E·XFL

Intel - 10M02SCU169C8G Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	125
Number of Logic Elements/Cells	2000
Total RAM Bits	110592
Number of I/O	130
Number of Gates	-
Voltage - Supply	2.85V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	169-LFBGA
Supplier Device Package	169-UBGA (11x11)
Purchase URL	https://www.e-xfl.com/product-detail/intel/10m02scu169c8g

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Intel[®] MAX[®] 10 FPGA Device Datasheet

This datasheet describes the electrical characteristics, switching characteristics, configuration specifications, and timing for Intel $MAX^{\mbox{\scriptsize B}}$ 10 devices.

Table 1. Intel MAX 10 Device Grades and Speed Grades Supported

Device Grade	Speed Grade Supported
Commercial	 -C7 -C8 (slowest)
Industrial	 -I6 (fastest) -I7
Automotive	 -A6 -A7

Note: The –I6 and –A6 speed grades of the Intel MAX 10 FPGA devices are not available by default in the Intel Quartus[®] Prime software. Contact your local Intel sales representatives for support.

Related Information

Device Ordering Information, Intel MAX 10 FPGA Device Overview Provides more information about the densities and packages of devices in the Intel MAX 10.

Electrical Characteristics

The following sections describe the operating conditions and power consumption of Intel MAX 10 devices.

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered

*Other names and brands may be claimed as the property of others.

	Symbol	Parameter	Condition	Min	Тур	Max	Unit
			1.35 V	1.2825	1.35	1.4175	V
			1.2 V	1.14	1.2	1.26	V
V _{CCA} ⁽¹⁾		Supply voltage for PLL regulator and ADC block (analog)	_	2.85/3.135	3.0/3.3	3.15/3.465	V

Dual Supply Devices Power Supplies Recommended Operating Conditions

Table 7. Power Supplies Recommended Operating Conditions for Intel MAX 10 Dual Supply Devices

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{CC}	Supply voltage for core and periphery	_	1.15	1.2	1.25	V
V _{CCIO} ⁽³⁾	Supply voltage for input and output buffers	3.3 V	3.135	3.3	3.465	V
		3.0 V	2.85	3	3.15	V
		2.5 V	2.375	2.5	2.625	V
		1.8 V	1.71	1.8	1.89	V
		1.5 V	1.425	1.5	1.575	V
		1.35 V	1.2825	1.35	1.4175	V
		1.2 V	1.14	1.2	1.26	V
V _{CCA} ⁽⁴⁾	Supply voltage for PLL regulator (analog)	_	2.375	2.5	2.625	V
V _{CCD_PLL} ⁽⁵⁾	Supply voltage for PLL regulator (digital)	-	1.15	1.2	1.25	V
V _{CCA_ADC}	Supply voltage for ADC analog block	—	2.375	2.5	2.625	V
V _{CCINT}	Supply voltage for ADC digital block	_	1.15	1.2	1.25	V

⁽³⁾ V_{CCIO} for all I/O banks must be powered up during user mode because V_{CCIO} I/O banks are used for the ADC and I/O functionalities.

 $^{^{(4)}}$ All V_{CCA} pins must be powered to 2.5 V (even when PLLs are not used), and must be powered up and powered down at the same time.

⁽⁵⁾ $V_{CCD PLL}$ must always be connected to V_{CC} through a decoupling capacitor and ferrite bead.

DC Characteristics

Supply Current and Power Consumption

Intel offers two ways to estimate power for your design—the Excel-based Early Power Estimator (EPE) and the Intel Quartus Prime Power Analyzer feature.

Use the Excel-based EPE before you start your design to estimate the supply current for your design. The EPE provides a magnitude estimate of the device power because these currents vary greatly with the usage of the resources.

The Intel Quartus Prime Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-and-route. The Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yield very accurate power estimates.

Related Information

- Early Power Estimator User Guide Provides more information about power estimation tools.
- Power Analysis chapter, Intel Quartus Prime Handbook Provides more information about power estimation tools.

