Intel - 10M02DCU324I7G Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	125
Number of Logic Elements/Cells	2000
Total RAM Bits	110592
Number of I/O	160
Number of Gates	-
Voltage - Supply	1.15V ~ 1.25V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	324-LFBGA
Supplier Device Package	324-UBGA (15x15)
Purchase URL	https://www.e-xfl.com/product-detail/intel/10m02dcu324i7g

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Symbol	Parameter	Condition	Min	Тур	Max	Unit
			1.35 V	1.2825	1.35	1.4175	V
			1.2 V	1.14	1.2	1.26	V
V _{CCA} ⁽¹⁾		Supply voltage for PLL regulator and ADC block (analog)	_	2.85/3.135	3.0/3.3	3.15/3.465	V

Dual Supply Devices Power Supplies Recommended Operating Conditions

Table 7. Power Supplies Recommended Operating Conditions for Intel MAX 10 Dual Supply Devices

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{CC}	Supply voltage for core and periphery	_	1.15	1.2	1.25	V
V _{CCIO} ⁽³⁾	Supply voltage for input and output buffers	3.3 V	3.135	3.3	3.465	V
		3.0 V	2.85	3	3.15	V
		2.5 V	2.375	2.5	2.625	V
		1.8 V	1.71	1.8	1.89	V
		1.5 V	1.425	1.5	1.575	V
		1.35 V	1.2825	1.35	1.4175	V
		1.2 V	1.14	1.2	1.26	V
V _{CCA} ⁽⁴⁾	Supply voltage for PLL regulator (analog)	_	2.375	2.5	2.625	V
V _{CCD_PLL} ⁽⁵⁾	Supply voltage for PLL regulator (digital)	-	1.15	1.2	1.25	V
V _{CCA_ADC}	Supply voltage for ADC analog block	—	2.375	2.5	2.625	V
V _{CCINT}	Supply voltage for ADC digital block	_	1.15	1.2	1.25	V

⁽³⁾ V_{CCIO} for all I/O banks must be powered up during user mode because V_{CCIO} I/O banks are used for the ADC and I/O functionalities.

 $^{^{(4)}}$ All V_{CCA} pins must be powered to 2.5 V (even when PLLs are not used), and must be powered up and powered down at the same time.

⁽⁵⁾ $V_{CCD PLL}$ must always be connected to V_{CC} through a decoupling capacitor and ferrite bead.

Recommended Operating Conditions

Table 8. Recommended Operating Conditions for Intel MAX 10 Devices

Symbol	Parameter	Condition	Min	Max	Unit
VI	DC input voltage	-	-0.5	3.6	V
Vo	Output voltage for I/O pins	_	0	V _{CCIO}	V
Тյ	Operating junction temperature	Commercial	0	85	°C
		Industrial	-40 ⁽⁶⁾	100	°C
		Automotive	-40 ⁽⁶⁾	125	°C
t _{RAMP}	Power supply ramp time	-	(7)	10	ms
I _{Diode}	Magnitude of DC current across PCI* clamp diode when enabled	_	_	10	mA

Programming/Erasure Specifications

Table 9. Programming/Erasure Specifications for Intel MAX 10 Devices

This table shows the programming cycles and data retention duration of the user flash memory (UFM) and configuration flash memory (CFM) blocks.

For more information about data retention duration with 10,000 programming cycles for automotive temperature devices, contact your Intel quality representative.

Erase and reprogram cycles (E/P) ⁽⁸⁾ (Cycles/ page)	Temperature (°C)	Data retention duration (Years)
10,000	85	20
10,000	100	10

⁽⁶⁾ -40°C is only applicable to Start of Test, when the device is powered-on. The device does not stay at the minimum junction temperature for a long time.

⁽⁷⁾ There is no absolute minimum value for the ramp time requirement. Intel characterized the minimum ramp time at 200 μ s.

⁽⁸⁾ The number of E/P cycles applies to the smallest possible flash block that can be erased or programmed in each Intel MAX 10 device. Each Intel MAX 10 device has multiple flash pages per device.

Series OCT without Calibration Specifications

Table 13. Series OCT without Calibration Specifications for Intel MAX 10 Devices

This table shows the variation of on-chip termination (OCT) without calibration across process, voltage, and temperature (PVT).

