
E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	500
Number of Logic Elements/Cells	8000
Total RAM Bits	387072
Number of I/O	101
Number of Gates	-
Voltage - Supply	2.85V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	144-LQFP Exposed Pad
Supplier Device Package	144-EQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/intel/10m08sae144c8g

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Recommended Operating Conditions

Table 8. Recommended Operating Conditions for Intel MAX 10 Devices

Symbol	Parameter	Condition	Min	Max	Unit
VI	DC input voltage	-	-0.5	3.6	V
Vo	Output voltage for I/O pins	—	0	V _{CCIO}	V
Тј	Operating junction temperature	Commercial	0	85	°C
		Industrial	-40 ⁽⁶⁾	100	°C
		Automotive	-40 ⁽⁶⁾	125	°C
t _{RAMP}	Power supply ramp time	-	(7)	10	ms
I _{Diode}	Magnitude of DC current across PCI* clamp diode when enabled	_	_	10	mA

Programming/Erasure Specifications

Table 9. Programming/Erasure Specifications for Intel MAX 10 Devices

This table shows the programming cycles and data retention duration of the user flash memory (UFM) and configuration flash memory (CFM) blocks.

For more information about data retention duration with 10,000 programming cycles for automotive temperature devices, contact your Intel quality representative.

Erase and reprogram cycles (E/P) ⁽⁸⁾ (Cycles/ page)	Temperature (°C)	Data retention duration (Years)
10,000	85	20
10,000	100	10

⁽⁶⁾ -40°C is only applicable to Start of Test, when the device is powered-on. The device does not stay at the minimum junction temperature for a long time.

⁽⁷⁾ There is no absolute minimum value for the ramp time requirement. Intel characterized the minimum ramp time at 200 μ s.

⁽⁸⁾ The number of E/P cycles applies to the smallest possible flash block that can be erased or programmed in each Intel MAX 10 device. Each Intel MAX 10 device has multiple flash pages per device.

DC Characteristics

Supply Current and Power Consumption

Intel offers two ways to estimate power for your design—the Excel-based Early Power Estimator (EPE) and the Intel Quartus Prime Power Analyzer feature.

Use the Excel-based EPE before you start your design to estimate the supply current for your design. The EPE provides a magnitude estimate of the device power because these currents vary greatly with the usage of the resources.

The Intel Quartus Prime Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-and-route. The Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yield very accurate power estimates.

Related Information

- Early Power Estimator User Guide Provides more information about power estimation tools.
- Power Analysis chapter, Intel Quartus Prime Handbook Provides more information about power estimation tools.

I/O Pin Leakage Current

The values in the table are specified for normal device operation. The values vary during device power-up. This applies for all V_{CCIO} settings (3.3, 3.0, 2.5, 1.8, 1.5, 1.35, and 1.2 V).

10 μ A I/O leakage current limit is applicable when the internal clamping diode is off. A higher current can be the observed when the diode is on.

Input channel leakage of ADC I/O pins due to hot socket is up to maximum of 1.8 mA. The input channel leakage occurs when the ADC IP core is enabled or disabled. This is applicable to all Intel MAX 10 devices with ADC IP core, which are 10M04, 10M08, 10M16, 10M25, 10M40, and 10M50 devices. The ADC I/O pins are in Bank 1A.

Table 10. I/O Pin Leakage Current for Intel MAX 10 Devices

Symbol	Parameter	Condition	Min	Мах	Unit
II	Input pin leakage current	$V_{\rm I}$ = 0 V to V _{CCIOMAX}	-10	10	μΑ
I _{OZ}	Tristated I/O pin leakage current	$V_{O} = 0 V$ to $V_{CCIOMAX}$	-10	10	μΑ

Series OCT without Calibration Specifications

Table 13. Series OCT without Calibration Specifications for Intel MAX 10 Devices

This table shows the variation of on-chip termination (OCT) without calibration across process, voltage, and temperature (PVT).

Description	V _{CCIO} (V)	Resistance	Tolerance	Unit
		-C7, -I6, -I7, -A6, -A7	-C8	
Series OCT without calibration	3.00	±35	±30	%
	2.50	±35	±30	%
	1.80	±40	±35	%
	1.50	±40	±40	%
	1.35	±40	±50	%
	1.20	±45	±60	%

Series OCT with Calibration at Device Power-Up Specifications

Table 14. Series OCT with Calibration at Device Power-Up Specifications for Intel MAX 10 Devices

OCT calibration is automatically performed at device power-up for OCT enabled I/Os.