I/O Pin Leakage Current

The values in the table are specified for normal device operation. The values vary during device power-up. This applies for all V_{CCIO} settings (3.3, 3.0, 2.5, 1.8, 1.5, 1.35, and 1.2 V).

10 μ A I/O leakage current limit is applicable when the internal clamping diode is off. A higher current can be the observed when the diode is on.

Input channel leakage of ADC I/O pins due to hot socket is up to maximum of 1.8 mA. The input channel leakage occurs when the ADC IP core is enabled or disabled. This is applicable to all Intel MAX 10 devices with ADC IP core, which are 10M04, 10M08, 10M16, 10M25, 10M40, and 10M50 devices. The ADC I/O pins are in Bank 1A.

Table 10. I/O Pin Leakage Current for Intel MAX 10 Devices

Symbol	Parameter	Condition	Min	Max	Unit
II	Input pin leakage current	$V_{\rm I} = 0 V$ to $V_{\rm CCIOMAX}$	-10	10	μA
I _{OZ}	Tristated I/O pin leakage current	$V_{O} = 0 V$ to $V_{CCIOMAX}$	-10	10	μA

Table 15. OCT Variation after Calibration at Device Power-Up for Intel MAX 10 Devices

This table lists the change percentage of the OCT resistance with voltage and temperature.

Description	Nominal Voltage	dR/dT (%/°C)	dR/dV (%/mV)
OCT variation after calibration at device power-up	3.00	0.25	-0.027
	2.50	0.245	-0.04
	1.80	0.242	-0.079
	1.50	0.235	-0.125
	1.35	0.229	-0.16
	1.20	0.197	-0.208

Figure 1. Equation for OCT Resistance after Calibration at Device Power-Up

 $\Delta R_V = (V_2 - V_1) \times 1000 \times dR/dV$ $\Delta R_T = (T_2 - T_1) \times dR/dT$ For $\Delta R_X < 0$; $MF_X = 1/(|\Delta R_X|/100 + 1)$ For $\Delta R_X > 0$; $MF_X = \Delta R_X/100 + 1$ $MF = MF_V \times MF_T$ $R_{final} = R_{initial} \times MF$

The definitions for equation are as follows:

- T₁ is the initial temperature.
- T₂ is the final temperature.
- MF is multiplication factor.
- R_{initial} is initial resistance.
- R_{final} is final resistance.

- Subscript x refers to both V and T.
- ΔR_V is variation of resistance with voltage.
- ΔR_T is variation of resistance with temperature.
- dR/dT is the change percentage of resistance with temperature after calibration at device power-up.
- dR/dV is the change percentage of resistance with voltage after calibration at device power-up.
- V₁ is the initial voltage.
- V₂ is final voltage.

The following figure shows the example to calculate the change of 50 Ω I/O impedance from 25°C at 3.0 V to 85°C at 3.15 V.

Figure 2. Example for OCT Resistance Calculation after Calibration at Device Power-Up

 $\Delta R_V = (3.15 - 3) \times 1000 \times -0.027 = -4.05$ $\Delta R_T = (85 - 25) \times 0.25 = 15$

Because ΔR_V is negative,

 $MF_V = 1/(4.05/100 + 1) = 0.961$

Because ΔR_T is positive,

 $MF_T = 15/100 + 1 = 1.15$ $MF = 0.961 \times 1.15 = 1.105$

 $R_{final} = 50 \times 1.105 = 55.25\Omega$

Pin Capacitance

Table 16. Pin Capacitance for Intel MAX 10 Devices

Symbol	Parameter	Maximum	Unit
C _{IOB}	Input capacitance on bottom I/O pins	8	pF
C _{IOLRT}	Input capacitance on left/right/top I/O pins	7	pF
C _{LVDSB}	Input capacitance on bottom I/O pins with dedicated LVDS output $^{(9)}$	8	pF
C _{ADCL}	Input capacitance on left I/O pins with ADC input $^{(10)}$	9	pF
C _{VREFLRT}	Input capacitance on left/right/top dual purpose V_{REF} pin when used as V_{REF} or user I/O pin $^{(11)}$	48	pF
C _{VREFB}	Input capacitance on bottom dual purpose V_{REF} pin when used as V_{REF} or user I/O pin	50	pF
C _{CLKB}	Input capacitance on bottom dual purpose clock input pins (12)	7	pF
C _{CLKLRT}	Input capacitance on left/right/top dual purpose clock input pins (12)	6	pF