Description	V _{CCIO} (V)	Resistance Tolerance		Unit
		-C7, -I6, -I7, -A6, -A7	-C8	
Series OCT without calibration	3.00	±35	±30	%
	2.50	±35	±30	%
	1.80	±40	±35	%
	1.50	±40	±40	%
	1.35	±40	±50	%
	1.20	±45	±60	%

Series OCT with Calibration at Device Power-Up Specifications

Table 14. Series OCT with Calibration at Device Power-Up Specifications for Intel MAX 10 Devices

OCT calibration is automatically performed at device power-up for OCT enabled I/Os.

Description	V _{CCIO} (V)	Calibration Accuracy	Unit
Series OCT with calibration at device power-up	3.00	±12	%
	2.50	±12	%
	1.80	±12	%
	1.50	±12	%
	1.35	±12	%
	1.20	±12	%

OCT Variation after Calibration at Device Power-Up

The OCT resistance may vary with the variation of temperature and voltage after calibration at device power-up.

Use the following table and equation to determine the final OCT resistance considering the variations after calibration at device power-up.

- Subscript x refers to both V and T.
- ΔR_V is variation of resistance with voltage.
- ΔR_T is variation of resistance with temperature.
- dR/dT is the change percentage of resistance with temperature after calibration at device power-up.
- dR/dV is the change percentage of resistance with voltage after calibration at device power-up.
- V₁ is the initial voltage.
- V₂ is final voltage.

The following figure shows the example to calculate the change of 50 Ω I/O impedance from 25°C at 3.0 V to 85°C at 3.15 V.

Figure 2. Example for OCT Resistance Calculation after Calibration at Device Power-Up

 $\Delta R_V = (3.15 - 3) \times 1000 \times -0.027 = -4.05$ $\Delta R_T = (85 - 25) \times 0.25 = 15$

Because ΔR_V is negative,

 $MF_V = 1/(4.05/100 + 1) = 0.961$

Because ΔR_T is positive,

 $MF_T = 15/100 + 1 = 1.15$ $MF = 0.961 \times 1.15 = 1.105$

 $R_{final} = 50 \times 1.105 = 55.25\Omega$

Pin Capacitance

Table 16. Pin Capacitance for Intel MAX 10 Devices

Symbol	Parameter	Maximum	Unit
C _{IOB}	Input capacitance on bottom I/O pins	8	pF
C _{IOLRT}	Input capacitance on left/right/top I/O pins	7	pF
C _{LVDSB}	Input capacitance on bottom I/O pins with dedicated LVDS output $^{(9)}$	8	pF
C _{ADCL}	Input capacitance on left I/O pins with ADC input $^{(10)}$	9	pF
C _{VREFLRT}	Input capacitance on left/right/top dual purpose V_{REF} pin when used as V_{REF} or user I/O pin $^{(11)}$	48	pF
C _{VREFB}	Input capacitance on bottom dual purpose V_{REF} pin when used as V_{REF} or user I/O pin	50	pF
C _{CLKB}	Input capacitance on bottom dual purpose clock input pins (12)	7	pF
C _{CLKLRT}	Input capacitance on left/right/top dual purpose clock input pins (12)	6	pF

Internal Weak Pull-Up Resistor

All I/O pins, except configuration, test, and JTAG pins, have an option to enable weak pull-up.

- ⁽¹¹⁾ When V_{REF} pin is used as regular input or output, F_{max} performance is reduced due to higher pin capacitance. Using the V_{REF} pin capacitance specification from device datasheet, perform SI analysis on your board setup to determine the F_{max} of your system.
- ⁽¹²⁾ 10M40 and 10M50 devices have dual purpose clock input pins at top/bottom I/O banks.

⁽⁹⁾ Dedicated LVDS output buffer is only available at bottom I/O banks.

⁽¹⁰⁾ ADC pins are only available at left I/O banks.

Single-Ended I/O Standards Specifications

Table 20. Single-Ended I/O Standards Specifications for Intel MAX 10 Devices

To meet the I_{OL} and I_{OH} specifications, you must set the current strength settings accordingly. For example, to meet the 3.3-V LVTTL specification (4 mA), you should set the current strength settings to 4 mA. Setting at lower current strength may not meet the I_{OL} and I_{OH} specifications in the datasheet.