Description	V _{CCIO} (V)	Calibration Accuracy	Unit
Series OCT with calibration at device power-up	3.00	±12	%
	2.50	±12	%
	1.80	±12	%
	1.50	±12	%
	1.35	±12	%
	1.20	±12	%

OCT Variation after Calibration at Device Power-Up

The OCT resistance may vary with the variation of temperature and voltage after calibration at device power-up.

Use the following table and equation to determine the final OCT resistance considering the variations after calibration at device power-up.

Single-Ended I/O Standards Specifications

Table 20. Single-Ended I/O Standards Specifications for Intel MAX 10 Devices

To meet the I_{OL} and I_{OH} specifications, you must set the current strength settings accordingly. For example, to meet the 3.3-V LVTTL specification (4 mA), you should set the current strength settings to 4 mA. Setting at lower current strength may not meet the I_{OL} and I_{OH} specifications in the datasheet.

I/O Standard	V _{CCI0} (V)			VIL	(V)	VIH	(V)	V _{OL} (V)	V _{OH} (V)	I _{OL} (mA)	I _{OH} (mA)
	Min	Тур	Max	Min	Max	Min	Max	Max	Min		
3.3 V LVTTL	3.135	3.3	3.465	-0.3	0.8	1.7	3.6	0.45	2.4	4	-4
3.3 V LVCMOS	3.135	3.3	3.465	-0.3	0.8	1.7	3.6	0.2	V _{CCIO} - 0.2	2	-2
3.0 V LVTTL	2.85	3	3.15	-0.3	0.8	1.7	V _{CCIO} + 0.3	0.45	2.4	4	-4
3.0 V LVCMOS	2.85	3	3.15	-0.3	0.8	1.7	V _{CCIO} + 0.3	0.2	V _{CCIO} - 0.2	0.1	-0.1
2.5 V LVTTL and LVCMOS	2.375	2.5	2.625	-0.3	0.7	1.7	V _{CCIO} + 0.3	0.4	2	1	-1
1.8 V LVTTL and LVCMOS	1.71	1.8	1.89	-0.3	0.35 × V _{CCIO}	0.65 × V _{CCIO}	2.25	0.45	V _{CCIO} – 0.45	2	-2
1.5 V LVCMOS	1.425	1.5	1.575	-0.3	0.35 × V _{CCIO}	0.65 × V _{CCIO}	V _{CCIO} + 0.3	0.25 × V _{CCIO}	0.75 × V _{CCIO}	2	-2
1.2 V LVCMOS	1.14	1.2	1.26	-0.3	0.35 × V _{CCIO}	0.65 × V _{CCIO}	V _{CCIO} + 0.3	0.25 × V _{CCIO}	0.75 × V _{CCIO}	2	-2
3.3 V Schmitt Trigger	3.135	3.3	3.465	-0.3	0.8	1.7	V _{CCIO} + 0.3	_	-	_	-
2.5 V Schmitt Trigger	2.375	2.5	2.625	-0.3	0.7	1.7	V _{CCIO} + 0.3	_	-	_	-
1.8 V Schmitt Trigger	1.71	1.8	1.89	-0.3	0.35 × V _{CCIO}	0.65 × V _{CCIO}	V _{CCI0} + 0.3	_	-	_	-
1.5 V Schmitt Trigger	1.425	1.5	1.575	-0.3	0.35 × V _{CCIO}	0.65 × V _{CCIO}	V _{CCIO} + 0.3	_	-	_	_
3.0 V PCI	2.85	3	3.15	_	0.3 × V _{CCIO}	0.5 × V _{CCIO}	V _{CCIO} + 0.3	$0.1 \times V_{CCIO}$	0.9 × V _{CCIO}	1.5	-0.5

Core Performance Specifications

Clock Tree Specifications

Table 26. Clock Tree Specifications for Intel MAX 10 Devices

Device		Unit				
	-16	-A6, -C7	-17	-A7	-C8	
10M02	450	416	416	382	402	MHz
10M04	450	416	416	382	402	MHz
10M08	450	416	416	382	402	MHz
10M16	450	416	416	382	402	MHz
10M25	450	416	416	382	402	MHz
10M40	450	416	416	382	402	MHz
10M50	450	416	416	382	402	MHz

PLL Specifications

Table 27. PLL Specifications for Intel MAX 10 Devices

 $V_{\text{CCD_PLL}}$ should always be connected to V_{CCINT} through decoupling capacitor and ferrite bead.