Internal Weak Pull-Up Resistor

All I/O pins, except configuration, test, and JTAG pins, have an option to enable weak pull-up.

- ⁽¹¹⁾ When V_{REF} pin is used as regular input or output, F_{max} performance is reduced due to higher pin capacitance. Using the V_{REF} pin capacitance specification from device datasheet, perform SI analysis on your board setup to determine the F_{max} of your system.
- ⁽¹²⁾ 10M40 and 10M50 devices have dual purpose clock input pins at top/bottom I/O banks.

⁽⁹⁾ Dedicated LVDS output buffer is only available at bottom I/O banks.

⁽¹⁰⁾ ADC pins are only available at left I/O banks.

Table 17. Internal Weak Pull-Up Resistor for Intel MAX 10 Devices

Symbol	Parameter	Condition	Min	Тур	Мах	Unit	
R_ _{PU}	Value of I/O pin (dedicated and dual-purpose) pull-up resistor before and during configuration, as well as user mode if the programmable pull-up resistor option is enabled	$V_{CCIO} = 3.3 V \pm 5\%$	7	12	34	kΩ	
		as well as user mode if the programmable pull-up	$V_{CCIO} = 3.0 V \pm 5\%$	8	13	37	kΩ
		$V_{CCIO} = 2.5 V \pm 5\%$	10	15	46	kΩ	
		$V_{CCIO} = 1.8 V \pm 5\%$	16	25	75	kΩ	
		$V_{CCIO} = 1.5 V \pm 5\%$	20	36	106	kΩ	
		$V_{CCIO} = 1.2 V \pm 5\%$	33	82	179	kΩ	

Pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO} .

Hot-Socketing Specifications

Table 18. Hot-Socketing Specifications for Intel MAX 10 Devices

Symbol	Parameter	Maximum		
I _{IOPIN(DC)}	DC current per I/O pin	300 µA		
I _{IOPIN(AC)}	AC current per I/O pin	8 mA ⁽¹³⁾		

Hysteresis Specifications for Schmitt Trigger Input

Intel MAX 10 devices support Schmitt trigger input on all I/O pins. A Schmitt trigger feature introduces hysteresis to the input signal for improved noise immunity, especially for signal with slow edge rate.

⁽¹³⁾ The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, $|I_{IOPIN}| = C dv/dt$, in which C is I/O pin capacitance and dv/dt is the slew rate.

Table 19. Hysteresis Specifications for Schmitt Trigger Input for Intel MAX 10 Devices

Symbol	Parameter	Condition	Minimum	Unit
V _{HYS}	Hysteresis for Schmitt trigger input	$V_{CCIO} = 3.3 V$	180	mV
		$V_{CCIO} = 2.5 V$	150	mV
		$V_{CCIO} = 1.8 V$	120	mV
		V _{CCIO} = 1.5 V	110	mV

