
## Intel - 10M16DAF484C8G Datasheet





Welcome to <u>E-XFL.COM</u>

#### Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

#### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

#### Details

| Details                        |                                                           |
|--------------------------------|-----------------------------------------------------------|
| Product Status                 | Active                                                    |
| Number of LABs/CLBs            | 1000                                                      |
| Number of Logic Elements/Cells | 16000                                                     |
| Total RAM Bits                 | 562176                                                    |
| Number of I/O                  | 320                                                       |
| Number of Gates                | -                                                         |
| Voltage - Supply               | 1.15V ~ 1.25V                                             |
| Mounting Type                  | Surface Mount                                             |
| Operating Temperature          | 0°C ~ 85°C (TJ)                                           |
| Package / Case                 | 484-BGA                                                   |
| Supplier Device Package        | 484-FBGA (23x23)                                          |
| Purchase URL                   | https://www.e-xfl.com/product-detail/intel/10m16daf484c8g |
|                                |                                                           |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



## **Operating Conditions**

Intel MAX 10 devices are rated according to a set of defined parameters. To maintain the highest possible performance and reliability of the Intel MAX 10 devices, you must consider the operating requirements described in this section.

## **Absolute Maximum Ratings**

This section defines the maximum operating conditions for Intel MAX 10 devices. The values are based on experiments conducted with the devices and theoretical modeling of breakdown and damage mechanisms. The functional operation of the device is not implied for these conditions.

**Caution:** Conditions outside the range listed in the absolute maximum ratings tables may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

#### **Single Supply Devices Absolute Maximum Ratings**

#### Table 2. Absolute Maximum Ratings for Intel MAX 10 Single Supply Devices

| Symbol              | Parameter                                                                                                     | Min  | Мах | Unit |
|---------------------|---------------------------------------------------------------------------------------------------------------|------|-----|------|
| V <sub>CC_ONE</sub> | Supply voltage for core and periphery through on-die voltage regulator                                        | -0.5 | 3.9 | V    |
| V <sub>CCIO</sub>   | Supply voltage for input and output buffers                                                                   | -0.5 | 3.9 | V    |
| V <sub>CCA</sub>    | Supply voltage for phase-locked loop (PLL) regulator and analog-to-<br>digital converter (ADC) block (analog) | -0.5 | 3.9 | V    |

#### **Dual Supply Devices Absolute Maximum Ratings**

#### Table 3. Absolute Maximum Ratings for Intel MAX 10 Dual Supply Devices

| Symbol            | Parameter                                     | Min  | Мах  | Unit      |
|-------------------|-----------------------------------------------|------|------|-----------|
| V <sub>CC</sub>   | Supply voltage for core and periphery         | -0.5 | 1.63 | V         |
| V <sub>CCIO</sub> | Supply voltage for input and output buffers   | -0.5 | 3.9  | V         |
| V <sub>CCA</sub>  | CCA Supply voltage for PLL regulator (analog) |      | 3.41 | V         |
|                   | •                                             |      |      | continued |



## Table 11. ADC\_VREF Pin Leakage Current for Intel MAX 10 Devices

| Symbol                | Parameter                    | Condition          | Min | Мах | Unit |
|-----------------------|------------------------------|--------------------|-----|-----|------|
| I <sub>adc_vref</sub> | ADC_VREF pin leakage current | Single supply mode | _   | 10  | μA   |
|                       |                              | Dual supply mode   | —   | 20  | μA   |

#### **Bus Hold Parameters**

Bus hold retains the last valid logic state after the source driving it either enters the high impedance state or is removed. Each I/O pin has an option to enable bus hold in user mode. Bus hold is always disabled in configuration mode.

## Table 12. Bus Hold Parameters for Intel MAX 10 Devices

| Parameter                         | Condition                                      |     | V <sub>CCI0</sub> (V) |       |       |      |      |     | Unit |     |      |     |      |    |
|-----------------------------------|------------------------------------------------|-----|-----------------------|-------|-------|------|------|-----|------|-----|------|-----|------|----|
|                                   |                                                | 1.  | 2                     | 1.    | .5    | 1.   | 8    | 2   | .5   | 3.  | .0   | 3.  | .3   |    |
|                                   |                                                | Min | Мах                   | Min   | Мах   | Min  | Мах  | Min | Max  | Min | Мах  | Min | Мах  | ]  |
| Bus-hold low, sustaining current  | V <sub>IN</sub> > V <sub>IL</sub><br>(maximum) | 8   | _                     | 12    | _     | 30   | _    | 50  | -    | 70  | -    | 70  | -    | μA |
| Bus-hold high, sustaining current | V <sub>IN</sub> < V <sub>IH</sub><br>(minimum) | -8  | _                     | -12   | _     | -30  | _    | -50 | -    | -70 | _    | -70 | -    | μA |
| Bus-hold low, overdrive current   | $0 V < V_{IN} < V_{CCIO}$                      | _   | 125                   | -     | 175   | —    | 200  | _   | 300  | —   | 500  | —   | 500  | μA |
| Bus-hold high, overdrive current  | 0 V < V <sub>IN</sub> <<br>V <sub>CCIO</sub>   | _   | -125                  | -     | -175  | _    | -200 | _   | -300 | -   | -500 | _   | -500 | μA |
| Bus-hold trip point               | _                                              | 0.3 | 0.9                   | 0.375 | 1.125 | 0.68 | 1.07 | 0.7 | 1.7  | 0.8 | 2    | 0.8 | 2    | V  |



- Subscript x refers to both V and T.
- $\Delta R_V$  is variation of resistance with voltage.
- $\Delta R_T$  is variation of resistance with temperature.
- dR/dT is the change percentage of resistance with temperature after calibration at device power-up.
- dR/dV is the change percentage of resistance with voltage after calibration at device power-up.
- V<sub>1</sub> is the initial voltage.
- V<sub>2</sub> is final voltage.

The following figure shows the example to calculate the change of 50  $\Omega$  I/O impedance from 25°C at 3.0 V to 85°C at 3.15 V.