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{IN} ⁽²⁸⁾	Input clock frequency	_	5	-	472.5	MHz
f _{INPFD} Phase frequency detector (PFD) input frequency		—	5	-	325	MHz
						continued

⁽²⁸⁾ This parameter is limited in the Intel Quartus Prime software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.

Internal Oscillator Specifications

Table 32. Internal Oscillator Frequencies for Intel MAX 10 Devices

You can access to the internal oscillator frequencies in this table. The duty cycle of internal oscillator is approximately 45%–55%.

Device		Unit		
	Minimum	Typical	Maximum	
10M02	55	82	116	MHz
10M04				
10M08				
10M16				
10M25				
10M40	35	52	77	MHz
10M50				

UFM Performance Specifications

Table 33. UFM Performance Specifications for Intel MAX 10 Devices

Block	Mode	Interface	Device	Frequency		Unit
				Minimum	Maximum	
UFM	Avalon [®] -MM slave	Parallel (33)	10M02 ⁽³⁴⁾	3.43	7.25	MHz
			10M04, 10M08, 10M16, 10M25, 10M40, 10M50	5	116	MHz
		Serial ⁽³⁴⁾	10M02, 10M04, 10M08, 10M16, 10M25	3.43	7.25	MHz
			10M40, 10M50	2.18	4.81	MHz

⁽³³⁾ Clock source is derived from user, except for 10M02 device.

 $^{^{(34)}}$ Clock source is derived from 1/16 of the frequency of the internal oscillator.

Dual Supply Devices ADC Performance Specifications

Table 35. ADC Performance Specifications for Intel MAX 10 Dual Supply Devices

	Parameter	Symbol	Condition	Min	Тур	Мах	Unit
ADC resolution		_	_	_	_	12	bits
Analog supply voltage		V _{CCA_ADC}	-	2.375	2.5	2.625	V
Digital supply voltage	2	V _{CCINT}	-	1.15	1.2	1.25	V
External reference vo	ltage	V _{REF}	-	V _{CCA_ADC} - 0.5	_	V _{CCA_ADC}	V
Sampling rate		Fs	Accumulative sampling rate	_	_	1	MSPS
Operating junction te	mperature range	Tj	_	-40	25	125	°C
Analog input voltage		V _{IN}	Prescalar disabled	0	_	V _{REF}	v
			Prescalar enabled ⁽⁴²⁾	0	_	3	V
Analog supply current	t (DC)	I _{ACC_ADC}	Average current	_	275	450	μA
Digital supply current	: (DC)	I _{CCINT}	Average current	_	65	150	μA
Input resistance		R _{IN}	_	_	(43)	-	-
Input capacitance		C _{IN}	_	_	(43)	-	-
DC Accuracy	Offset error and drift	E _{offset}	Prescalar disabled	-0.2	_	0.2	%FS
			Prescalar enabled	-0.5	_	0.5	%FS
	Gain error and drift	Egain	Prescalar disabled	-0.5	_	0.5	%FS
			Prescalar enabled	-0.75	_	0.75	%FS
	Differential non linearity	DNL	External V _{REF} , no missing code	-0.9	_	0.9	LSB
	1	1				1	continued.

⁽⁴²⁾ Prescalar function divides the analog input voltage by half. The analog input handles up to 3 V input for the Intel MAX 10 dual supply devices.

⁽⁴³⁾ Download the SPICE models for simulation.

	Parameter	Symbol	Condition	Min	Тур	Max	Unit
			Internal V _{REF} , no missing code	-1	_	1.7	LSB
	Integral non linearity	INL	-	-2	_	2	LSB
AC Accuracy	Curacy Total harmonic distortion		$F_{IN} = 50 \text{ kHz}, F_S = 1 \text{ MHz}, PLL$	-70 ⁽⁴⁴⁾⁽⁴⁵⁾ (46)	_	-	dB
	Signal-to-noise ratio	SNR	$F_{IN} = 50 \text{ kHz}, F_S = 1 \text{ MHz}, PLL$	62 (47)(48)(46)	_	-	dB
	Signal-to-noise and distortion	SINAD	$F_{IN} = 50 \text{ kHz}, F_S = 1 \text{ MHz}, PLL$	61.5 ⁽⁴⁹⁾ (50)(46)	_	-	dB
On-Chip Temperature	Temperature sampling rate	T _S	-	-	_	50	kSPS
Sensor	Absolute accuracy	-	-40 to 125°C, with 64 samples averaging	_	_	±5	°C
	•		•			•	continued