Figure 3. LVTTL/LVCMOS Input Standard Voltage Diagram

I/O Standard	V _{IL(D}	c) (V)	V _{IH(DC)} (V)		V _{IL(AC)} (V)		V _{IH(AC)} (V)		V _{OL} (V)	V _{OH} (V)	I _{OL} (mA)	I _{OH} (mA)
	Min	Max	Min	Мах	Min	Max	Min	Max	Max	Min		
HSTL-12 Class I	-0.15	V _{REF} - 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	-0.24	V _{REF} - 0.15	V _{REF} + 0.15	V _{CCIO} + 0.24	0.25 × V _{CCIO}	0.75 × V _{CCIO}	8	-8
HSTL-12 Class II	-0.15	V _{REF} - 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	-0.24	V _{REF} - 0.15	V _{REF} + 0.15	V _{CCI0} + 0.24	0.25 × V _{CCIO}	0.75 × V _{CCIO}	14	-14
HSUL-12	_	V _{REF} - 0.13	V _{REF} + 0.13	_	_	V _{REF} – 0.22	V _{REF} + 0.22	-	$0.1 \times V_{CCIO}$	$0.9 \times V_{CCIO}$	-	_

Differential SSTL I/O Standards Specifications

Differential SSTL requires a V_{REF} input.

Table 23. Differential SSTL I/O Standards Specifications for Intel MAX 10 Devices

I/O Standard	V _{CCI0} (V)			V _{Swing(}	DC) (V)		V _{X(AC)} (V)			V _{Swing(AC)} (V)	
	Min	Тур	Max	Min	Max ⁽¹⁷⁾	Min	Тур	Max	Min	Max	
SSTL-2 Class I, II	2.375	2.5	2.625	0.36	V _{CCIO}	V _{CCIO} /2 - 0.2	-	V _{CCIO} / 2+ 0.2	0.7	V _{CCIO}	
SSTL-18 Class I, II	1.7	1.8	1.9	0.25	V _{CCIO}	V _{CCIO} /2 - 0.175	-	V _{CCIO} / 2+ 0.175	0.5	V _{CCIO}	
SSTL-15 Class I, II	1.425	1.5	1.575	0.2	-	V _{CCIO} /2 - 0.15	-	V _{CCIO} /2 + 0.15	2(V _{IH(AC)} – V _{REF})	2(V _{IL(AC)} – V _{REF})	
SSTL-135	1.283	1.35	1.45	0.18	-	V _{REF} – 0.135	$0.5 \times V_{CCIO}$	V _{REF} + 0.135	2(V _{IH(AC)} – V _{REF})	2(V _{IL(AC)} – V _{REF})	

Differential HSTL and HSUL I/O Standards Specifications

Differential HSTL requires a V_{REF} input.

⁽¹⁷⁾ The maximum value for $V_{SWING(DC)}$ is not defined. However, each single-ended signal needs to be within the respective single-ended limits ($V_{IH(DC)}$ and $V_{IL(DC)}$).

I/O Standard		V _{CCIO} (V)		V _{DIF(D}	c) (V)	V _{X(AC)} (V)			V _{CM(DC)} (V)	V _{DIF(AC)} (V)		
	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min
HSTL-18 Class I, II	1.71	1.8	1.89	0.2	—	0.85	—	0.95	0.85	—	0.95	0.4
HSTL-15 Class I, II	1.425	1.5	1.575	0.2	_	0.71	-	0.79	0.71	_	0.79	0.4
HSTL-12 Class I, II	1.14	1.2	1.26	0.16	V _{CCIO}	$0.48 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	0.52 × V _{CCIO}	0.48 × V _{CCIO}	$0.5 \times V_{CCIO}$	0.52 × V _{CCIO}	0.3
HSUL-12	1.14	1.2	1.3	0.26	_	0.5 × V _{CCIO} – 0.12	$0.5 \times V_{CCIO}$	0.5 × V _{CCIO} + 0.12	0.4 × V _{CCIO}	0.5 × V _{CCIO}	0.6 × V _{CCIO}	0.44

Table 24. Differential HSTL and HSUL I/O Standards Specifications for Intel MAX 10 Devices