### Figure 2. Example for OCT Resistance Calculation after Calibration at Device Power-Up

 $\Delta R_V = (3.15 - 3) \times 1000 \times -0.027 = -4.05$  $\Delta R_T = (85 - 25) \times 0.25 = 15$ 

Because  $\Delta R_V$  is negative,

 $MF_V = 1/(4.05/100 + 1) = 0.961$ 

Because  $\Delta R_T$  is positive,

 $MF_T = 15/100 + 1 = 1.15$  $MF = 0.961 \times 1.15 = 1.105$ 

 $R_{final} = 50 \times 1.105 = 55.25\Omega$ 



#### **Pin Capacitance**

#### Table 16. Pin Capacitance for Intel MAX 10 Devices

| Symbol               | Parameter                                                                                                                     | Maximum | Unit |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------|---------|------|
| C <sub>IOB</sub>     | Input capacitance on bottom I/O pins                                                                                          | 8       | pF   |
| C <sub>IOLRT</sub>   | Input capacitance on left/right/top I/O pins                                                                                  | 7       | pF   |
| C <sub>LVDSB</sub>   | Input capacitance on bottom I/O pins with dedicated LVDS output <sup>(9)</sup>                                                | 8       | pF   |
| C <sub>ADCL</sub>    | Input capacitance on left I/O pins with ADC input <sup>(10)</sup>                                                             | 9       | pF   |
| C <sub>VREFLRT</sub> | Input capacitance on left/right/top dual purpose $V_{\text{REF}}$ pin when used as $V_{\text{REF}}$ or user I/O pin $^{(11)}$ | 48      | pF   |
| C <sub>VREFB</sub>   | Input capacitance on bottom dual purpose $V_{\text{REF}}$ pin when used as $V_{\text{REF}}$ or user I/O pin                   | 50      | pF   |
| C <sub>CLKB</sub>    | Input capacitance on bottom dual purpose clock input pins (12)                                                                | 7       | pF   |
| C <sub>CLKLRT</sub>  | Input capacitance on left/right/top dual purpose clock input pins (12)                                                        | 6       | pF   |

#### Internal Weak Pull-Up Resistor

All I/O pins, except configuration, test, and JTAG pins, have an option to enable weak pull-up.

- <sup>(11)</sup> When  $V_{REF}$  pin is used as regular input or output,  $F_{max}$  performance is reduced due to higher pin capacitance. Using the  $V_{REF}$  pin capacitance specification from device datasheet, perform SI analysis on your board setup to determine the  $F_{max}$  of your system.
- <sup>(12)</sup> 10M40 and 10M50 devices have dual purpose clock input pins at top/bottom I/O banks.

<sup>&</sup>lt;sup>(9)</sup> Dedicated LVDS output buffer is only available at bottom I/O banks.

<sup>&</sup>lt;sup>(10)</sup> ADC pins are only available at left I/O banks.



#### Table 17. Internal Weak Pull-Up Resistor for Intel MAX 10 Devices

| Symbol | Parameter                                                                                             | Condition                  | Min | Тур | Мах | Unit |
|--------|-------------------------------------------------------------------------------------------------------|----------------------------|-----|-----|-----|------|
| R_PU   | pull-up resistor before and during configuration,<br>as well as user mode if the programmable pull-up | $V_{CCIO} = 3.3 V \pm 5\%$ | 7   | 12  | 34  | kΩ   |
|        |                                                                                                       | $V_{CCIO} = 3.0 V \pm 5\%$ | 8   | 13  | 37  | kΩ   |
|        | resistor option is enabled                                                                            | $V_{CCIO} = 2.5 V \pm 5\%$ | 10  | 15  | 46  | kΩ   |
|        |                                                                                                       | $V_{CCIO} = 1.8 V \pm 5\%$ | 16  | 25  | 75  | kΩ   |
|        |                                                                                                       | $V_{CCIO} = 1.5 V \pm 5\%$ | 20  | 36  | 106 | kΩ   |
|        |                                                                                                       | $V_{CCIO} = 1.2 V \pm 5\%$ | 33  | 82  | 179 | kΩ   |

Pin pull-up resistance values may be lower if an external source drives the pin higher than  $V_{CCIO}$ .

#### **Hot-Socketing Specifications**

#### Table 18. Hot-Socketing Specifications for Intel MAX 10 Devices

| Symbol                 | Parameter              | Maximum              |  |
|------------------------|------------------------|----------------------|--|
| I <sub>IOPIN(DC)</sub> | DC current per I/O pin | 300 µA               |  |
| I <sub>IOPIN(AC)</sub> | AC current per I/O pin | 8 mA <sup>(13)</sup> |  |

#### Hysteresis Specifications for Schmitt Trigger Input

Intel MAX 10 devices support Schmitt trigger input on all I/O pins. A Schmitt trigger feature introduces hysteresis to the input signal for improved noise immunity, especially for signal with slow edge rate.

<sup>(13)</sup> The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns,  $|I_{IOPIN}| = C dv/dt$ , in which C is I/O pin capacitance and dv/dt is the slew rate.



| Symbol                                        | Parameter                                                        | Condition                                                                                                    | Min | Тур | Max   | Unit      |
|-----------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----|-----|-------|-----------|
| f <sub>VCO</sub> <sup>(29)</sup>              | PLL internal voltage-controlled oscillator (VCO) operating range | -                                                                                                            | 600 | _   | 1300  | MHz       |
| f <sub>INDUTY</sub>                           | Input clock duty cycle                                           | -                                                                                                            | 40  | _   | 60    | %         |
| t <sub>INJITTER_CCJ</sub> (30)                | Input clock cycle-to-cycle jitter                                | $F_{INPFD} \ge 100 \text{ MHz}$                                                                              | _   | _   | 0.15  | UI        |
|                                               |                                                                  | $F_{INPFD} < 100 \text{ MHz}$                                                                                | _   | _   | ±750  | ps        |
| f <sub>OUT_EXT</sub> <sup>(28)</sup>          | PLL output frequency for external clock output                   | -                                                                                                            | _   | -   | 472.5 | MHz       |
| f <sub>OUT</sub>                              | PLL output frequency to global clock                             | -6 speed grade                                                                                               | _   | _   | 472.5 | MHz       |
|                                               |                                                                  | -7 speed grade                                                                                               | _   | _   | 450   | MHz       |
|                                               |                                                                  | -8 speed grade                                                                                               | _   | -   | 402.5 | MHz       |
| toutduty                                      | Duty cycle for external clock output                             | Duty cycle set to 50%                                                                                        | 45  | 50  | 55    | %         |
| t <sub>LOCK</sub>                             | Time required to lock from end of device configuration           | -                                                                                                            | _   | _   | 1     | ms        |
| t <sub>DLOCK</sub>                            | Time required to lock dynamically                                | After switchover, reconfiguring<br>any non-post-scale counters or<br>delays, or when areset is<br>deasserted | _   | _   | 1     | ms        |
| t <sub>OUTJITTER_PERIOD_IO</sub>              | Regular I/O period jitter                                        | $F_{OUT} \ge 100 \text{ MHz}$                                                                                | _   | -   | 650   | ps        |
| (31)                                          |                                                                  | F <sub>OUT</sub> < 100 MHz                                                                                   | _   | _   | 75    | mUI       |
| t <sub>OUTJITTER_CCJ_IO</sub> <sup>(31)</sup> | Regular I/O cycle-to-cycle jitter                                | F <sub>OUT</sub> ≥ 100 MHz                                                                                   | _   | _   | 650   | ps        |
|                                               |                                                                  | F <sub>OUT</sub> < 100 MHz                                                                                   | _   | _   | 75    | mUI       |
|                                               |                                                                  |                                                                                                              |     | 1   |       | continued |

<sup>&</sup>lt;sup>(29)</sup> The VCO frequency reported by the Intel Quartus Prime software in the PLL summary section of the compilation report takes into consideration the VCO post-scale counter  $\kappa$  value. Therefore, if the counter  $\kappa$  has a value of 2, the frequency reported can be lower than the f<sub>VCO</sub> specification.