- $^{(44)}$ Total harmonic distortion is -65 dB for dual function pin.
- ⁽⁴⁵⁾ THD with prescalar enabled is 6dB less than the specification.
- ⁽⁴⁶⁾ When using internal V_{REF} , THD = 66 dB, SNR = 58 dB and SINAD = 57.5 dB for dedicated ADC input channels.
- ⁽⁴⁷⁾ Signal-to-noise ratio is 54 dB for dual function pin.
- $^{(48)}$ SNR with prescalar enabled is 6dB less than the specification.
- ⁽⁴⁹⁾ Signal-to-noise and distortion is 53 dB for dual function pin.
- ⁽⁵⁰⁾ SINAD with prescalar enabled is 6dB less than the specification.
- ⁽⁵¹⁾ For the Intel Quartus Prime software version 15.0 and later, Modular ADC Core and Modular Dual ADC Core IP cores handle the 64 samples averaging. For the Intel Quartus Prime software versions prior to 14.1, you need to implement your own averaging calculation.

Intel[®] MAX[®] 10 FPGA Device Datasheet

Symbol	Parameter	Mode	-16,	-A6, -C7,	-17		-A7		-C8			Unit
			Min	Тур	Мах	Min	Тур	Мах	Min	Тур	Мах	
		×4	40	-	300	40	-	300	40	-	300	Mbps
		×2	20	-	300	20	-	300	20	-	300	Mbps
		×1	10	_	300	10	_	300	10	_	300	Mbps
t _{DUTY}	Duty cycle on transmitter output clock	-	45	-	55	45	-	55	45	-	55	%
TCCS ⁽⁵³⁾	Transmitter channel- to-channel skew	-	_	-	300	_	-	300	_	-	300	ps
t _{x Jitter} ⁽⁵⁴⁾	Output jitter (high- speed I/O performance pin)	-	_	-	425	_	-	425	_	-	425	ps
	Output jitter (low- speed I/O performance pin)	-	_	-	470	_	-	470	_	-	470	ps
t _{RISE}	Rise time	20 – 80%, C _{LOAD} = 5 pF	_	500	-	_	500	_	_	500	_	ps
t _{FALL}	Fall time	20 - 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	ps
t _{LOCK}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	-	_	_	1	_	_	1	_	_	1	ms

 $^{^{\}rm (53)}$ TCCS specifications apply to I/O banks from the same side only.

 $^{^{(54)}}$ TX jitter is the jitter induced from core noise and I/O switching noise.

Intel[®] MAX[®] 10 FPGA Device Datasheet

Symbol	Parameter	Mode	-16,	-A6, -C7,	-17		-A7			-C8		Unit
			Min	Тур	Мах	Min	Тур	Мах	Min	Тур	Мах	
		×4	40	-	300	40	-	300	40	-	300	Mbps
		×2	20	-	300	20	-	300	20	-	300	Mbps
		×1	10	_	300	10	_	300	10	_	300	Mbps
t _{DUTY}	Duty cycle on transmitter output clock	-	45	-	55	45	-	55	45	-	55	%
TCCS ⁽⁵⁷⁾	Transmitter channel- to-channel skew	-	_	-	300	_	-	300	-	-	300	ps
t _{x Jitter} ⁽⁵⁸⁾	Output jitter (high- speed I/O performance pin)	_	_	-	425	_	-	425	_	-	425	ps
	Output jitter (low- speed I/O performance pin)	-	_	-	470	_	-	470	_	-	470	ps
t _{RISE}	Rise time	20 – 80%, C _{LOAD} = 5 pF	_	500	-	_	500	_	-	500	_	ps
t _{FALL}	Fall time	20 - 80%, C _{LOAD} = 5 pF	_	500	-	_	500	-	-	500	_	ps
t _{lock}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	_	_	_	1	_	_	1	_	_	1	ms

 $^{^{(57)}}$ TCCS specifications apply to I/O banks from the same side only.

 $^{^{(58)}}$ TX jitter is the jitter induced from core noise and I/O switching noise.