Differential I/O Standards Specifications

Table 25. Differential I/O Standards Specifications for Intel MAX 10 Devices

I/O Standard		V _{CCIO} (V)		V _{ID} ((mV)	V _{ICM} (V) ⁽¹⁸⁾		V _{OD} (mV) ⁽¹⁹⁾⁽²⁰⁾			V _{os} (V) ⁽¹⁹⁾			
	Min	Тур	Max	Min	Max	Min	Condition Max		Min	Тур	Max	Min	Тур	Max
LVPECL (21)	2.375	2.5	2.625	100	-	0.05	$D_{MAX} \leq 500 \text{ Mbps}$	1.8	—	—	-	—	—	-
						0.55	$500 \text{ Mbps} \leq D_{MAX} \leq 700 \text{ Mbps}$	1.8						
						1.05	D _{MAX} > 700 Mbps	1.55						
LVDS	2.375	2.5	2.625	100	-	0.05	$D_{MAX} \leq 500 \text{ Mbps}$	1.8	247	-	600	1.125	1.25	1.375
						0.55	500 Mbps $\leq D_{MAX} \leq$ 700 Mbps	1.8						
continued														

 $^{(18)}$ V_{IN} range: 0 V \leq V_{IN} \leq 1.85 V.

⁽¹⁹⁾ R_L range: $90 \leq R_L \leq 110 \Omega$.

 $^{(20)}$ Low V_{OD} setting is only supported for RSDS standard.

⁽²¹⁾ LVPECL input standard is only supported at clock input. Output standard is not supported.

Embedded Multiplier Specifications

Table 30. Embedded Multiplier Specifications for Intel MAX 10 Devices

Mode	Number of Multipliers	Power Supply Mode		Performance		Unit
			-16	-A6, -C7, -I7, -A7	-C8	
9 × 9-bit multiplier	1	Single supply mode	198	183	160	MHz
		Dual supply mode	310	260	210	MHz
18 × 18-bit multiplier	1	Single supply mode	198	183	160	MHz
		Dual supply mode	265	240	190	MHz

Memory Block Performance Specifications

Table 31. Memory Block Performance Specifications for Intel MAX 10 Devices

Memory	Mode	Resourc	es Used	Power Supply Mode		Performance		Unit
		LEs	M9K Memory		-16	-A6, -C7, -I7, -A7	-C8	
M9K Block	FIFO 256 × 36	47	1	Single supply mode	232	219	204	MHz
				Dual supply mode	330	300	250	MHz
	Single-port 256 × 36	0	1	Single supply mode	232	219	204	MHz
				Dual supply mode	330	300	250	MHz
	Simple dual-port 256 × 36	0	1	Single supply mode	232	219	204	MHz
	CLK			Dual supply mode	330	300	250	MHz
	True dual port 512 × 18	0	1	Single supply mode	232	219	204	MHz
	SINGLE CLK			Dual supply mode	330	300	250	MHz

Internal Oscillator Specifications

Table 32. Internal Oscillator Frequencies for Intel MAX 10 Devices

You can access to the internal oscillator frequencies in this table. The duty cycle of internal oscillator is approximately 45%–55%.

Device		Frequency								
	Minimum	Typical	Maximum							
10M02	55	82	116	MHz						
10M04										
10M08										
10M16										
10M25										
10M40	35	52	77	MHz						
10M50										

UFM Performance Specifications

Table 33. UFM Performance Specifications for Intel MAX 10 Devices

Block	Mode	Interface	Device	Frequ	iency	Unit
				Minimum	Maximum	
UFM	Avalon [®] -MM slave	Parallel (33)	10M02 ⁽³⁴⁾	3.43	7.25	MHz
			10M04, 10M08, 10M16, 10M25, 10M40, 10M50	5	116	MHz
		Serial ⁽³⁴⁾	10M02, 10M04, 10M08, 10M16, 10M25	3.43	7.25	MHz
			10M40, 10M50	2.18	4.81	MHz

⁽³³⁾ Clock source is derived from user, except for 10M02 device.

 $^{^{(34)}}$ Clock source is derived from 1/16 of the frequency of the internal oscillator.