I/O Standard		V _{CCIO} (V)		VIL	(V)	VIH	(V)	V _{OL} (V)	V _{OH} (V)	I _{OL} (mA)	I _{OH} (mA)
	Min	Тур	Max	Min	Max	Min	Max	Max	Min		
3.3 V LVTTL	3.135	3.3	3.465	-0.3	0.8	1.7	3.6	0.45	2.4	4	-4
3.3 V LVCMOS	3.135	3.3	3.465	-0.3	0.8	1.7	3.6	0.2	V _{CCIO} - 0.2	2	-2
3.0 V LVTTL	2.85	3	3.15	-0.3	0.8	1.7	V _{CCIO} + 0.3	0.45	2.4	4	-4
3.0 V LVCMOS	2.85	3	3.15	-0.3	0.8	1.7	V _{CCIO} + 0.3	0.2	V _{CCIO} - 0.2	0.1	-0.1
2.5 V LVTTL and LVCMOS	2.375	2.5	2.625	-0.3	0.7	1.7	V _{CCIO} + 0.3	0.4	2	1	-1
1.8 V LVTTL and LVCMOS	1.71	1.8	1.89	-0.3	0.35 × V _{CCIO}	0.65 × V _{CCIO}	2.25	0.45	V _{CCIO} - 0.45	2	-2
1.5 V LVCMOS	1.425	1.5	1.575	-0.3	0.35 × V _{CCIO}	0.65 × V _{CCIO}	V _{CCIO} + 0.3	0.25 × V _{CCIO}	0.75 × V _{CCIO}	2	-2
1.2 V LVCMOS	1.14	1.2	1.26	-0.3	0.35 × V _{CCIO}	0.65 × V _{CCIO}	V _{CCI0} + 0.3	0.25 × V _{CCIO}	0.75 × V _{CCIO}	2	-2
3.3 V Schmitt Trigger	3.135	3.3	3.465	-0.3	0.8	1.7	V _{CCIO} + 0.3	-	-	-	-
2.5 V Schmitt Trigger	2.375	2.5	2.625	-0.3	0.7	1.7	V _{CCIO} + 0.3	-	-	-	-
1.8 V Schmitt Trigger	1.71	1.8	1.89	-0.3	0.35 × V _{CCIO}	0.65 × V _{CCIO}	V _{CCI0} + 0.3	-	-	—	_
1.5 V Schmitt Trigger	1.425	1.5	1.575	-0.3	0.35 × V _{CCIO}	0.65 × V _{CCIO}	V _{CCI0} + 0.3	-	-	—	-
3.0 V PCI	2.85	3	3.15	_	0.3 × V _{CCIO}	$0.5 \times V_{CCIO}$	V _{CCI0} + 0.3	0.1 × V _{CCIO}	0.9 × V _{CCIO}	1.5	-0.5

Single-Ended SSTL, HSTL, and HSUL I/O Reference Voltage Specifications

I/O Standard	V _{CCIO} (V)				V _{REF} (V)		V _{TT} (V) ⁽¹⁴⁾		
	Min	Тур	Max	Min	Тур	Max	Min	Тур	Мах
SSTL-2 Class I, II	2.375	2.5	2.625	1.19	1.25	1.31	V _{REF} - 0.04	V _{REF}	V _{REF} + 0.04
SSTL-18 Class I, II	1.7	1.8	1.9	0.833	0.9	0.969	V _{REF} - 0.04	V _{REF}	V _{REF} + 0.04
SSTL-15 Class I, II	1.425	1.5	1.575	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$
SSTL-135 Class I, II	1.283	1.35	1.45	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$
HSTL-18 Class I, II	1.71	1.8	1.89	0.85	0.9	0.95	0.85	0.9	0.95
HSTL-15 Class I, II	1.425	1.5	1.575	0.71	0.75	0.79	0.71	0.75	0.79
HSTL-12 Class I, II	1.14	1.2	1.26	$0.48 \times V_{\text{CCIO}}$ (15)	$0.5 \times V_{CCIO}$ (15)	$0.52 \times V_{CCIO}$ (15)	_	$0.5 \times V_{CCIO}$	_
				$0.47 \times V_{CCIO}$	$0.5 \times V_{CCIO}$ ⁽¹⁶⁾	$0.53 \times V_{CCIO}$			
HSUL-12	1.14	1.2	1.3	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	—	_	-

Table 21. Single-Ended SSTL, HSTL, and HSUL I/O Reference Voltage Specifications for Intel MAX 10 Devices

 $^{(14)}$ V_{TT} of transmitting device must track V_{REF} of the receiving device.