Emulated RSDS_E_1R Transmitter Timing Specifications

Table 39. Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices

Emulated **RSDS_E_1R** transmitter is supported at the output pin of all I/O banks.

Symbol	Parameter	Mode	-16,	-A6, -C7	, -17		-A7			-C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	1
f _{HSCLK}	Input clock frequency	×10	5	-	85	5	-	85	5	-	85	MHz
	(high-speed I/O performance pin)	×8	5	-	85	5	_	85	5	-	85	MHz
		×7	5	_	85	5	_	85	5	_	85	MHz
		×4	5	-	85	5	_	85	5	-	85	MHz
		×2	5	_	85	5	_	85	5	_	85	MHz
		×1	5	_	170	5	_	170	5	-	170	MHz
HSIODR	Data rate (high-speed	×10	100	-	170	100	_	170	100	-	170	Mbps
	I/O performance pin)	×8	80	_	170	80	_	170	80	_	170	Mbps
		×7	70	-	170	70	-	170	70	-	170	Mbps
		×4	40	_	170	40	_	170	40	_	170	Mbps
		×2	20	-	170	20	-	170	20	-	170	Mbps
		×1	10	_	170	10	-	170	10	-	170	Mbps
f _{HSCLK}	Input clock frequency	×10	5	_	85	5	_	85	5	-	85	MHz
	(low-speed I/O performance pin)	×8	5	-	85	5	-	85	5	-	85	MHz
		×7	5	_	85	5	_	85	5	_	85	MHz
		×4	5	-	85	5	-	85	5	-	85	MHz
		×2	5	-	85	5	_	85	5	-	85	MHz
		×1	5	_	170	5	_	170	5	-	170	MHz
HSIODR	Data rate (low-speed	×10	100	-	170	100	-	170	100	-	170	Mbps
I/O performance pin)	×8	80	_	170	80	_	170	80	-	170	Mbps	
		×7	70	-	170	70	-	170	70	-	170	Mbps
											con	tinued

Intel[®] MAX[®] 10 FPGA Device Datasheet M10-DATASHEET | 2018.06.29

Symbol	Parameter	Mode	-C7, -I7			-A7			-C8		Unit	
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max]
t _{RISE}	Rise time	20 - 80%, C _{LOAD} = 5 pF	_	500	-	-	500	_	-	500	_	ps
t _{FALL}	Fall time	20 - 80%, C _{LOAD} = 5 pF	_	500	-	-	500	_	-	500	_	ps
t _{LOCK}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	_	_	_	1	_	_	1	_	_	1	ms

Dual Supply Devices True LVDS Transmitter Timing Specifications

Table 42. True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices

Symbol	Parameter	Mode		-16		-A	6, -C7, -	·I7		-A7			-C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
f _{HSCLK}	Input clock	×10	5	-	360	5	_	340	5	-	310	5	-	300	MHz
	frequency	×8	5	-	360	5	_	360	5	-	320	5	-	320	MHz
		×7	5	-	360	5	_	340	5	-	310	5	-	300	MHz
		×4	5	-	360	5	_	350	5	-	320	5	-	320	MHz
		×2	5	-	360	5	_	350	5	-	320	5	-	320	MHz
		×1	5	-	360	5	_	350	5	-	320	5	-	320	MHz
HSIODR	Data rate	×10	100	_	720	100	_	680	100	-	620	100	-	600	Mbps
		×8	80	_	720	80	_	720	80	-	640	80	-	640	Mbps
		×7	70	-	720	70	_	680	70	-	620	70	-	600	Mbps
		×4	40	-	720	40	_	700	40	-	640	40	-	640	Mbps
		×2	20	-	720	20	_	700	20	-	640	20	-	640	Mbps
														cont	nued

True **LVDS** transmitter is only supported at the bottom I/O banks.

Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications

Single Supply Devices Emulated LVDS_E_3R Transmitter Timing Specifications

Table 43. Emulated LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Single Supply Devices

Emulated LVDS_E_3R transmitters are supported at the output pin of all I/O banks.