<sup>(30)</sup> A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source, which is less than 200 ps.

<sup>(31)</sup> Peak-to-peak jitter with a probability level of 10<sup>-12</sup> (14 sigma, 99.9999999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied.



## **Embedded Multiplier Specifications**

### Table 30. Embedded Multiplier Specifications for Intel MAX 10 Devices

| Mode                   | Number of Multipliers | Power Supply Mode  | Performance |                       |     | Unit |
|------------------------|-----------------------|--------------------|-------------|-----------------------|-----|------|
|                        |                       |                    | -16         | -A6, -C7, -I7,<br>-A7 | -C8 |      |
| 9 × 9-bit multiplier   | 1                     | Single supply mode | 198         | 183                   | 160 | MHz  |
|                        |                       | Dual supply mode   | 310         | 260                   | 210 | MHz  |
| 18 × 18-bit multiplier | 1                     | Single supply mode | 198         | 183                   | 160 | MHz  |
|                        |                       | Dual supply mode   | 265         | 240                   | 190 | MHz  |

## **Memory Block Performance Specifications**

### Table 31. Memory Block Performance Specifications for Intel MAX 10 Devices

| Memory    | Mode                      | Resourc | es Used       | Power Supply Mode  | Performance |                       |     | Unit |
|-----------|---------------------------|---------|---------------|--------------------|-------------|-----------------------|-----|------|
|           |                           | LEs     | M9K<br>Memory |                    | -16         | -A6, -C7, -I7,<br>-A7 | -C8 |      |
| M9K Block | FIFO 256 × 36             | 47      | 1             | Single supply mode | 232         | 219                   | 204 | MHz  |
|           |                           |         |               | Dual supply mode   | 330         | 300                   | 250 | MHz  |
|           | Single-port 256 × 36      | 0       | 1             | Single supply mode | 232         | 219                   | 204 | MHz  |
|           |                           |         |               | Dual supply mode   | 330         | 300                   | 250 | MHz  |
|           | Simple dual-port 256 × 36 | 0       | 1             | Single supply mode | 232         | 219                   | 204 | MHz  |
|           | CLK                       |         |               | Dual supply mode   | 330         | 300                   | 250 | MHz  |
|           | True dual port 512 × 18   | 0       | 1             | Single supply mode | 232         | 219                   | 204 | MHz  |
|           | single CLK                |         |               | Dual supply mode   | 330         | 300                   | 250 | MHz  |



## **Internal Oscillator Specifications**

## Table 32. Internal Oscillator Frequencies for Intel MAX 10 Devices

You can access to the internal oscillator frequencies in this table. The duty cycle of internal oscillator is approximately 45%–55%.

| Device |         | Unit    |         |     |
|--------|---------|---------|---------|-----|
|        | Minimum | Typical | Maximum |     |
| 10M02  | 55      | 82      | 116     | MHz |
| 10M04  |         |         |         |     |
| 10M08  |         |         |         |     |
| 10M16  |         |         |         |     |
| 10M25  |         |         |         |     |
| 10M40  | 35      | 52      | 77      | MHz |
| 10M50  |         |         |         |     |

## **UFM Performance Specifications**

## Table 33. UFM Performance Specifications for Intel MAX 10 Devices

| Block | Mode                          | Interface              | Device                                      | Frequ           | iency | Unit |
|-------|-------------------------------|------------------------|---------------------------------------------|-----------------|-------|------|
|       |                               |                        |                                             | Minimum Maximum |       |      |
| UFM   | Avalon <sup>®</sup> -MM slave | Parallel (33)          | 10M02 <sup>(34)</sup>                       | 3.43            | 7.25  | MHz  |
|       |                               |                        | 10M04, 10M08, 10M16, 10M25, 10M40,<br>10M50 | 5               | 116   | MHz  |
|       |                               | Serial <sup>(34)</sup> | 10M02, 10M04, 10M08, 10M16, 10M25           | 3.43            | 7.25  | MHz  |
|       |                               |                        | 10M40, 10M50                                | 2.18            | 4.81  | MHz  |

<sup>&</sup>lt;sup>(33)</sup> Clock source is derived from user, except for 10M02 device.

 $<sup>^{(34)}</sup>$  Clock source is derived from 1/16 of the frequency of the internal oscillator.



## **Dual Supply Devices ADC Performance Specifications**

## Table 35. ADC Performance Specifications for Intel MAX 10 Dual Supply Devices

|                        | Parameter                  | Symbol               | Condition                                      | Min                           | Тур  | Мах                  | Unit       |
|------------------------|----------------------------|----------------------|------------------------------------------------|-------------------------------|------|----------------------|------------|
| ADC resolution         |                            | _                    | _                                              | _                             | _    | 12                   | bits       |
| Analog supply voltage  | 2                          | V <sub>CCA_ADC</sub> | -                                              | 2.375                         | 2.5  | 2.625                | V          |
| Digital supply voltage | 2                          | V <sub>CCINT</sub>   | -                                              | 1.15                          | 1.2  | 1.25                 | V          |
| External reference vo  | ltage                      | V <sub>REF</sub>     | -                                              | V <sub>CCA_ADC</sub> -<br>0.5 | _    | V <sub>CCA_ADC</sub> | V          |
| Sampling rate          |                            | Fs                   | Accumulative sampling rate                     | _                             | _    | 1                    | MSPS       |
| Operating junction te  | mperature range            | Tj                   | _                                              | -40                           | 25   | 125                  | °C         |
| Analog input voltage   |                            | V <sub>IN</sub>      | Prescalar disabled                             | 0                             | _    | V <sub>REF</sub>     | V          |
|                        |                            |                      | Prescalar enabled <sup>(42)</sup>              | 0                             | _    | 3                    | V          |
| Analog supply current  | t (DC)                     | I <sub>ACC_ADC</sub> | Average current                                | _                             | 275  | 450                  | μA         |
| Digital supply current | : (DC)                     | I <sub>CCINT</sub>   | Average current                                | _                             | 65   | 150                  | μA         |
| Input resistance       |                            | R <sub>IN</sub>      | _                                              | _                             | (43) | -                    | -          |
| Input capacitance      |                            | C <sub>IN</sub>      | _                                              | _                             | (43) | -                    | -          |
| DC Accuracy            | Offset error and drift     | E <sub>offset</sub>  | Prescalar disabled                             | -0.2                          | _    | 0.2                  | %FS        |
|                        |                            |                      | Prescalar enabled                              | -0.5                          | _    | 0.5                  | %FS        |
|                        | Gain error and drift       | Egain                | Prescalar disabled                             | -0.5                          | _    | 0.5                  | %FS        |
|                        |                            |                      | Prescalar enabled                              | -0.75                         | _    | 0.75                 | %FS        |
|                        | Differential non linearity | DNL                  | External V <sub>REF</sub> , no missing<br>code | -0.9                          | _    | 0.9                  | LSB        |
|                        | 1                          | 1                    |                                                |                               |      | 1                    | continued. |

