	MHz
		×2	5	—	50	5		50	5		50	MHz
		×1	5	—	100	5	Ι	100	5	-	100	MHz
HSIODR	Data rate (low-speed I/O performance pin)	×10	100	_	100	100	_	100	100	_	100	Mbps
											con	tinued

Intel[®] MAX[®] 10 FPGA Device Datasheet

Symbol	Parameter	Mode	-16,	-I6, -A6, -C7, -I7			-A7			-C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
		×4	40	_	300	40	-	300	40	-	300	Mbps
		×2	20	_	300	20	-	300	20	-	300	Mbps
		×1	10	_	300	10	_	300	10	_	300	Mbps
t _{DUTY}	Duty cycle on transmitter output clock	_	45	-	55	45	-	55	45	-	55	%
TCCS ⁽⁵⁷⁾	Transmitter channel- to-channel skew	-	_	-	300	-	-	300	-	-	300	ps
t _{x Jitter} ⁽⁵⁸⁾	Output jitter (high- speed I/O performance pin)	_	_	_	425	-	_	425	-	-	425	ps
	Output jitter (low- speed I/O performance pin)	_	-	-	470	-	-	470	-	-	470	ps
t _{RISE}	Rise time	20 - 80%, C _{LOAD} = 5 pF	_	500	-	-	500	-	-	500	-	ps
t _{FALL}	Fall time	20 - 80%, C _{LOAD} = 5 pF	_	500	_	-	500	-	-	500	-	ps
t _{lock}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	-	_	_	1	_	_	1	_	_	1	ms

 $^{^{(57)}}$ TCCS specifications apply to I/O banks from the same side only.

 $^{^{(58)}}$ TX jitter is the jitter induced from core noise and I/O switching noise.

True Mini-LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications

Table 40. True Mini-LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices

True **mini-LVDS** transmitter is only supported at the bottom I/O banks. Emulated **mini-LVDS_E_3R** transmitter is supported at the output pin of all I/O banks.

Symbol	Parameter	Mode	-16,	-I6, -A6, -C7, -I7			-A7		-C8			Unit
			Min	Тур	Мах	Min	Тур	Max	Min	Тур	Max	
f _{HSCLK}	Input clock frequency	×10	5	_	155	5	_	155	5	_	155	MHz
	performance pin)	×8	5	_	155	5	_	155	5	_	155	MHz
		×7	5	_	155	5	_	155	5	_	155	MHz
		×4	5	—	155	5	—	155	5	—	155	MHz
		×2	5	—	155	5	_	155	5	_	155	MHz
		×1	5	—	310	5	—	310	5	—	310	MHz
HSIODR	Data rate (high-speed	×10	100	-	310	100	_	310	100	_	310	Mbps
	1/O performance pin)	×8	80	—	310	80	—	310	80	—	310	Mbps
		×7	70	_	310	70	_	310	70	_	310	Mbps
		×4	40	_	310	40	_	310	40	_	310	Mbps
		×2	20	_	310	20	_	310	20	_	310	Mbps
		×1	10	_	310	10	_	310	10	_	310	Mbps
f _{HSCLK}	Input clock frequency	×10	5	—	150	5	_	150	5	_	150	MHz
	performance pin)	×8	5	_	150	5	_	150	5	_	150	MHz
		×7	5	_	150	5	_	150	5	_	150	MHz
		×4	5	—	150	5	—	150	5	_	150	MHz
		×2	5	—	150	5	_	150	5	_	150	MHz
		×1	5	—	300	5	—	300	5	—	300	MHz
HSIODR	Data rate (low-speed	×10	100	—	300	100	—	300	100	—	300	Mbps
		×8	80	_	300	80	_	300	80	_	300	Mbps
											con	tinued

Intel[®] MAX[®] 10 FPGA Device Datasheet

M10-DATASHEET | 2018.06.29

Symbol	Parameter	Mode	-I6, -A6,	-C7, -I7	-/	47	-0	8	Unit
			Min	Мах	Min	Max	Min	Max	
		×2	5	360	5	320	5	320	MHz
		×1	5	360	5	320	5	320	MHz
HSIODR	Data rate (high-speed I/O	×10	100	700	100	640	100	640	Mbps
	performance pin)	×8	80	720	80	640	80	640	Mbps
		×7	70	700	70	640	70	640	Mbps
		×4	40	720	40	640	40	640	Mbps
		×2	20	720	20	640	20	640	Mbps
		×1	10	360	10	320	10	320	Mbps
f _{HSCLK}	Input clock frequency (low-	×10	5	150	5	150	5	150	MHz
	speed I/O performance pin)	×8	5	150	5	150	5	150	MHz
		×7	5	150	5	150	5	150	MHz
		×4	5	150	5	150	5	150	MHz
		×2	5	150	5	150	5	150	MHz
		×1	5	300	5	300	5	300	MHz
HSIODR	Data rate (low-speed I/O	×10	100	300	100	300	100	300	Mbps
	performance pin)	×8	80	300	80	300	80	300	Mbps
		×7	70	300	70	300	70	300	Mbps
		×4	40	300	40	300	40	300	Mbps
		×2	20	300	20	300	20	300	Mbps
		×1	10	300	10	300	10	300	Mbps
SW	Sampling window (high- speed I/O performance pin)	_	_	510	-	510	_	510	ps
									continued