Symbol	Parameter	Mode		-C7, -I7			-A7		-C8			Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max]
f _{HSCLK}	Input clock frequency	×10	5	-	142.5	5	-	100	5	-	100	MHz
	(high-speed I/O performance pin)	×8	5	-	142.5	5	-	100	5	-	100	MHz
	-	×7	5	-	142.5	5	-	100	5	-	100	MHz
		×4	5	-	142.5	5	-	100	5	-	100	MHz
		×2	5	-	142.5	5	-	100	5	-	100	MHz
		×1	5	-	285	5	-	200	5	-	200	MHz
HSIODR	Data rate (high-speed	×10	100	-	285	100	-	200	100	-	200	Mbps
I/O performance pin)	×8	80	-	285	80	-	200	80	-	200	Mbps	
		×7	70	-	285	70	-	200	70	-	200	Mbps
		×4	40	-	285	40	-	200	40	-	200	Mbps
		×2	20	-	285	20	-	200	20	-	200	Mbps
		×1	10	-	285	10	-	200	10	-	200	Mbps
f _{HSCLK}	Input clock frequency	×10	5	-	100	5	-	100	5	-	100	MHz
	(low-speed I/O performance pin)	×8	5	-	100	5	-	100	5	-	100	MHz
		×7	5	-	100	5	-	100	5	-	100	MHz
		×4	5	-	100	5	-	100	5	-	100	MHz
		×2	5	-	100	5	-	100	5	-	100	MHz
		×1	5	-	200	5	-	200	5	-	200	MHz
HSIODR	Data rate (low-speed I/O performance pin)	×10	100	-	200	100	-	200	100	-	200	Mbps
	· · · · ·			I	·	ı		I	I	I	cor	ntinued

Intel[®] MAX[®] 10 FPGA Device Datasheet

M10-DATASHEET | 2018.06.29

Symbol	Parameter	Mode	-I6, -A6	, -C7, -I7		-A7		-C8	
			Min	Max	Min	Мах	Min	Max	1
		×2	5	360	5	320	5	320	MHz
		×1	5	360	5	320	5	320	MHz
HSIODR	Data rate (high-speed I/O	×10	100	700	100	640	100	640	Mbps
	performance pin)	×8	80	720	80	640	80	640	Mbps
		×7	70	700	70	640	70	640	Mbps
		×4	40	720	40	640	40	640	Mbps
		×2	20	720	20	640	20	640	Mbps
		×1	10	360	10	320	10	320	Mbps
f _{HSCLK}	Input clock frequency (low-	×10	5	150	5	150	5	150	MHz
	speed I/O performance pin)	×8	5	150	5	150	5	150	MHz
		×7	5	150	5	150	5	150	MHz
		×4	5	150	5	150	5	150	MHz
		×2	5	150	5	150	5	150	MHz
		×1	5	300	5	300	5	300	MHz
HSIODR	Data rate (low-speed I/O	×10	100	300	100	300	100	300	Mbps
	performance pin)	×8	80	300	80	300	80	300	Mbps
		×7	70	300	70	300	70	300	Mbps
		×4	40	300	40	300	40	300	Mbps
		×2	20	300	20	300	20	300	Mbps
		×1	10	300	10	300	10	300	Mbps
SW	Sampling window (high- speed I/O performance pin)	-	-	510	-	510	_	510	ps
	· · ·				·	<u> </u>	I	(continued

Device	CFM Data	Size (bits)
	Without Memory Initialization	With Memory Initialization
10M25	4,140,000	4,780,000
10M40	7,840,000	9,670,000
10M50	7,840,000	9,670,000

Internal Configuration Time

The internal configuration time measurement is from the rising edge of nSTATUS signal to the rising edge of $CONF_DONE$ signal.

Table 53. Internal Configuration Time for Intel MAX 10 Devices (Uncompressed .rbf)

Device		Internal Configuration Time (ms)												
		Unenci	rypted		Encrypted									
	Without Memor	y Initialization	With Memory	Initialization	Without Memo	ry Initialization	With Memory Initialization							
	Min	Max	Min	Мах	Min	Max	Min	Max						
10M02	0.3	1.7	_	_	1.7	5.4	_	_						
10M04	0.6	2.7	1.0	3.4	5.0	15.0	6.8	19.6						
10M08	0.6	2.7	1.0	3.4	5.0	15.0	6.8	19.6						
10M16	1.1	3.7	1.4	4.5	9.3	25.3	11.7	31.5						
10M25	1.0	3.7	1.3	4.4	14.0	38.1	16.9	45.7						
10M40	2.6	6.9	3.2	9.8	41.5	112.1	51.7	139.6						
10M50	2.6	6.9	3.2	9.8	41.5	112.1	51.7	139.6						

Table 54. Internal Configuration Time for Intel MAX 10 Devices (Compressed .rbf)

Compression ratio depends on design complexity. The minimum value is based on the best case (25% of original .rbf sizes) and the maximum value is based on the typical case (70% of original .rbf sizes).