<sup>(42)</sup> Prescalar function divides the analog input voltage by half. The analog input handles up to 3 V input for the Intel MAX 10 dual supply devices.

<sup>&</sup>lt;sup>(43)</sup> Download the SPICE models for simulation.



| Symbol            | Parameter                                                                                                                             | Mode                               |     | -C7, -I7 |     |     | -A7 |     |     | -C8 |     | Unit |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----|----------|-----|-----|-----|-----|-----|-----|-----|------|
|                   |                                                                                                                                       |                                    | Min | Тур      | Max | Min | Тур | Max | Min | Тур | Max | ]    |
| t <sub>RISE</sub> | Rise time                                                                                                                             | 20 - 80%, C <sub>LOAD</sub> = 5 pF | _   | 500      | -   | -   | 500 | _   | -   | 500 | _   | ps   |
| t <sub>FALL</sub> | Fall time                                                                                                                             | 20 - 80%, C <sub>LOAD</sub> = 5 pF | _   | 500      | -   | -   | 500 | _   | -   | 500 | _   | ps   |
| t <sub>LOCK</sub> | Time required for the<br>PLL to lock, after<br>CONF_DONE signal<br>goes high, indicating<br>the completion of<br>device configuration | _                                  | _   | _        | 1   | _   | _   | 1   | _   | _   | 1   | ms   |

## **Dual Supply Devices True LVDS Transmitter Timing Specifications**

#### Table 42. True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices

| Symbol             | Parameter   | Mode |     | -16 |     | -A  | 6, -C7, - | ·I7 |     | -A7 |     |     | -C8 |      | Unit |
|--------------------|-------------|------|-----|-----|-----|-----|-----------|-----|-----|-----|-----|-----|-----|------|------|
|                    |             |      | Min | Тур | Max | Min | Тур       | Max | Min | Тур | Max | Min | Тур | Max  |      |
| f <sub>HSCLK</sub> | Input clock | ×10  | 5   | -   | 360 | 5   | _         | 340 | 5   | -   | 310 | 5   | -   | 300  | MHz  |
|                    | frequency   | ×8   | 5   | -   | 360 | 5   | _         | 360 | 5   | -   | 320 | 5   | -   | 320  | MHz  |
|                    |             | ×7   | 5   | -   | 360 | 5   | _         | 340 | 5   | -   | 310 | 5   | -   | 300  | MHz  |
|                    |             | ×4   | 5   | -   | 360 | 5   | _         | 350 | 5   | -   | 320 | 5   | -   | 320  | MHz  |
|                    |             | ×2   | 5   | -   | 360 | 5   | _         | 350 | 5   | -   | 320 | 5   | -   | 320  | MHz  |
|                    |             | ×1   | 5   | -   | 360 | 5   | _         | 350 | 5   | -   | 320 | 5   | -   | 320  | MHz  |
| HSIODR             | Data rate   | ×10  | 100 | _   | 720 | 100 | _         | 680 | 100 | -   | 620 | 100 | -   | 600  | Mbps |
|                    |             | ×8   | 80  | _   | 720 | 80  | _         | 720 | 80  | -   | 640 | 80  | -   | 640  | Mbps |
|                    |             | ×7   | 70  | -   | 720 | 70  | _         | 680 | 70  | -   | 620 | 70  | -   | 600  | Mbps |
|                    |             | ×4   | 40  | -   | 720 | 40  | _         | 700 | 40  | -   | 640 | 40  | -   | 640  | Mbps |
|                    |             | ×2   | 20  | -   | 720 | 20  | _         | 700 | 20  | -   | 640 | 20  | -   | 640  | Mbps |
|                    |             |      |     |     |     |     |           |     |     |     |     |     |     | cont | nued |

True **LVDS** transmitter is only supported at the bottom I/O banks.



| Symbol                                   | Parameter                                                                                                                                   | Mode                                  |     | -16 |     | -A  | 6, -C7, - | 17  |     | -A7 |     |     | -C8 |     | Unit |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----|-----|-----|-----|-----------|-----|-----|-----|-----|-----|-----|-----|------|
|                                          |                                                                                                                                             |                                       | Min | Тур | Мах | Min | Тур       | Мах | Min | Тур | Мах | Min | Тур | Max |      |
|                                          |                                                                                                                                             | ×1                                    | 10  | -   | 360 | 10  | _         | 350 | 10  | _   | 320 | 10  | _   | 320 | Mbps |
| t <sub>DUTY</sub>                        | Duty cycle on<br>transmitter output<br>clock                                                                                                | -                                     | 45  | -   | 55  | 45  | _         | 55  | 45  | -   | 55  | 45  | _   | 55  | %    |
| TCCS <sup>(65)</sup>                     | Transmitter<br>channel-to-<br>channel skew                                                                                                  | -                                     | _   | -   | 300 | _   | _         | 300 | -   | -   | 300 | -   | _   | 300 | ps   |
| t <sub>x</sub><br><sub>Jitter</sub> (66) | Output jitter                                                                                                                               | -                                     | -   | -   | 380 | _   | _         | 380 | -   | -   | 380 | -   | _   | 380 | ps   |
| t <sub>RISE</sub>                        | Rise time                                                                                                                                   | 20 - 80%, C <sub>LOAD</sub><br>= 5 pF | -   | 500 | -   | _   | 500       | _   | -   | 500 | -   | -   | 500 | _   | ps   |
| t <sub>FALL</sub>                        | Fall time                                                                                                                                   | 20 - 80%, C <sub>LOAD</sub><br>= 5 pF | -   | 500 | -   | -   | 500       | _   | -   | 500 | _   | -   | 500 | _   | ps   |
| t <sub>LOCK</sub>                        | Time required for<br>the PLL to lock,<br>after CONF_DONE<br>signal goes high,<br>indicating the<br>completion of<br>device<br>configuration | _                                     | _   | _   | 1   | _   | _         | 1   | _   | _   | 1   | _   | _   | 1   | ms   |

 $<sup>^{(65)}</sup>$  TCCS specifications apply to I/O banks from the same side only.