ADC Performance Specifications

Single Supply Devices ADC Performance Specifications

Table 34. ADC Performance Specifications for Intel MAX 10 Single Supply Devices

	Parameter	Symbol	Condition	Min	Тур	Max	Unit
ADC resolution		—	-	_	-	12	bits
ADC supply voltage		V _{CC_ONE}	-	2.85	3.0/3.3	3.465	V
External reference voltage		V _{REF}	-	V _{CC_ONE} - 0.5	_	V _{CC_ONE}	V
Sampling rate		F _S Accumulative sampling rate		_	_	1	MSPS
Operating junction temperat	ture range	Τj	-	-40	25	125	°C
Analog input voltage		V _{IN}	Prescalar disabled	0	-	V _{REF}	V
			Prescalar enabled (35)	0	_	3.6	V
Input resistance		R _{IN}	-	_	(36)	_	_
Input capacitance		C _{IN}	-	_	(36)	_	_
DC Accuracy	Offset error and drift	E _{offset}	Prescalar disabled	-0.2	_	0.2	%FS
			Prescalar enabled	-0.5	-	0.5	%FS
	Gain error and drift	Egain	Prescalar disabled	-0.5	_	0.5	%FS
			Prescalar enabled	-0.75	_	0.75	%FS
Differential non linearity		DNL	External V _{REF} , no missing code	-0.9	_	0.9	LSB
			Internal V _{REF} , no missing code	-1	_	1.7	LSB
							continued

⁽³⁵⁾ Prescalar function divides the analog input voltage by half. The analog input handles up to 3.6 V for the Intel MAX 10 single supply devices.

⁽³⁶⁾ Download the SPICE models for simulation.

Intel[®] MAX[®] 10 FPGA Device Datasheet

M10-DATASHEET | 2018.06.29

Symbol	Parameter	Mode	-16,	-A6, -C7,	-17		-A7			-C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	-
		×8	80	-	100	80	-	100	80	-	100	Mbps
		×7	70	-	100	70	-	100	70	-	100	Mbps
		×4	40	-	100	40	-	100	40	-	100	Mbps
		×2	20	-	100	20	-	100	20	-	100	Mbps
		×1	10	-	100	10	-	100	10	-	100	Mbps
t _{duty}	Duty cycle on transmitter output clock	_	45	-	55	45	-	55	45	-	55	%
TCCS ⁽⁵⁵⁾	Transmitter channel- to-channel skew	-	-	-	300	-	-	300	_	-	300	ps
t _{x Jitter} (56)	Output jitter (high- speed I/O performance pin)	-	_	_	425	-	-	425	_	_	425	ps
	Output jitter (low- speed I/O performance pin)	-	-	-	470	-	-	470	-	-	470	ps
t _{RISE}	Rise time	20 - 80%, C _{LOAD} = 5 pF	-	500	_	-	500	-	-	500	-	ps
t _{FALL}	Fall time	20 - 80%, C _{LOAD} = 5 pF	_	500	-	-	500	-	_	500	-	ps
t _{LOCK}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	_	_	_	1	_	_	1	_	_	1	ms

 $^{^{\}rm (55)}$ TCCS specifications apply to I/O banks from the same side only.

 $^{^{(56)}}$ TX jitter is the jitter induced from core noise and I/O switching noise.

Dual Supply Devices True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications

Table 38. True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices

True RSDS transmitter is only supported at bottom I/O banks. Emulated RSDS transmitter is supported at the output pin of all I/O banks.