Device		Internal Configuration Time (ms)						
		Unencrypted	d/Encrypted					
	Without Memo	ory Initialization	With Memory	Initialization				
	Min	Max	Min	Мах				
10M02	0.3	5.2	-	-				
10M04	0.6	10.7	1.0	13.9				
10M08	0.6	10.7	1.0	13.9				
10M16	1.1	17.9	1.4	22.3				
10M25	1.1	26.9	1.4	32.2				
10M40	2.6	66.1	3.2	82.2				
10M50	2.6	66.1	3.2	82.2				

Internal Configuration Timing Parameter

Table 55. Internal Configuration Timing Parameter for Intel MAX 10 Devices

Symbol	Parameter	Device	Minimum	Maximum	Unit
t _{CD2UM}	CONF_DONE high to	10M02, 10M04, 10M08, 10M16, 10M25	182.8	385.5	μs
	user mode	10M40, 10M50	275.3	605.7	μs

I/O Timing

The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis.

The Intel Quartus Prime Timing Analyzer provides a more accurate and precise I/O timing data based on the specific device and design after you complete place-and-route.

Programmable IOE Delay for Column Pins

Table 58. IOE Programmable Delay on Column Pins for Intel MAX 10 Devices

The incremental values for the settings are generally linear. For exact values of each setting, refer to the **Assignment Name** column in the latest version of the Intel Quartus Prime software.

Parameter	Paths Affected	Number of	Minimum	Maximum Offset						Unit	
		Settings	Offset	Fast C	orner	Slow Corner					
				-17	-C8	-A6	-C7	-C8	-17	-A7	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	0.81	0.868	1.823	1.802	1.864	1.862	1.912	ns
Input delay from pin to input register	Pad to I/O input register	8	0	0.914	0.981	2.06	2.032	2.101	2.102	2.161	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.435	0.466	0.971	0.97	1.013	1.001	1.028	ns

The minimum and maximum offset timing numbers are in reference to setting '0' as available in the Intel Quartus Prime software.

Date	Version	Changes
January 2016	2016.01.22	Added description about automotive temperature devices in the Programming/Erasure Specifications table.
		Changed the pin capacitance to maximum values.
		Updated maximum TCCS specifications from 410 ps to 300 ps in the following tables:
		 True PPDS and Emulated PPDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices
		 True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices
		 Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices
		
		 True LVDS Transmitter Timing Specifications for Intel MAX 10 Single Supply Devices
		 True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices
		 Emulated LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Single Supply Devices
		- Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices
		Added new table: True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Single Supply Devices.
		 Updated maximum f_{HSCLK} and HSIODR specifications for –A6, –C7, and –I7 speed grades in True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices table.
		Updated SW specifications in the following tables:
		 LVDS Receiver Timing Specifications for Intel MAX 10 Single Supply Devices
		- LVDS, TMDS, HiSpi, SLVS, and Sub-LVDS Receiver Timing Specifications for Intel MAX 10 Dual Supply Devices
		 Updated maximum f_{HSCLK} and HSIODR (high-speed I/O performance pin) specifications for -I6, -A6, -C7, -I7 speed grades in LVDS, TMDS, HiSpi, SLVS, and Sub-LVDS Receiver Timing Specifications for Intel MAX 10 Dual Supply Devices table.
		Removed Internal Configuration Time information in the Uncompressed .rbf Sizes for Intel MAX 10 Devices table.
		Added Internal Configuration Time tables for uncompressed .rbf files and compressed .rbf files.
		Removed Preliminary tags for all tables.
November 2015	2015.11.02	Added description to Maximum Allowed Overshoot During Transitions over a 11.4-Year Time Frame topic.
		Added ADC_VREF Pin Leakage Current for Intel MAX 10 Devices table.
		• Updated the condition for "Bus-hold high, sustaining current" parameter from " $V_{IN} < V_{IL}$ (minimum)" to " $V_{IN} < V_{IH}$ (minimum)" in Bus Hold Parameters table.
		continued