<sup>&</sup>lt;sup>(66)</sup> TX jitter is the jitter induced from core noise and I/O switching noise.

#### Intel<sup>®</sup> MAX<sup>®</sup> 10 FPGA Device Datasheet

M10-DATASHEET | 2018.06.29



| Symbol             | Parameter                                            | Mode | -I6, -A6 | , -C7, -I7 |     | 47       | -0  | 8   | Unit      |
|--------------------|------------------------------------------------------|------|----------|------------|-----|----------|-----|-----|-----------|
|                    |                                                      |      | Min      | Max        | Min | Мах      | Min | Max | 1         |
|                    |                                                      | ×2   | 5        | 360        | 5   | 320      | 5   | 320 | MHz       |
|                    |                                                      | ×1   | 5        | 360        | 5   | 320      | 5   | 320 | MHz       |
| HSIODR             | Data rate (high-speed I/O                            | ×10  | 100      | 700        | 100 | 640      | 100 | 640 | Mbps      |
|                    | performance pin)                                     | ×8   | 80       | 720        | 80  | 640      | 80  | 640 | Mbps      |
|                    |                                                      | ×7   | 70       | 700        | 70  | 640      | 70  | 640 | Mbps      |
|                    |                                                      | ×4   | 40       | 720        | 40  | 640      | 40  | 640 | Mbps      |
|                    |                                                      | ×2   | 20       | 720        | 20  | 640      | 20  | 640 | Mbps      |
|                    |                                                      | ×1   | 10       | 360        | 10  | 320      | 10  | 320 | Mbps      |
| f <sub>HSCLK</sub> | Input clock frequency (low-                          | ×10  | 5        | 150        | 5   | 150      | 5   | 150 | MHz       |
|                    | speed I/O performance pin)                           | ×8   | 5        | 150        | 5   | 150      | 5   | 150 | MHz       |
|                    |                                                      | ×7   | 5        | 150        | 5   | 150      | 5   | 150 | MHz       |
|                    |                                                      | ×4   | 5        | 150        | 5   | 150      | 5   | 150 | MHz       |
|                    |                                                      | ×2   | 5        | 150        | 5   | 150      | 5   | 150 | MHz       |
|                    |                                                      | ×1   | 5        | 300        | 5   | 300      | 5   | 300 | MHz       |
| HSIODR             | Data rate (low-speed I/O                             | ×10  | 100      | 300        | 100 | 300      | 100 | 300 | Mbps      |
|                    | performance pin)                                     | ×8   | 80       | 300        | 80  | 300      | 80  | 300 | Mbps      |
|                    |                                                      | ×7   | 70       | 300        | 70  | 300      | 70  | 300 | Mbps      |
|                    |                                                      | ×4   | 40       | 300        | 40  | 300      | 40  | 300 | Mbps      |
|                    |                                                      | ×2   | 20       | 300        | 20  | 300      | 20  | 300 | Mbps      |
|                    |                                                      | ×1   | 10       | 300        | 10  | 300      | 10  | 300 | Mbps      |
| SW                 | Sampling window (high-<br>speed I/O performance pin) | -    | -        | 510        | -   | 510      | _   | 510 | ps        |
|                    | · · ·                                                |      |          |            | ·   | <u> </u> | I   | (   | continued |



# **JTAG Timing Parameters**

## Table 49. JTAG Timing Parameters for Intel MAX 10 Devices

The values are based on  $C_L = 10 \text{ pF of TDO}$ .

The affected Boundary Scan Test (BST) instructions are SAMPLE/PRELOAD, EXTEST, INTEST, and CHECK\_STATUS.

| Symbol                | Parameter                                | Non-BST and non- | -CONFIG_IO Operation                                                                                                           | BST and C | ONFIG_IO Operation                                                                                                             | Unit |
|-----------------------|------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------|------|
|                       |                                          | Minimum          | Maximum                                                                                                                        | Minimum   | Maximum                                                                                                                        |      |
| t <sub>JCP</sub>      | TCK clock period                         | 40               | -                                                                                                                              | 50        | -                                                                                                                              | ns   |
| t <sub>JCH</sub>      | TCK clock high time                      | 20               | -                                                                                                                              | 25        | -                                                                                                                              | ns   |
| t <sub>JCL</sub>      | TCK clock low time                       | 20               | -                                                                                                                              | 25        | -                                                                                                                              | ns   |
| t <sub>JPSU_TDI</sub> | JTAG port setup time                     | 2                | -                                                                                                                              | 2         | -                                                                                                                              | ns   |
| t <sub>JPSU_TMS</sub> | JTAG port setup time                     | 3                | -                                                                                                                              | 3         | -                                                                                                                              | ns   |
| t <sub>JPH</sub>      | JTAG port hold time                      | 10               | -                                                                                                                              | 10        | -                                                                                                                              | ns   |
| t <sub>JPCO</sub>     | JTAG port clock to output                | _                | <ul> <li>15 (for V<sub>CCIO</sub> = 3.3, 3.0, and 2.5 V)</li> <li>17 (for V<sub>CCIO</sub> = 1.8 and 1.5 V)</li> </ul>         | _         | • 18 (for $V_{CCIO} = 3.3, 3.0,$<br>and 2.5 V)<br>• 20 (for $V_{CCIO} = 1.8$ and<br>1.5 V)                                     | ns   |
| t <sub>JPZX</sub>     | JTAG port high impedance to valid output | -                | <ul> <li>15 (for V<sub>CCIO</sub> = 3.3, 3.0,<br/>and 2.5 V)</li> <li>17 (for V<sub>CCIO</sub> = 1.8 and<br/>1.5 V)</li> </ul> | _         | <ul> <li>15 (for V<sub>CCIO</sub> = 3.3, 3.0,<br/>and 2.5 V)</li> <li>17 (for V<sub>CCIO</sub> = 1.8 and<br/>1.5 V)</li> </ul> | ns   |
| t <sub>JPXZ</sub>     | JTAG port valid output to high impedance | -                | <ul> <li>15 (for V<sub>CCIO</sub> = 3.3, 3.0,<br/>and 2.5 V)</li> <li>17 (for V<sub>CCIO</sub> = 1.8 and<br/>1.5 V)</li> </ul> | _         | <ul> <li>15 (for V<sub>CCIO</sub> = 3.3, 3.0,<br/>and 2.5 V)</li> <li>17 (for V<sub>CCIO</sub> = 1.8 and<br/>1.5 V)</li> </ul> | ns   |