Symbol	Parameter	Mode	-16, -A6, -C7, -17			-A7			- C8		Unit	
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
f _{HSCLK}	Input clock frequency	×10	5	_	155	5	_	155	5	_	155	MHz
	performance pin)	×8	5	—	155	5	—	155	5	_	155	MHz
		×7	5	—	155	5	—	155	5	—	155	MHz
		×4	5	_	155	5	_	155	5	_	155	MHz
	×2	5	-	155	5	—	155	5	_	155	MHz	
		×1	5	_	310	5	_	310	5	_	310	MHz
HSIODR	Data rate (high-speed	×10	100	_	310	100	_	310	100	_	310	Mbps
	1/O performance pin)	×8	80	-	310	80	_	310	80	_	310	Mbps
	×7	70	_	310	70	_	310	70	_	310	Mbps	
		×4	40	_	310	40	_	310	40	_	310	Mbps
		×2	20	_	310	20	_	310	20	_	310	Mbps
		×1	10	_	310	10	_	310	10	_	310	Mbps
f _{HSCLK}	Input clock frequency	×10	5	_	150	5	_	150	5	_	150	MHz
	performance pin)	×8	5	_	150	5	_	150	5	_	150	MHz
		×7	5	_	150	5	_	150	5	_	150	MHz
		×4	5	_	150	5	_	150	5	_	150	MHz
		×2	5	_	150	5	_	150	5	_	150	MHz
		×1	5	_	300	5	_	300	5	_	300	MHz
HSIODR	Data rate (low-speed	×10	100	_	300	100	_	300	100	_	300	Mbps
I/O performance pin)	×8	80	_	300	80	_	300	80	_	300	Mbps	
		×7	70	-	300	70	_	300	70	_	300	Mbps
	continued											

Symbol	Parameter	Mode	-I6, -A6, -C7, -I7		-A7		-C8		Unit
			Min	Max	Min	Max	Min	Max	
	Sampling window (low- speed I/O performance pin)	_	-	910	_	910	_	910	ps
t _{x Jitter} ⁽⁷²⁾	Input jitter	-	-	500	_	500	-	500	ps
t _{LOCK}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	_	_	1	_	1	_	1	ms

Memory Standards Supported by the Soft Memory Controller

Table 47. Memory Standards Supported by the Soft Memory Controller for Intel MAX 10 Devices

Contact your local sales representatives for access to the -I6 or -A6 speed grade devices in the Intel Quartus Prime software.

External Memory Interface Standard	Rate Support	Speed Grade	Voltage (V)	Max Frequency (MHz)
DDR3 SDRAM	Half	-I6	1.5	303
DDR3L SDRAM	Half	-I6	1.35	303
DDR2 SDRAM	Half	-I6	1.8	200
		-I7 and -C7		167
LPDDR2 ⁽⁷³⁾	Half	-I6	1.2	200 ⁽⁷⁴⁾

Related Information

External Memory Interface Spec Estimator

Provides the specific details of the memory standards supported.

⁽⁷²⁾ TX jitter is the jitter induced from core noise and I/O switching noise.

⁽⁷³⁾ Intel MAX 10 devices support only single-die LPDDR2.

⁽⁷⁴⁾ To achieve the specified performance, constrain the memory device I/O and core power supply variation to within ±3%. By default, the frequency is 167 MHz.

Remote System Upgrade Circuitry Timing Specifications

Table 50. Remote System Upgrade Circuitry Timing Specifications for Intel MAX 10 Devices

Parameter	Device	Minimum	Maximum	Unit
t _{MAX_RU_CLK}	All	—	40	MHz
t _{RU_nCONFIG}	10M02, 10M04, 10M08, 10M16, 10M25	250	_	ns
	10M40, 10M50	350	—	ns
t _{RU_nRSTIMER}	10M02, 10M04, 10M08, 10M16, 10M25	300	—	ns
	10M40, 10M50	500	_	ns

User Watchdog Internal Circuitry Timing Specifications

Table 51. User Watchdog Timer Specifications for Intel MAX 10 Devices

The specifications are subject to PVT changes.