Intel[®] MAX[®] 10 FPGA Device Datasheet M10-DATASHEET | 2018.06.29

Date	Version	Changes
		 Added -A6 speed grade in the following tables: Intel MAX 10 Device Grades and Speed Grades Supported Series OCT without Calibration Specifications for Intel MAX 10 Devices Clock Tree Specifications for Intel MAX 10 Devices Embedded Multiplier Specifications for Intel MAX 10 Devices Memory Block Performance Specifications for Intel MAX 10 Devices True PPDS and Emulated PPDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True Mini-LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices LVDS, TMDS, HiSpi, SLVS, and Sub-LVDS Receiver Timing Specifications for Intel MAX 10 Dual Supply Devices IOE Programmable Delay on Row Pins for Intel MAX 10 Devices UD Programmable Delay on Column Pins for Intel MAX 10 Devices Updated the dual supply mode performance in Embedded Multiplier Specifications for Intel MAX 10 Devices table. Updated the dual supply mode performance in Embedded Multiplier Specifications for Intel MAX 10 Devices table. Updated the dual supply mode performance in Memory Block Performance Specifications for Intel MAX 10 Devices table. Updated the dual supply mode performance in Memory Block Performance Specifications for Intel MAX 10 Devices table. U
June 2015	2015.06.12	 Updated the maximum values in Internal Weak Pull-Up Resistor for Intel MAX 10 Devices table. Removed Internal Weak Pull-Up Resistor equation. Updated the note for input resistance and input capacitance parameters in the ADC Performance Specifications table for both single supply and dual supply devices. Note: Download the SPICE models for simulation. Added a note to AC Accuracy - THD, SNR, and SINAD parameters in the ADC Performance Specifications for Intel MAX 10 Dual Supply Devices table. Note: When using internal V_{REF}, THD = 66 dB, SNR = 58 dB and SINAD = 57.5 dB for dedicated ADC input channels. Updated clock period jitter and cycle-to-cycle period jitter parameters in the Memory Output Clock Jitter Specifications for Intel MAX 10 Devices table.

Date	Version	Changes
May 2015	2015.05.04	 Updated a note to V_{CCIO} for both single supply and dual supply power supplies recommended operating conditions tables. Note updated: V_{CCIO} for all I/O banks must be powered up during user mode because V_{CCIO} I/O banks are used for the ADC and I/O functionalities.
		Updated Example for OCT Resistance Calculation after Calibration at Device Power-Up.
		• Removed a note to BLVDS in Differential I/O Standards Specifications for Intel MAX 10 Devices table. BLVDS is now supported in Intel MAX 10 single supply devices. Note removed: BLVDS TX is not supported in single supply devices.
		Updated ADC Performance Specifications for both single supply and dual supply devices.
		- Changed the symbol for Operating junction temperature range parameter from T_{Δ} to T_{1} .
		 Edited sampling rate maximum value from 1000 kSPS to 1 MSPS.
		 Added a note to analog input voltage parameter.
		 Removed input frequency, f_{IN} specification.
		 Updated the condition for DNL specification: External V_{REF}, no missing code. Added DNL specification for condition: Internal V_{REF}, no missing code.
		- Added notes to AC accuracy specifications that the value with prescalar enabled is 6dB less than the specification.
		- Added a note to On-Chip Temperature Sensor (absolute accuracy) parameter about the averaging calculation.
		Updated ADC Performance Specifications for Intel MAX 10 Single Supply Devices table.
		- Added condition for On-Chip Temperature Sensor (absolute accuracy) parameter: with 64 samples averaging.
		Updated ADC Performance Specifications for Intel MAX 10 Dual Supply Devices table.
		- Updated Digital Supply Voltage minimum value from 1.14 V to 1.15 V and maximum value from 1.26 V to 1.25 V.
		• Updated f _{HSCLK} and HSIODR specifications for –A7 speed grade in the following tables:
		 True PPDS and Emulated PPDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices
		- True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices
		- True Mini-LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Device
		 True LVDS Transmitter Timing Specifications for Intel MAX 10 Single Supply Devices
		 True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices
		 Emulated LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Single Supply Devices
		- Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices
		 LVDS Receiver Timing Specifications for Intel MAX 10 Single Supply Devices
		 LVDS, TMDS, HiSpi, SLVS, and Sub-LVDS Receiver Timing Specifications for Intel MAX 10 Dual Supply Devices
		continued