Table 54. Internal Configuration Time for Intel MAX 10 Devices (Compressed .rbf)

Compression ratio depends on design complexity. The minimum value is based on the best case (25% of original .rbf sizes) and the maximum value is based on the typical case (70% of original .rbf sizes).

Device		Internal Configuration Time (ms)						
		Unencrypted	ited/Encrypted					
	Without Memor	ry Initialization	With Memory Initialization					
	Min	Мах	Min	Мах				
10M02	0.3	5.2	_	-				
10M04	0.6	10.7	1.0	13.9				
10M08	0.6	10.7	1.0	13.9				
10M16	1.1	17.9	1.4	22.3				
10M25	1.1	26.9	1.4	32.2				
10M40	2.6	66.1	3.2	82.2				
10M50	2.6	66.1	3.2	82.2				

Internal Configuration Timing Parameter

Table 55. Internal Configuration Timing Parameter for Intel MAX 10 Devices

Symbol	Parameter	Device	Minimum	Maximum	Unit
t _{CD2UM}	CONF_DONE high to	10M02, 10M04, 10M08, 10M16, 10M25	182.8	385.5	μs
	user mode	10M40, 10M50	275.3	605.7	μs

I/O Timing

The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis.

The Intel Quartus Prime Timing Analyzer provides a more accurate and precise I/O timing data based on the specific device and design after you complete place-and-route.

Glossary

Table 59.Glossary

Term	Definition
JTAG Timing Specifications	TMS TDI $t_{JCP} \rightarrow t_{JCL} \rightarrow t_{JPSU} \rightarrow t_{JPH}$ TCK $t_{JPZX} \rightarrow t_{JPCO} \rightarrow t_{JPXZ}$
RL	Receiver differential input discrete resistor (external to Intel MAX 10 devices).
RSKM (Receiver input skew margin)	HIGH-SPEED I/O block: The total margin left after accounting for the sampling window and TCCS. RSKM = (TUI – SW – TCCS) / 2.
Sampling window (SW)	HIGH-SPEED I/O Block: The period of time during which the data must be valid to capture it correctly. The setup and hold times determine the ideal strobe position in the sampling window.
Single-ended voltage referenced I/O standard	The AC input signal values indicate the voltage levels at which the receiver must meet its timing specifications. The DC input signal values indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. After the receiver input crosses the AC value, the receiver changes to the new logic state. The new logic state is then maintained as long as the input stays beyond the DC threshold. This approach is intended to provide predictable receiver timing in the presence of input waveform ringing.
t _C	High-speed receiver/transmitter input and output clock period.
TCCS (Channel-to- channel-skew)	HIGH-SPEED I/O block: The timing difference between the fastest and slowest output edges, including t_{CO} variation and clock skew. The clock is included in the TCCS measurement.
t _{cin}	Delay from clock pad to I/O input register.
t _{co}	Delay from clock pad to I/O output.
t _{cout}	Delay from clock pad to I/O output register.
	continued

Date	Version	Changes
		 Added -A6 speed grade in the following tables: Intel MAX 10 Device Grades and Speed Grades Supported Series OCT without Calibration Specifications for Intel MAX 10 Devices Clock Tree Specifications for Intel MAX 10 Devices Embedded Multiplier Specifications for Intel MAX 10 Devices Memory Block Performance Specifications for Intel MAX 10 Devices True PPDS and Emulated PPDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True Mini-LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices LVDS, TMDS, HiSpi, SLVS, and Sub-LVDS Receiver Timing Specifications for Intel MAX 10 Dual Supply Devices LVDS, TMDS, HiSpi, SLVS, and Sub-LVDS Receiver Timing Specifications for Intel MAX 10 Dual Supply Devices LOE Programmable Delay on Row Pins for Intel MAX 10 Devices Updated the maximum value for input clock cycle-to-cycle jitter (t_{INITTER_CCJ}) with F_{INPFD} < 100 MHz condition from 750 ps to ±750 ps in PLL Specifications for Intel MAX 10 Devices table. Updated the dual supply mode performance in Embedded Multiplier Specifications for Intel MAX 10 Devices table. Updated the dual supply mode performance in Embedded Multiplier Specifications for Intel MAX 10 Devices table. Up
June 2015	2015.06.12	 Updated the maximum values in Internal Weak Pull-Up Resistor for Intel MAX 10 Devices table. Removed Internal Weak Pull-Up Resistor equation. Updated the note for input resistance and input capacitance parameters in the ADC Performance Specifications table for both single supply and dual supply devices. Note: Download the SPICE models for simulation. Added a note to AC Accuracy - THD, SNR, and SINAD parameters in the ADC Performance Specifications for Intel MAX 10 Dual Supply Devices table. Note: When using internal V_{REF}, THD = 66 dB, SNR = 58 dB and SINAD = 57.5 dB for dedicated ADC input channels. Updated clock period jitter and cycle-to-cycle period jitter parameters in the Memory Output Clock Jitter Specifications for Intel MAX 10 Devices table.
		continued