- ⁽¹⁵⁾ Value shown refers to DC input reference voltage, $V_{REF(DC)}$.
- ⁽¹⁶⁾ Value shown refers to AC input reference voltage, $V_{REF(AC)}$.

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{VCO} ⁽²⁹⁾	PLL internal voltage-controlled oscillator (VCO) operating range	_	600	_	1300	MHz
f _{INDUTY}	Input clock duty cycle	-	40	-	60	%
t _{INJITTER_CCJ} (30)	Input clock cycle-to-cycle jitter	$F_{INPFD} \ge 100 \text{ MHz}$	-	-	0.15	UI
		F_{INPFD} < 100 MHz	-	-	±750	ps
f _{OUT_EXT} ⁽²⁸⁾	PLL output frequency for external clock output	-	-	-	472.5	MHz
f _{OUT}	PLL output frequency to global clock	-6 speed grade	-	-	472.5	MHz
		-7 speed grade	-	-	450	MHz
		-8 speed grade	-	-	402.5	MHz
toutduty	Duty cycle for external clock output	Duty cycle set to 50%	45	50	55	%
t _{LOCK}	Time required to lock from end of device configuration	_	_	_	1	ms
t _{DLOCK}	Time required to lock dynamically	After switchover, reconfiguring any non-post-scale counters or delays, or when areset is deasserted	_	_	1	ms
toutjitter_period_io	Regular I/O period jitter	F _{OUT} ≥ 100 MHz	-	-	650	ps
		F _{OUT} < 100 MHz	-	-	75	mUI
t _{OUTJITTER_CCJ_IO} (31)	Regular I/O cycle-to-cycle jitter	F _{OUT} ≥ 100 MHz	-	-	650	ps
		F _{OUT} < 100 MHz	-	-	75	mUI
		•				continued

⁽²⁹⁾ The VCO frequency reported by the Intel Quartus Prime software in the PLL summary section of the compilation report takes into consideration the VCO post-scale counter κ value. Therefore, if the counter κ has a value of 2, the frequency reported can be lower than the f_{VCO} specification.

⁽³⁰⁾ A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source, which is less than 200 ps.

⁽³¹⁾ Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.9999999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied.

Symbol	Parameter	Condition	Min	Тур	Max	Unit
t _{PLL_PSERR}	Accuracy of PLL phase shift	—	—	—	±50	ps
t _{ARESET}	Minimum pulse width on areset signal.	_	10	—	—	ns
t _{CONFIGPLL}	Time required to reconfigure scan chains for PLLs	_	—	3.5 ⁽³²⁾	—	SCANCLK cycles
f _{SCANCLK}	scanclk frequency	_	_	_	100	MHz

Table 28. PLL Specifications for Intel MAX 10 Single Supply Devices

For V36 package, the PLL specification is based on single supply devices.

Symbol	Parameter	Condition	Мах	Unit
t _{OUTJITTER_PERIOD_DEDCLK} (31)	Dedicated clock output period jitter	$F_{OUT} \ge 100 \text{ MHz}$	660	ps
		F _{OUT} < 100 MHz	66	mUI
t _{OUTJITTER_CCJ_DEDCLK} (31)	Dedicated clock output cycle-to-cycle jitter	$F_{OUT} \ge 100 \text{ MHz}$	660	ps
		F _{OUT} < 100 MHz	66	mUI

Table 29. PLL Specifications for Intel MAX 10 Dual Supply Devices

Symbol	Parameter	Condition	Мах	Unit
t _{OUTJITTER_PERIOD_DEDCLK} (31)	Dedicated clock output period jitter	$F_{OUT} \ge 100 \text{ MHz}$	300	ps
		F _{OUT} < 100 MHz	30	mUI
toutjitter_CCJ_DEDCLK (31)	Dedicated clock output cycle-to-cycle jitter	$F_{OUT} \ge 100 \text{ MHz}$	300	ps
		F _{OUT} < 100 MHz	30	mUI

⁽³²⁾ With 100 MHz scanclk frequency.

Embedded Multiplier Specifications

Table 30. Embedded Multiplier Specifications for Intel MAX 10 Devices

Mode	Number of Multipliers	Power Supply Mode		Performance		Unit
			-16	-A6, -C7, -I7, -A7	-C8	
9 × 9-bit multiplier	1	Single supply mode	198	183	160	MHz
		Dual supply mode	310	260	210	MHz
18 × 18-bit multiplier	1	Single supply mode	198	183	160	MHz
		Dual supply mode	265	240	190	MHz

Memory Block Performance Specifications

Table 31. Memory Block Performance Specifications for Intel MAX 10 Devices

Memory	Mode	Resources Used		Power Supply Mode		Performance				
		LEs	M9K Memory	-	-16	-A6, -C7, -I7, -A7	-C8			
M9K Block	FIFO 256 × 36	47	1	Single supply mode	232	219	204	MHz		
				Dual supply mode	330	300	250	MHz		
	Single-port 256 × 36	0	1	Single supply mode	232	219	204	MHz		
				Dual supply mode	330	300	250	MHz		
	Simple dual-port 256 × 36	0	1	Single supply mode	232	219	204	MHz		
	CLK			Dual supply mode	330	300	250	MHz		
	True dual port 512 × 18	0	1	Single supply mode	232	219	204	MHz		
	Single CLK			Dual supply mode	330	300	250	MHz		

Internal Oscillator Specifications

Table 32. Internal Oscillator Frequencies for Intel MAX 10 Devices

You can access to the internal oscillator frequencies in this table. The duty cycle of internal oscillator is approximately 45%–55%.

Device		Unit		
	Minimum	Typical	Maximum	
10M02	55	82	116	MHz
10M04				
10M08				
10M16				
10M25				
10M40	35	52	77	MHz
10M50				

UFM Performance Specifications

Table 33. UFM Performance Specifications for Intel MAX 10 Devices

Block	Mode	Interface	Device	Frequ	iency	Unit
				Minimum	Maximum	
UFM	Avalon [®] -MM slave	Parallel (33)	10M02 ⁽³⁴⁾	3.43	7.25	MHz
			10M04, 10M08, 10M16, 10M25, 10M40, 10M50	5	116	MHz
		Serial ⁽³⁴⁾	10M02, 10M04, 10M08, 10M16, 10M25	3.43	7.25	MHz
			10M40, 10M50	2.18	4.81	MHz

⁽³³⁾ Clock source is derived from user, except for 10M02 device.

 $^{^{(34)}}$ Clock source is derived from 1/16 of the frequency of the internal oscillator.

Intel[®] MAX[®] 10 FPGA Device Datasheet

M10-DATASHEET | 2018.06.29

Symbol	Parameter	Mode	-16,	-A6, -C7,	-17		-A7			-C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	-
		×8	80	-	100	80	-	100	80	-	100	Mbps
		×7	70	-	100	70	-	100	70	-	100	Mbps
		×4	40	-	100	40	-	100	40	-	100	Mbps
		×2	20	-	100	20	-	100	20	-	100	Mbps
		×1	10	-	100	10	-	100	10	-	100	Mbps
t _{duty}	Duty cycle on transmitter output clock	_	45	-	55	45	-	55	45	-	55	%
TCCS ⁽⁵⁵⁾	Transmitter channel- to-channel skew	-	-	-	300	-	-	300	_	-	300	ps
t _{x Jitter} (56)	Output jitter (high- speed I/O performance pin)	-	_	_	425	-	-	425	_	_	425	ps
	Output jitter (low- speed I/O performance pin)	-	-	-	470	-	-	470	-	-	470	ps
t _{RISE}	Rise time	20 - 80%, C _{LOAD} = 5 pF	-	500	_	-	500	-	-	500	-	ps
t _{FALL}	Fall time	20 - 80%, C _{LOAD} = 5 pF	_	500	-	-	500	-	_	500	-	ps
t _{LOCK}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	_	_	_	1	_	_	1	_	_	1	ms

 $^{^{\}rm (55)}$ TCCS specifications apply to I/O banks from the same side only.

 $^{^{(56)}}$ TX jitter is the jitter induced from core noise and I/O switching noise.

Emulated RSDS_E_1R Transmitter Timing Specifications

Table 39. Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices

Emulated **RSDS_E_1R** transmitter is supported at the output pin of all I/O banks.

Symbol	Parameter	Mode	-16,	-A6, -C7,	-17		-A7			- C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
f _{HSCLK} Input clock frequency (high-speed I/O performance pin)	Input clock frequency	×10	5	—	85	5	—	85	5	-	85	MHz
	×8	5	—	85	5	_	85	5	-	85	MHz	
	×7	5	—	85	5	—	85	5	-	85	MHz	
	×4	5	_	85	5	_	85	5		85	MHz	
		×2	5	—	85	5	_	85	5		85	MHz
		×1	5	_	170	5	_	170	5		170	MHz
HSIODR	Data rate (high-speed	×10	100	—	170	100	_	170	100	_	170	Mbps
	1/O performance pin)	×8	80	—	170	80	_	170	80		170	Mbps
		×7	70	_	170	70	_	170	70		170	Mbps
		×4	40	—	170	40	_	170	40		170	Mbps
		×2	20	—	170	20	—	170	20		170	Mbps
		×1	10	—	170	10	_	170	10	_	170	Mbps
f _{HSCLK}	Input clock frequency	×10	5	—	85	5	_	85	5		85	MHz
	performance pin)	×8	5	_	85	5	_	85	5	-	85	MHz
		×7	5	—	85	5	—	85	5	-	85	MHz
		×4	5	—	85	5	—	85	5		85	MHz
		×2	5	—	85	5	_	85	5	-	85	MHz
		×1	5	—	170	5	—	170	5	-	170	MHz
HSIODR	Data rate (low-speed	×10	100	-	170	100	_	170	100	—	170	Mbps
I/O performance pin)	×8	80	—	170	80	_	170	80	—	170	Mbps	
		×7	70	—	170	70	_	170	70	—	170	Mbps
											con	tinued

Symbol	Parameter	Mode		-16		-A	6, -C7, -	·17		-A7			-C8		Unit
			Min	Тур	Мах	Min	Тур	Мах	Min	Тур	Max	Min	Тур	Мах	
		×1	10	-	360	10	-	350	10	-	320	10	_	320	Mbps
t _{DUTY}	Duty cycle on transmitter output clock	_	45	_	55	45	_	55	45	_	55	45	_	55	%
TCCS ⁽⁶⁵⁾	Transmitter channel-to- channel skew	-	_	_	300	_	_	300	_	_	300	_	_	300	ps
t _x _{Jitter} (66)	Output jitter	_	—	_	380	_	_	380	_	_	380	_	_	380	ps
t _{RISE}	Rise time	20 – 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	-	500	_	ps
t _{FALL}	Fall time	20 - 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	-	500	_	ps
t _{LOCK}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	_	_	_	1	_	_	1	_	_	1	_	_	1	ms

⁽⁶⁵⁾ TCCS specifications apply to I/O banks from the same side only.

⁽⁶⁶⁾ TX jitter is the jitter induced from core noise and I/O switching noise.

Device	CFM Data Size (bits)					
	Without Memory Initialization	With Memory Initialization				
10M25	4,140,000	4,780,000				
10M40	7,840,000	9,670,000				
10M50	7,840,000	9,670,000				

Internal Configuration Time

The internal configuration time measurement is from the rising edge of nSTATUS signal to the rising edge of $CONF_DONE$ signal.

Table 53. Internal Configuration Time for Intel MAX 10 Devices (Uncompressed .rbf)

Device	Internal Configuration Time (ms)										
		Unenci	rypted		Encrypted						
	Without Memor	y Initialization	With Memory	Initialization	Without Memor	y Initialization	With Memory	Initialization			
	Min	Max	Min	Мах	Min	Max	Min	Мах			
10M02	0.3	1.7	_	-	1.7	5.4	_	—			
10M04	0.6	2.7	1.0	3.4	5.0	15.0	6.8	19.6			
10M08	0.6	2.7	1.0	3.4	5.0	15.0	6.8	19.6			
10M16	1.1	3.7	1.4	4.5	9.3	25.3	11.7	31.5			
10M25	1.0	3.7	1.3	4.4	14.0	38.1	16.9	45.7			
10M40	2.6	6.9	3.2	9.8	41.5	112.1	51.7	139.6			
10M50	2.6	6.9	3.2	9.8	41.5	112.1	51.7	139.6			

Table 54. Internal Configuration Time for Intel MAX 10 Devices (Compressed .rbf)

Compression ratio depends on design complexity. The minimum value is based on the best case (25% of original .rbf sizes) and the maximum value is based on the typical case (70% of original .rbf sizes).

Device	Internal Configuration Time (ms)								
		Unencrypted	d/Encrypted						
	Without Memor	Without Memory Initialization With Memory In							
	Min	Мах	Min	Мах					
10M02	0.3	5.2	_	-					
10M04	0.6	10.7	1.0	13.9					
10M08	0.6	10.7	1.0	13.9					
10M16	1.1	17.9	1.4	22.3					
10M25	1.1	26.9	1.4	32.2					
10M40	2.6	66.1	3.2	82.2					
10M50	2.6	66.1	3.2	82.2					

Internal Configuration Timing Parameter

Table 55. Internal Configuration Timing Parameter for Intel MAX 10 Devices

Symbol	Parameter	Device	Minimum	Maximum	Unit
t _{CD2UM}	D2UM CONF_DONE high to user mode	10M02, 10M04, 10M08, 10M16, 10M25	182.8	385.5	μs
		10M40, 10M50	275.3	605.7	μs

I/O Timing

The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis.

The Intel Quartus Prime Timing Analyzer provides a more accurate and precise I/O timing data based on the specific device and design after you complete place-and-route.

Term	Definition
t _{duty}	HIGH-SPEED I/O Block: Duty cycle on high-speed transmitter output clock.
t _{FALL}	Signal high-to-low transition time (80–20%).
t _H	Input register hold time.
Timing Unit Interval (TUI)	HIGH-SPEED I/O block: The timing budget allowed for skew, propagation delays, and data sampling window. (TUI = 1/(Receiver Input Clock Frequency Multiplication Factor) = t_C/w).
t _{INJITTER}	Period jitter on PLL clock input.
toutjitter_dedclk	Period jitter on dedicated clock output driven by a PLL.
t _{outjitter_io}	Period jitter on general purpose I/O driven by a PLL.
t _{pllcin}	Delay from PLL inclk pad to I/O input register.
t _{pllcout}	Delay from PLL inclk pad to I/O output register.
t _{RISE}	Signal low-to-high transition time (20–80%).
t _{su}	Input register setup time.
V _{CM(DC)}	DC common mode input voltage.
V _{DIF(AC)}	AC differential input voltage: The minimum AC input differential voltage required for switching.
V _{DIF(DC)}	DC differential input voltage: The minimum DC input differential voltage required for switching.
V _{HYS}	Hysteresis for Schmitt trigger input.
V _{ICM}	Input common mode voltage: The common mode of the differential signal at the receiver.
V _{ID}	Input differential Voltage Swing: The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.
V _{IH}	Voltage input high: The minimum positive voltage applied to the input which is accepted by the device as a logic high.
V _{IH(AC)}	High-level AC input voltage.
V _{IH(DC)}	High-level DC input voltage.
V _{IL}	Voltage input low: The maximum positive voltage applied to the input which is accepted by the device as a logic low.
V _{IL (AC)}	Low-level AC input voltage.
V _{IL (DC)}	Low-level DC input voltage.
VIN	DC input voltage.
	continued

Term	Definition
V _{OCM}	Output common mode voltage: The common mode of the differential signal at the transmitter.
V _{OD}	Output differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission line at the transmitter. $V_{OD} = V_{OH} - V_{OL}$.
V _{OH}	Voltage output high: The maximum positive voltage from an output which the device considers is accepted as the minimum positive high level.
V _{OL}	Voltage output low: The maximum positive voltage from an output which the device considers is accepted as the maximum positive low level.
V _{os}	Output offset voltage: $V_{OS} = (V_{OH} + V_{OL}) / 2$.
V _{OX (AC)}	AC differential Output cross point voltage: The voltage at which the differential output signals must cross.
V _{REF}	Reference voltage for SSTL, HSTL, and HSUL I/O Standards.
V _{REF(AC)}	AC input reference voltage for SSTL, HSTL, and HSUL I/O Standards. $V_{REF(AC)} = V_{REF(DC)} + noise$. The peak-to-peak AC noise on V_{REF} should not exceed 2% of $V_{REF(DC)}$.
V _{REF(DC)}	DC input reference voltage for SSTL, HSTL, and HSUL I/O Standards.
V _{SWING (AC)}	AC differential input voltage: AC Input differential voltage required for switching.
V _{SWING (DC)}	DC differential input voltage: DC Input differential voltage required for switching.
VTT	Termination voltage for SSTL, HSTL, and HSUL I/O Standards.
V _{X (AC)}	AC differential Input cross point voltage: The voltage at which the differential input signals must cross.

Document Revision History for the Intel MAX 10 FPGA Device Datasheet

Document Version	Changes
2018.06.29	 Removed links on instant-on feature. Added JTAG timing specifications term in <i>Glossary</i>. Renamed the following IP cores as per Intel rebranding: Renamed Altera Modular ADC IP core to Modular ADC core Intel FPGA IP core. Renamed Altera Modular Dual ADC IP core to Modular Dual ADC core Intel FPGA IP core.

Date	Version	Changes
		 Added -A6 speed grade in the following tables: Intel MAX 10 Device Grades and Speed Grades Supported Series OCT without Calibration Specifications for Intel MAX 10 Devices Clock Tree Specifications for Intel MAX 10 Devices Embedded Multiplier Specifications for Intel MAX 10 Devices Memory Block Performance Specifications for Intel MAX 10 Devices True PPDS and Emulated PPDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True Mini-LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices LVDS, TMDS, HiSpi, SLVS, and Sub-LVDS Receiver Timing Specifications for Intel MAX 10 Dual Supply Devices LVDS, TMDS, HiSpi, SLVS, and Sub-LVDS Receiver Timing Specifications for Intel MAX 10 Dual Supply Devices LOE Programmable Delay on Row Pins for Intel MAX 10 Devices Updated the maximum value for input clock cycle-to-cycle jitter (t_{INITTER_CCJ}) with F_{INPFD} < 100 MHz condition from 750 ps to ±750 ps in PLL Specifications for Intel MAX 10 Devices table. Updated the dual supply mode performance in Embedded Multiplier Specifications for Intel MAX 10 Devices table. Updated the dual supply mode performance in Embedded Multiplier Specifications for Intel MAX 10 Devices table. Up
June 2015	2015.06.12	 Updated the maximum values in Internal Weak Pull-Up Resistor for Intel MAX 10 Devices table. Removed Internal Weak Pull-Up Resistor equation. Updated the note for input resistance and input capacitance parameters in the ADC Performance Specifications table for both single supply and dual supply devices. Note: Download the SPICE models for simulation. Added a note to AC Accuracy - THD, SNR, and SINAD parameters in the ADC Performance Specifications for Intel MAX 10 Dual Supply Devices table. Note: When using internal V_{REF}, THD = 66 dB, SNR = 58 dB and SINAD = 57.5 dB for dedicated ADC input channels. Updated clock period jitter and cycle-to-cycle period jitter parameters in the Memory Output Clock Jitter Specifications for Intel MAX 10 Devices table.
		continued

Date	Version	Changes
		 Updated TCCS specifications in the following tables: True PPDS and Emulated PPDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True Mini-LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True LVDS Transmitter Timing Specifications for Intel MAX 10 Single Supply Devices Emulated LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Single Supply Devices Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True PDDS and Emulated PDDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True PDDS and Emulated RSDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True RNI-LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True LVDS Transmitter Timi
January 2015	2015.01.23	 Removed a note to V_{CCA} in Power Supplies Recommended Operating Conditions for Intel MAX 10 Dual Supply Devices table. This note is not valid: All V_{CCA} pins must be connected together for EQFP package. Corrected the maximum value for t_{OUTJITTER_CCJ_IO} (F_{OUT} ≥ 100 MHz) from 60 ps to 650 ps in PLL Specifications for Intel MAX 10 Devices table.
December 2014	2014.12.15	 Restructured Programming/Erasure Specifications for Intel MAX 10 Devices table to add temperature specifications that affect the data retention duration. Added statements in the I/O Pin Leakage Current section: Input channel leakage of ADC I/O pins due to hot socket is up to maximum of 1.8 mA. The input channel leakage occurs when the ADC IP core is enabled or disabled. This is applicable to all Intel MAX 10 devices with ADC IP core, which are 10M04, 10M08, 10M16, 10M25, 10M40, and 10M50 devices. The ADC I/O pins are in Bank 1A. Added a statement in the I/O Standards Specifications section: You must perform timing closure analysis to determine the maximum achievable frequency for general purpose I/O standards.
		continued