# **Remote System Upgrade Circuitry Timing Specifications**

## Table 50. Remote System Upgrade Circuitry Timing Specifications for Intel MAX 10 Devices

| Parameter                | Device                            | Minimum | Maximum | Unit |
|--------------------------|-----------------------------------|---------|---------|------|
| t <sub>MAX_RU_CLK</sub>  | All                               | —       | 40      | MHz  |
| t <sub>RU_nCONFIG</sub>  | 10M02, 10M04, 10M08, 10M16, 10M25 | 250     | _       | ns   |
|                          | 10M40, 10M50                      | 350     | —       | ns   |
| t <sub>ru_nrstimer</sub> | 10M02, 10M04, 10M08, 10M16, 10M25 | 300     | —       | ns   |
|                          | 10M40, 10M50                      | 500     | —       | ns   |

## **User Watchdog Internal Circuitry Timing Specifications**

#### Table 51. User Watchdog Timer Specifications for Intel MAX 10 Devices

The specifications are subject to PVT changes.

| Parameter               | Device                               | Minimum | Typical | Maximum | Unit |
|-------------------------|--------------------------------------|---------|---------|---------|------|
| User watchdog frequency | 10M02, 10M04, 10M08, 10M16,<br>10M25 | 3.4     | 5.1     | 7.3     | MHz  |
|                         | 10M40, 10M50                         | 2.2     | 3.3     | 4.8     | MHz  |

# Uncompressed Raw Binary File (.rbf) Sizes

## Table 52. Uncompressed .rbf Sizes for Intel MAX 10 Devices

| Device | CFM Data                                                                                      | Size (bits)                |  |  |  |
|--------|-----------------------------------------------------------------------------------------------|----------------------------|--|--|--|
|        | Without Memory Initialization                                                                 | With Memory Initialization |  |  |  |
| 10M02  | 554,000         —           1,540,000         1,880,000           1,540,000         1,880,000 |                            |  |  |  |
| 10M04  | 1,540,000                                                                                     | 1,880,000                  |  |  |  |
| 10M08  | 1,540,000                                                                                     | 1,880,000                  |  |  |  |
| 10M16  | 2,800,000                                                                                     | 3,430,000                  |  |  |  |
|        | •                                                                                             | continued                  |  |  |  |



| Device | CFM Data Size (bits)          |                            |  |  |  |  |  |
|--------|-------------------------------|----------------------------|--|--|--|--|--|
|        | Without Memory Initialization | With Memory Initialization |  |  |  |  |  |
| 10M25  | 4,140,000                     | 4,780,000                  |  |  |  |  |  |
| 10M40  | 7,840,000                     | 9,670,000                  |  |  |  |  |  |
| 10M50  | 7,840,000                     | 9,670,000                  |  |  |  |  |  |

# **Internal Configuration Time**

The internal configuration time measurement is from the rising edge of nSTATUS signal to the rising edge of  $CONF_DONE$  signal.

## Table 53. Internal Configuration Time for Intel MAX 10 Devices (Uncompressed .rbf)

| Device |               |                  |             | Internal Configu | ration Time (ms) |                   |             |                     |  |
|--------|---------------|------------------|-------------|------------------|------------------|-------------------|-------------|---------------------|--|
|        |               | Unenci           | rypted      |                  |                  | Encry             | pted        |                     |  |
|        | Without Memor | y Initialization | With Memory | Initialization   | Without Memo     | ry Initialization | With Memory | nory Initialization |  |
|        | Min           | Max              | Min         | Мах              | Min              | Max               | Min         | Max                 |  |
| 10M02  | 0.3           | 1.7              | _           | _                | 1.7              | 5.4               | _           | _                   |  |
| 10M04  | 0.6           | 2.7              | 1.0         | 3.4              | 5.0              | 15.0              | 6.8         | 19.6                |  |
| 10M08  | 0.6           | 2.7              | 1.0         | 3.4              | 5.0              | 15.0              | 6.8         | 19.6                |  |
| 10M16  | 1.1           | 3.7              | 1.4         | 4.5              | 9.3              | 25.3              | 11.7        | 31.5                |  |
| 10M25  | 1.0           | 3.7              | 1.3         | 4.4              | 14.0             | 38.1              | 16.9        | 45.7                |  |
| 10M40  | 2.6           | 6.9              | 3.2         | 9.8              | 41.5             | 112.1             | 51.7        | 139.6               |  |
| 10M50  | 2.6           | 6.9              | 3.2         | 9.8              | 41.5             | 112.1             | 51.7        | 139.6               |  |



# **Programmable IOE Delay for Column Pins**

### Table 58. IOE Programmable Delay on Column Pins for Intel MAX 10 Devices

The incremental values for the settings are generally linear. For exact values of each setting, refer to the **Assignment Name** column in the latest version of the Intel Quartus Prime software.

| Parameter                                      | Paths Affected                | Number of | Minimum | Maximum Offset |       |             |       |       |       | Unit  |    |
|------------------------------------------------|-------------------------------|-----------|---------|----------------|-------|-------------|-------|-------|-------|-------|----|
|                                                |                               | Settings  | Offset  | Fast C         | orner | Slow Corner |       |       |       |       |    |
|                                                |                               |           |         | -17            | -C8   | -A6         | -C7   | -C8   | -17   | -A7   |    |
| Input delay from<br>pin to internal<br>cells   | Pad to I/O<br>dataout to core | 7         | 0       | 0.81           | 0.868 | 1.823       | 1.802 | 1.864 | 1.862 | 1.912 | ns |
| Input delay from<br>pin to input<br>register   | Pad to I/O input register     | 8         | 0       | 0.914          | 0.981 | 2.06        | 2.032 | 2.101 | 2.102 | 2.161 | ns |
| Delay from<br>output register to<br>output pin | I/O output<br>register to pad | 2         | 0       | 0.435          | 0.466 | 0.971       | 0.97  | 1.013 | 1.001 | 1.028 | ns |

The minimum and maximum offset timing numbers are in reference to setting '0' as available in the Intel Quartus Prime software.