Date	Version	Changes
		 Updated TCCS specifications in the following tables: True PPDS and Emulated PPDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True Mini-LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True LVDS Transmitter Timing Specifications for Intel MAX 10 Single Supply Devices Emulated LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Single Supply Devices Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True PDDS and Emulated PDDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True PDDS and Emulated RSDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True RNI-LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True LVDS Transmitter Timi
January 2015	2015.01.23	 Removed a note to V_{CCA} in Power Supplies Recommended Operating Conditions for Intel MAX 10 Dual Supply Devices table. This note is not valid: All V_{CCA} pins must be connected together for EQFP package. Corrected the maximum value for t_{OUTJITTER_CCJ_IO} (F_{OUT} ≥ 100 MHz) from 60 ps to 650 ps in PLL Specifications for Intel MAX 10 Devices table.
December 2014	2014.12.15	 Restructured Programming/Erasure Specifications for Intel MAX 10 Devices table to add temperature specifications that affect the data retention duration. Added statements in the I/O Pin Leakage Current section: Input channel leakage of ADC I/O pins due to hot socket is up to maximum of 1.8 mA. The input channel leakage occurs when the ADC IP core is enabled or disabled. This is applicable to all Intel MAX 10 devices with ADC IP core, which are 10M04, 10M08, 10M16, 10M25, 10M40, and 10M50 devices. The ADC I/O pins are in Bank 1A. Added a statement in the I/O Standards Specifications section: You must perform timing closure analysis to determine the maximum achievable frequency for general purpose I/O standards.
		continued

Date	Version	Changes
		Updated SSTL-2 Class I and II I/O standard specifications for JEDEC compliance as follows:
		- VIL(AC) Max: Updated from V _{REF} - 0.35 to V _{REF} - 0.31
		$-$ VIH(AC) Min: Opdated from $v_{REF} + 0.31$
		 Added a note to BLVDS in Differential I/O Standards Specifications for Intel MAX 10 Devices table: BLVDS IX is not supported in single supply devices.
		 Added a link to MAX 10 High-Speed LVDS I/O User Guide for the list of I/O standards supported in single supply and dual supply devices.
		 Added a statement in PLL Specifications for Intel MAX 10 Single Supply Device table: For V36 package, the PLL specification is based on single supply devices.
		Added Internal Oscillator Specifications from Intel MAX 10 Clocking and PLL User Guide.
		Added UFM specifications for serial interface.
		Updated total harmonic distortion (THD) specifications as follows:
		 — Single supply devices: Updated from 65 dB to -65 dB
		- Dual supply devices: Updated from 70 dB to -70 dB (updated from 65 dB to -65 dB for dual function pin)
		• Added condition for On-Chip Temperature Sensor—Absolute accuracy parameter in ADC Performance Specifications for Intel MAX 10 Dual Supply Devices table. The condition is: with 64 samples averaging.
		Updated the description in Periphery Performance Specifications to mention that proper timing closure is required in design.
		 Updated HSIODR and f_{HSCLK} specifications for x10 and x7 modes in True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices.
		 Added specifications for low-speed I/O performance pin sampling window in LVDS Receiver Timing Specifications for Intel MAX 10 Single Supply Devices table: Max = 900 ps for -C7, -I7, -A7, and -C8 speed grades.
		 Added t_{RU_nCONFIG} and t_{RU_nRSTIMER} specifications for different devices in Remote System Upgrade Circuitry Timing Specifications for Intel MAX 10 Devices table.
		Removed the word "internal oscillator" in User Watchdog Timer Specifications for Intel MAX 10 Devices table to avoid confusion.
		Added IOE programmable delay specifications.
September 2014	2014.09.22	Initial release.