Parameter	Device	Minimum	Typical	Maximum	Unit	
User watchdog frequency	10M02, 10M04, 10M08, 10M16, 10M25	3.4	5.1	7.3	MHz	
	10M40, 10M50	2.2	3.3	4.8	MHz	

Uncompressed Raw Binary File (.rbf) Sizes

Table 52. Uncompressed .rbf Sizes for Intel MAX 10 Devices

Device	CFM Data Size (bits)				
	Without Memory Initialization	With Memory Initialization			
10M02	554,000	_			
10M04	1,540,000	1,880,000			
10M08	1,540,000	1,880,000			
10M16	2,800,000	3,430,000			
		continued			

Table 56.I/O Timing for Intel MAX 10 Devices

These I/O timing parameters are for the 3.3-V LVTTL I/O standard with the maximum drive strength and fast slew rate for 10M08DAF484 device.

Symbol	Parameter	-C7, -I7	-C8	Unit
T _{su}	Global clock setup time	-0.750	-0.808	ns
T _h	Global clock hold time	1.180	1.215	ns
T _{co}	Global clock to output delay	5.131	5.575	ns
T _{pd}	Best case pin-to-pin propagation delay through one LUT	4.907	5.467	ns

Programmable IOE Delay

Programmable IOE Delay On Row Pins

Table 57. IOE Programmable Delay on Row Pins for Intel MAX 10 Devices

The incremental values for the settings are generally linear. For exact values of each setting, refer to the **Assignment Name** column in the latest version of the Intel Quartus Prime software.

<u> </u>											
The	minimum and	1 maximum	offset timina	numhers	are in referen	re to sett	na `0'	as available	in the Intel (Quartus Prime softwa	re
	in and and		onset tinning	numbers			ng o	us available	In the miter	qualitas i finite soltiva	

Parameter	Paths Affected	Number of	Minimum	Maximum Offset							
		Settings	Offset	Fast Corner		Slow Corner					
				-17	-C8	-A6	-C7	-C8	-17	-A7	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	0.815	0.873	1.831	1.811	1.874	1.871	1.922	ns
Input delay from pin to input register	Pad to I/O input register	8	0	0.924	0.992	2.081	2.055	2.125	2.127	2.185	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.479	0.514	1.069	1.070	1.117	1.105	1.134	ns

Intel[®] MAX[®] 10 FPGA Device Datasheet M10-DATASHEET | 2018.06.29

Date	Version	Changes
December 2017	2017.12.15	 Removed the units for "Input resistance" and "Input capacitance" parameters in the following tables: ADC Performance Specifications for Intel MAX 10 Single Supply Devices ADC Performance Specifications for Intel MAX 10 Dual Supply Devices Removed the specification with memory initialization for 10M02 device in the Uncompressed .rbf Sizes for Intel MAX 10 Devices table.
June 2017	2017.06.16	 Added notes for T_J for Industrial and Automotive devices in Recommended Operating Conditions for Intel MAX 10 Devices table. Updated the parameter in Internal Weak Pull-Up Resistor for Intel MAX 10 Devices table. Changed "Performance" to "Frequency" in UFM Performance Specifications for Intel MAX 10 Devices table. Removed PowerPlay text from tool name.
February 2017	2017.02.21	Rebranded as Intel.
October 2016	2016.10.31	 Updated the note to the Intel MAX 10 Device Grades and Speed Grades Supported table. Updated the Memory Standards Supported by the Soft Memory Controller for Intel MAX 10 Devices table.
May 2016	2016.05.02	 Updated t_{RAMP} specifications in Recommended Operating Conditions for Intel MAX 10 Devices table. Removed standard POR and fast POR specifications. Updated maximum value from 3 ms to 10 ms and added a not for the minimum value. Added Supply Current and Power Consumption section. Added the following tables: Memory Standards Supported by the Soft Memory Controller for Intel MAX 10 Devices Internal Configuration Timing Parameter for Intel MAX 10 Devices Removed POR Delay Specifications for Intel MAX 10 Devices table. Updated the description in the Internal Configuration Time section. Updated the following tables: Internal Configuration Time for Intel MAX 10 Devices (Uncompressed .rbf) Internal Configuration Time for Intel MAX 10 Devices (Compressed .rbf)
		continued