| Term                          | Definition                                                                                                                                                                                  |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| t <sub>DUTY</sub>             | HIGH-SPEED I/O Block: Duty cycle on high-speed transmitter output clock.                                                                                                                    |
| t <sub>FALL</sub>             | Signal high-to-low transition time (80–20%).                                                                                                                                                |
| t <sub>H</sub>                | Input register hold time.                                                                                                                                                                   |
| Timing Unit Interval (TUI)    | HIGH-SPEED I/O block: The timing budget allowed for skew, propagation delays, and data sampling window. (TUI = $1/(\text{Receiver Input Clock Frequency Multiplication Factor}) = t_C/w$ ). |
| t <sub>INJITTER</sub>         | Period jitter on PLL clock input.                                                                                                                                                           |
| t <sub>OUTJITTER_DEDCLK</sub> | Period jitter on dedicated clock output driven by a PLL.                                                                                                                                    |
| t <sub>OUTJITTER_IO</sub>     | Period jitter on general purpose I/O driven by a PLL.                                                                                                                                       |
| t <sub>pllcin</sub>           | Delay from PLL inclk pad to I/O input register.                                                                                                                                             |
| t <sub>pllcout</sub>          | Delay from PLL inclk pad to I/O output register.                                                                                                                                            |
| t <sub>RISE</sub>             | Signal low-to-high transition time (20–80%).                                                                                                                                                |
| t <sub>su</sub>               | Input register setup time.                                                                                                                                                                  |
| V <sub>CM(DC)</sub>           | DC common mode input voltage.                                                                                                                                                               |
| V <sub>DIF(AC)</sub>          | AC differential input voltage: The minimum AC input differential voltage required for switching.                                                                                            |
| V <sub>DIF(DC)</sub>          | DC differential input voltage: The minimum DC input differential voltage required for switching.                                                                                            |
| V <sub>HYS</sub>              | Hysteresis for Schmitt trigger input.                                                                                                                                                       |
| V <sub>ICM</sub>              | Input common mode voltage: The common mode of the differential signal at the receiver.                                                                                                      |
| V <sub>ID</sub>               | Input differential Voltage Swing: The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.                               |
| V <sub>IH</sub>               | Voltage input high: The minimum positive voltage applied to the input which is accepted by the device as a logic high.                                                                      |
| V <sub>IH(AC)</sub>           | High-level AC input voltage.                                                                                                                                                                |
| V <sub>IH(DC)</sub>           | High-level DC input voltage.                                                                                                                                                                |
| V <sub>IL</sub>               | Voltage input low: The maximum positive voltage applied to the input which is accepted by the device as a logic low.                                                                        |
| V <sub>IL (AC)</sub>          | Low-level AC input voltage.                                                                                                                                                                 |
| V <sub>IL (DC)</sub>          | Low-level DC input voltage.                                                                                                                                                                 |
| V <sub>IN</sub>               | DC input voltage.                                                                                                                                                                           |
|                               | continued                                                                                                                                                                                   |



| Date          | Version    | Changes                                                                                                                                                                                                                                                                          |
|---------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| January 2016  | 2016.01.22 | Added description about automotive temperature devices in the Programming/Erasure Specifications table.                                                                                                                                                                          |
|               |            | Changed the pin capacitance to maximum values.                                                                                                                                                                                                                                   |
|               |            | Updated maximum TCCS specifications from 410 ps to 300 ps in the following tables:                                                                                                                                                                                               |
|               |            | <ul> <li>True PPDS and Emulated PPDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices</li> </ul>                                                                                                                                                      |
|               |            | <ul> <li>True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices</li> </ul>                                                                                                                                                      |
|               |            | <ul> <li>Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices</li> </ul>                                                                                                                                                                    |
|               |            | <ul> <li></li></ul>                                                                                                                                                                                                                                                              |
|               |            | <ul> <li>True LVDS Transmitter Timing Specifications for Intel MAX 10 Single Supply Devices</li> </ul>                                                                                                                                                                           |
|               |            | <ul> <li>True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices</li> </ul>                                                                                                                                                                             |
|               |            | <ul> <li>Emulated LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Single Supply Devices</li> </ul>                                                                                                                                                                  |
|               |            | - Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices                                                                                                                                                                  |
|               |            | Added new table: True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Single Supply Devices.                                                                                                                                                      |
|               |            | <ul> <li>Updated maximum f<sub>HSCLK</sub> and HSIODR specifications for –A6, –C7, and –I7 speed grades in True LVDS Transmitter Timing<br/>Specifications for Intel MAX 10 Dual Supply Devices table.</li> </ul>                                                                |
|               |            | Updated SW specifications in the following tables:                                                                                                                                                                                                                               |
|               |            | <ul> <li>LVDS Receiver Timing Specifications for Intel MAX 10 Single Supply Devices</li> </ul>                                                                                                                                                                                   |
|               |            | - LVDS, TMDS, HiSpi, SLVS, and Sub-LVDS Receiver Timing Specifications for Intel MAX 10 Dual Supply Devices                                                                                                                                                                      |
|               |            | <ul> <li>Updated maximum f<sub>HSCLK</sub> and HSIODR (high-speed I/O performance pin) specifications for -I6, -A6, -C7, -I7 speed<br/>grades in LVDS, TMDS, HiSpi, SLVS, and Sub-LVDS Receiver Timing Specifications for Intel MAX 10 Dual Supply Devices<br/>table.</li> </ul> |
|               |            | Removed Internal Configuration Time information in the Uncompressed .rbf Sizes for Intel MAX 10 Devices table.                                                                                                                                                                   |
|               |            | Added Internal Configuration Time tables for uncompressed .rbf files and compressed .rbf files.                                                                                                                                                                                  |
|               |            | Removed Preliminary tags for all tables.                                                                                                                                                                                                                                         |
| November 2015 | 2015.11.02 | Added description to Maximum Allowed Overshoot During Transitions over a 11.4-Year Time Frame topic.                                                                                                                                                                             |
|               |            | Added ADC_VREF Pin Leakage Current for Intel MAX 10 Devices table.                                                                                                                                                                                                               |
|               |            | • Updated the condition for "Bus-hold high, sustaining current" parameter from " $V_{IN} < V_{IL}$ (minimum)" to " $V_{IN} < V_{IH}$ (minimum)" in Bus Hold Parameters table.                                                                                                    |
|               |            | continued                                                                                                                                                                                                                                                                        |



| Date     | Version    | Changes                                                                                                                                                                                                                                                                                                                             |
|----------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| May 2015 | 2015.05.04 | <ul> <li>Updated a note to V<sub>CCIO</sub> for both single supply and dual supply power supplies recommended operating conditions tables.<br/>Note updated: V<sub>CCIO</sub> for all I/O banks must be powered up during user mode because V<sub>CCIO</sub> I/O banks are used for the<br/>ADC and I/O functionalities.</li> </ul> |
|          |            | Updated Example for OCT Resistance Calculation after Calibration at Device Power-Up.                                                                                                                                                                                                                                                |
|          |            | • Removed a note to BLVDS in Differential I/O Standards Specifications for Intel MAX 10 Devices table. BLVDS is now supported in Intel MAX 10 single supply devices. Note removed: BLVDS TX is not supported in single supply devices.                                                                                              |
|          |            | Updated ADC Performance Specifications for both single supply and dual supply devices.                                                                                                                                                                                                                                              |
|          |            | - Changed the symbol for Operating junction temperature range parameter from $T_{\Delta}$ to $T_{1}$ .                                                                                                                                                                                                                              |
|          |            | <ul> <li>Edited sampling rate maximum value from 1000 kSPS to 1 MSPS.</li> </ul>                                                                                                                                                                                                                                                    |
|          |            | <ul> <li>Added a note to analog input voltage parameter.</li> </ul>                                                                                                                                                                                                                                                                 |
|          |            | <ul> <li>Removed input frequency, f<sub>IN</sub> specification.</li> </ul>                                                                                                                                                                                                                                                          |
|          |            | <ul> <li>Updated the condition for DNL specification: External V<sub>REF</sub>, no missing code. Added DNL specification for condition:<br/>Internal V<sub>REF</sub>, no missing code.</li> </ul>                                                                                                                                   |
|          |            | - Added notes to AC accuracy specifications that the value with prescalar enabled is 6dB less than the specification.                                                                                                                                                                                                               |
|          |            | - Added a note to On-Chip Temperature Sensor (absolute accuracy) parameter about the averaging calculation.                                                                                                                                                                                                                         |
|          |            | Updated ADC Performance Specifications for Intel MAX 10 Single Supply Devices table.                                                                                                                                                                                                                                                |
|          |            | - Added condition for On-Chip Temperature Sensor (absolute accuracy) parameter: with 64 samples averaging.                                                                                                                                                                                                                          |
|          |            | Updated ADC Performance Specifications for Intel MAX 10 Dual Supply Devices table.                                                                                                                                                                                                                                                  |
|          |            | - Updated Digital Supply Voltage minimum value from 1.14 V to 1.15 V and maximum value from 1.26 V to 1.25 V.                                                                                                                                                                                                                       |
|          |            | • Updated f <sub>HSCLK</sub> and HSIODR specifications for –A7 speed grade in the following tables:                                                                                                                                                                                                                                 |
|          |            | <ul> <li>True PPDS and Emulated PPDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices</li> </ul>                                                                                                                                                                                                         |
|          |            | - True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices                                                                                                                                                                                                                           |
|          |            | - True Mini-LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Device                                                                                                                                                                                                                  |
|          |            | <ul> <li>True LVDS Transmitter Timing Specifications for Intel MAX 10 Single Supply Devices</li> </ul>                                                                                                                                                                                                                              |
|          |            | <ul> <li>True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices</li> </ul>                                                                                                                                                                                                                                |
|          |            | <ul> <li>Emulated LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Single Supply Devices</li> </ul>                                                                                                                                                                                                                     |
|          |            | - Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices                                                                                                                                                                                                                     |
|          |            | <ul> <li>LVDS Receiver Timing Specifications for Intel MAX 10 Single Supply Devices</li> </ul>                                                                                                                                                                                                                                      |
|          |            | <ul> <li>LVDS, TMDS, HiSpi, SLVS, and Sub-LVDS Receiver Timing Specifications for Intel MAX 10 Dual Supply Devices</li> </ul>                                                                                                                                                                                                       |
|          |            | continued                                                                                                                                                                                                                                                                                                                           |



| Image: State of the second | Date          | Version    | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| table. This note is not valid: All V <sub>CCA</sub> pins must be connected together for EQFP package.Corrected the maximum value for t <sub>OUTJITTER_CCJ_IO</sub> (F <sub>OUT</sub> ≥ 100 MHz) from 60 ps to 650 ps in PLL Specifications for Intel<br>MAX 10 Devices table.December 20142014.12.15Added statements in the I/O Pin Leakage Current section: Input channel leakage of ADC I/O pins due to hot socket is up<br>to maximum of 1.8 mA. The input channel leakage occurs when the ADC IP core is enabled or disabled. This is applicable<br>to all Intel MAX 10 devices with ADC IP core, which are 10M04, 10M08, 10M16, 10M25, 10M40, and 10M50 devices. The<br>ADC I/O pins are in Bank 1A.Added a statement in the I/O Standards Specifications section: You must perform timing closure analysis to determine the<br>maximum achievable frequency for general purpose I/O standards.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |            | <ul> <li>True PPDS and Emulated PPDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices</li> <li>True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices</li> <li>Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices</li> <li>True Mini-LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices</li> <li>True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices</li> <li>True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices</li> <li>Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices</li> <li>Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices</li> <li>Updated tx jitter specifications in the following tables:</li> <li>True PPDS and Emulated RDDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices</li> <li>Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices</li> <li>Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices</li> <li>True RDDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices</li> <li>Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices</li> <li>Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices</li> <li>True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices</li> <li>Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices</li> <li>Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices</li> <li>Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices</li> <li>Updated RS</li></ul> |
| <ul> <li>affect the data retention duration.</li> <li>Added statements in the I/O Pin Leakage Current section: Input channel leakage of ADC I/O pins due to hot socket is up to maximum of 1.8 mA. The input channel leakage occurs when the ADC IP core is enabled or disabled. This is applicable to all Intel MAX 10 devices with ADC IP core, which are 10M04, 10M08, 10M16, 10M25, 10M40, and 10M50 devices. The ADC I/O pins are in Bank 1A.</li> <li>Added a statement in the I/O Standards Specifications section: You must perform timing closure analysis to determine the maximum achievable frequency for general purpose I/O standards.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | January 2015  | 2015.01.23 | table. This note is not valid: All V <sub>CCA</sub> pins must be connected together for EQFP package.<br>• Corrected the maximum value for $t_{OUT \text{JITTER}\_CCJ\_IO}$ (F <sub>OUT</sub> ≥ 100 MHz) from 60 ps to 650 ps in PLL Specifications for Intel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | December 2014 | 2014.12.15 | <ul> <li>affect the data retention duration.</li> <li>Added statements in the I/O Pin Leakage Current section: Input channel leakage of ADC I/O pins due to hot socket is up to maximum of 1.8 mA. The input channel leakage occurs when the ADC IP core is enabled or disabled. This is applicable to all Intel MAX 10 devices with ADC IP core, which are 10M04, 10M08, 10M16, 10M25, 10M40, and 10M50 devices. The ADC I/O pins are in Bank 1A.</li> <li>Added a statement in the I/O Standards Specifications section: You must perform timing closure analysis to determine the maximum achievable frequency for general purpose I/O standards.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |