
E·XFL

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	1000
Number of Logic Elements/Cells	16000
Total RAM Bits	562176
Number of I/O	101
Number of Gates	-
Voltage - Supply	2.85V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	144-LQFP Exposed Pad
Supplier Device Package	144-EQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/intel/10m16sce144c8g

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Intel[®] MAX[®] 10 FPGA Device Datasheet

This datasheet describes the electrical characteristics, switching characteristics, configuration specifications, and timing for Intel $MAX^{(R)}$ 10 devices.

Table 1. Intel MAX 10 Device Grades and Speed Grades Supported

Device Grade	Speed Grade Supported
Commercial	 -C7 -C8 (slowest)
Industrial	 -I6 (fastest) -I7
Automotive	 -A6 -A7

Note: The –I6 and –A6 speed grades of the Intel MAX 10 FPGA devices are not available by default in the Intel Quartus[®] Prime software. Contact your local Intel sales representatives for support.

Related Information

Device Ordering Information, Intel MAX 10 FPGA Device Overview Provides more information about the densities and packages of devices in the Intel MAX 10.

Electrical Characteristics

The following sections describe the operating conditions and power consumption of Intel MAX 10 devices.

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered

*Other names and brands may be claimed as the property of others.

Operating Conditions

Intel MAX 10 devices are rated according to a set of defined parameters. To maintain the highest possible performance and reliability of the Intel MAX 10 devices, you must consider the operating requirements described in this section.

Absolute Maximum Ratings

This section defines the maximum operating conditions for Intel MAX 10 devices. The values are based on experiments conducted with the devices and theoretical modeling of breakdown and damage mechanisms. The functional operation of the device is not implied for these conditions.

Caution: Conditions outside the range listed in the absolute maximum ratings tables may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

Single Supply Devices Absolute Maximum Ratings

Table 2. Absolute Maximum Ratings for Intel MAX 10 Single Supply Devices

Symbol	Symbol Parameter		Мах	Unit
V _{CC_ONE}	Supply voltage for core and periphery through on-die voltage regulator	-0.5	3.9	V
V _{CCIO}	Supply voltage for input and output buffers	-0.5	3.9	V
V _{CCA}	Supply voltage for phase-locked loop (PLL) regulator and analog-to- digital converter (ADC) block (analog)	-0.5	3.9	V

Dual Supply Devices Absolute Maximum Ratings

Table 3. Absolute Maximum Ratings for Intel MAX 10 Dual Supply Devices

Symbol	Parameter	Min	Мах	Unit
V _{CC}	Supply voltage for core and periphery	-0.5	1.63	V
V _{CCIO}	Supply voltage for input and output buffers	-0.5	3.9	V
V _{CCA}	Supply voltage for PLL regulator (analog)	-0.5	3.41	V
	•			continued

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		1.35 V	1.2825	1.35	1.4175	V
		1.2 V	1.14	1.2	1.26	V
V _{CCA} ⁽¹⁾	Supply voltage for PLL regulator and ADC block (analog)	_	2.85/3.135	3.0/3.3	3.15/3.465	V

Dual Supply Devices Power Supplies Recommended Operating Conditions

Table 7. Power Supplies Recommended Operating Conditions for Intel MAX 10 Dual Supply Devices

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
V _{CC}	Supply voltage for core and periphery	-	1.15	1.2	1.25	V
V _{CCIO} ⁽³⁾	Supply voltage for input and output buffers	3.3 V	3.135	3.3	3.465	V
		3.0 V	2.85	3	3.15	V
		2.5 V	2.375	2.5	2.625	V
		1.8 V	1.71	1.8	1.89	V
		1.5 V	1.425	1.5	1.575	V
		1.35 V	1.2825	1.35	1.4175	V
		1.2 V	1.14	1.2	1.26	V
V _{CCA} ⁽⁴⁾	Supply voltage for PLL regulator (analog)	_	2.375	2.5	2.625	V
V _{CCD_PLL} ⁽⁵⁾	Supply voltage for PLL regulator (digital)	_	1.15	1.2	1.25	V
V _{CCA_ADC}	Supply voltage for ADC analog block	_	2.375	2.5	2.625	V
V _{CCINT}	Supply voltage for ADC digital block	_	1.15	1.2	1.25	V

⁽³⁾ V_{CCIO} for all I/O banks must be powered up during user mode because V_{CCIO} I/O banks are used for the ADC and I/O functionalities.

 $^{^{(4)}}$ All V_{CCA} pins must be powered to 2.5 V (even when PLLs are not used), and must be powered up and powered down at the same time.

 $^{^{(5)}}$ V_{CCD PLL} must always be connected to V_{CC} through a decoupling capacitor and ferrite bead.

DC Characteristics

Supply Current and Power Consumption

Intel offers two ways to estimate power for your design—the Excel-based Early Power Estimator (EPE) and the Intel Quartus Prime Power Analyzer feature.

Use the Excel-based EPE before you start your design to estimate the supply current for your design. The EPE provides a magnitude estimate of the device power because these currents vary greatly with the usage of the resources.

The Intel Quartus Prime Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-and-route. The Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yield very accurate power estimates.

Related Information

- Early Power Estimator User Guide Provides more information about power estimation tools.
- Power Analysis chapter, Intel Quartus Prime Handbook Provides more information about power estimation tools.

I/O Pin Leakage Current

The values in the table are specified for normal device operation. The values vary during device power-up. This applies for all V_{CCIO} settings (3.3, 3.0, 2.5, 1.8, 1.5, 1.35, and 1.2 V).

10 μ A I/O leakage current limit is applicable when the internal clamping diode is off. A higher current can be the observed when the diode is on.

Input channel leakage of ADC I/O pins due to hot socket is up to maximum of 1.8 mA. The input channel leakage occurs when the ADC IP core is enabled or disabled. This is applicable to all Intel MAX 10 devices with ADC IP core, which are 10M04, 10M08, 10M16, 10M25, 10M40, and 10M50 devices. The ADC I/O pins are in Bank 1A.

Table 10. I/O Pin Leakage Current for Intel MAX 10 Devices

Symbol	Parameter	Condition	Min	Мах	Unit
II	Input pin leakage current	$V_{\rm I}$ = 0 V to V _{CCIOMAX}	-10	10	μΑ
I _{OZ}	Tristated I/O pin leakage current	$V_{O} = 0 V$ to $V_{CCIOMAX}$	-10	10	μΑ

Series OCT without Calibration Specifications

Table 13. Series OCT without Calibration Specifications for Intel MAX 10 Devices

This table shows the variation of on-chip termination (OCT) without calibration across process, voltage, and temperature (PVT).

Description	V _{CCIO} (V)	Resistance	Resistance Tolerance				
		-C7, -I6, -I7, -A6, -A7	-C8				
Series OCT without calibration	3.00	±35	±30	%			
	2.50	±35	±30	%			
	1.80	±40	±35	%			
	1.50	±40	±40	%			
	1.35	±40	±50	%			
	1.20	±45	±60	%			

Series OCT with Calibration at Device Power-Up Specifications

Table 14. Series OCT with Calibration at Device Power-Up Specifications for Intel MAX 10 Devices

OCT calibration is automatically performed at device power-up for OCT enabled I/Os.

Description	V _{CCIO} (V)	Calibration Accuracy	Unit
Series OCT with calibration at device power-up	3.00	±12	%
	2.50	±12	%
	1.80	±12	%
	1.50	±12	%
	1.35	±12	%
	1.20	±12	%

OCT Variation after Calibration at Device Power-Up

The OCT resistance may vary with the variation of temperature and voltage after calibration at device power-up.

Use the following table and equation to determine the final OCT resistance considering the variations after calibration at device power-up.

- Subscript x refers to both V and T.
- ΔR_V is variation of resistance with voltage.
- ΔR_T is variation of resistance with temperature.
- dR/dT is the change percentage of resistance with temperature after calibration at device power-up.
- dR/dV is the change percentage of resistance with voltage after calibration at device power-up.
- V₁ is the initial voltage.
- V₂ is final voltage.

The following figure shows the example to calculate the change of 50 Ω I/O impedance from 25°C at 3.0 V to 85°C at 3.15 V.

Figure 2. Example for OCT Resistance Calculation after Calibration at Device Power-Up

 $\Delta R_V = (3.15 - 3) \times 1000 \times -0.027 = -4.05$ $\Delta R_T = (85 - 25) \times 0.25 = 15$

Because ΔR_V is negative,

 $MF_V = 1/(4.05/100 + 1) = 0.961$

Because ΔR_T is positive,

 $MF_T = 15/100 + 1 = 1.15$ $MF = 0.961 \times 1.15 = 1.105$

 $R_{final} = 50 \times 1.105 = 55.25\Omega$

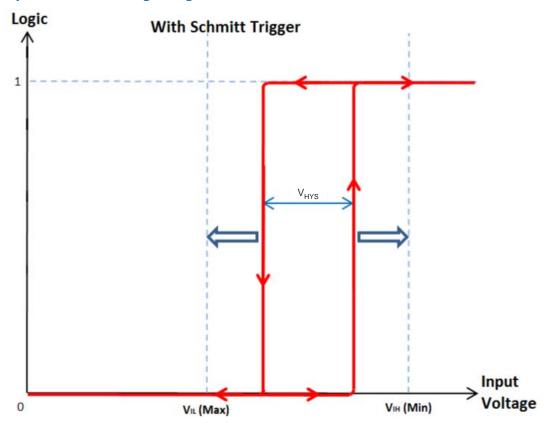


Table 19. Hysteresis Specifications for Schmitt Trigger Input for Intel MAX 10 Devices

Symbol	Parameter	Condition	Minimum	Unit
V _{HYS}	Hysteresis for Schmitt trigger input	$V_{CCIO} = 3.3 V$	180	mV
		$V_{\rm CCIO} = 2.5 V$	150	mV
		$V_{CCIO} = 1.8 V$	120	mV
		$V_{\rm CCIO} = 1.5 V$	110	mV

Figure 4. Schmitt Trigger Input Standard Voltage Diagram

I/O Standards Specifications

Tables in this section list input voltage (V_{IH} and V_{IL}), output voltage (V_{OH} and V_{OL}), and current drive characteristics (I_{OH} and I_{OL}) for various I/O standards supported by Intel MAX 10 devices.

For minimum voltage values, use the minimum V_{CCIO} values. For maximum voltage values, use the maximum V_{CCIO} values.

You must perform timing closure analysis to determine the maximum achievable frequency for general purpose I/O standards.

I/O Standard	V _{CCI0} (V)			V _{DIF(DC)} (V)		V _{X(AC)} (V)				V _{DIF(AC)} (V)		
	Min	Тур	Max	Min	Max	Min	Тур	Мах	Min	Тур	Max	Min
HSTL-18 Class I, II	1.71	1.8	1.89	0.2	_	0.85	_	0.95	0.85	-	0.95	0.4
HSTL-15 Class I, II	1.425	1.5	1.575	0.2	_	0.71	_	0.79	0.71	_	0.79	0.4
HSTL-12 Class I, II	1.14	1.2	1.26	0.16	V _{CCIO}	0.48 × V _{CCIO}	$0.5 \times V_{CCIO}$	0.52 × V _{CCIO}	0.48 × V _{CCIO}	$0.5 \times V_{CCIO}$	0.52 × V _{CCIO}	0.3
HSUL-12	1.14	1.2	1.3	0.26	-	0.5 × V _{CCIO} – 0.12	$0.5 \times V_{CCIO}$	0.5 × V _{CCIO} + 0.12	$0.4 \times V_{CCIO}$	0.5 × V _{CCIO}	0.6 × V _{CCIO}	0.44

Table 24. Differential HSTL and HSUL I/O Standards Specifications for Intel MAX 10 Devices

Differential I/O Standards Specifications

Table 25. Differential I/O Standards Specifications for Intel MAX 10 Devices

I/O Standard	,	V _{CCIO} (V)		V _{ID} (mV)		V _{ICM} (V) ⁽¹⁸⁾			V _{OD} (mV) ⁽¹⁹⁾⁽²⁰⁾			V _{OS} (V) ⁽¹⁹⁾		
	Min	Тур	Max	Min	Мах	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max	
LVPECL (21)	2.375	2.5	2.625	100	_	0.05	$D_{MAX} \leq 500 \text{ Mbps}$	1.8	-	_	_	-	_	-	
						0.55	$500 \text{ Mbps} \leq D_{MAX} \leq 700 \text{ Mbps}$	1.8							
						1.05	D _{MAX} > 700 Mbps	1.55							
LVDS	2.375	2.5	2.625	100	_	0.05	$D_{MAX} \leq 500 \text{ Mbps}$	1.8	247	_	600	1.125	1.25	1.375	
						0.55	500 Mbps $\leq D_{MAX} \leq$ 700 Mbps	1.8							
									•	•			cont	inued	

 $^{(18)}$ V_{IN} range: 0 V \leq V_{IN} \leq 1.85 V.

⁽¹⁹⁾ R_L range: $90 \leq R_L \leq 110 \Omega$.

 $^{(20)}$ Low V_{OD} setting is only supported for RSDS standard.

⁽²¹⁾ LVPECL input standard is only supported at clock input. Output standard is not supported.

Core Performance Specifications

Clock Tree Specifications

Table 26. Clock Tree Specifications for Intel MAX 10 Devices

Device			Performance			Unit
	-16	-A6, -C7	-17	-A7	-C8	
10M02	450	416	416	382	402	MHz
10M04	450	416	416	382	402	MHz
10M08	450	416	416	382	402	MHz
10M16	450	416	416	382	402	MHz
10M25	450	416	416	382	402	MHz
10M40	450	416	416	382	402	MHz
10M50	450	416	416	382	402	MHz

PLL Specifications

Table 27. PLL Specifications for Intel MAX 10 Devices

 $V_{\text{CCD_PLL}}$ should always be connected to V_{CCINT} through decoupling capacitor and ferrite bead.

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{IN} ⁽²⁸⁾	Input clock frequency	_	5	-	472.5	MHz
f _{INPFD}	Phase frequency detector (PFD) input frequency	—	5	-	325	MHz
						continued

⁽²⁸⁾ This parameter is limited in the Intel Quartus Prime software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.

Symbol	Parameter	Condition	Min	Тур	Max	Unit
t _{PLL_PSERR}	Accuracy of PLL phase shift	—	—	—	±50	ps
t _{ARESET}	Minimum pulse width on areset signal.	—	10	—	—	ns
t _{CONFIGPLL}	Time required to reconfigure scan chains for PLLs	_	_	3.5 ⁽³²⁾	_	SCANCLK cycles
f _{SCANCLK}	scanclk frequency	_	_	_	100	MHz

Table 28. PLL Specifications for Intel MAX 10 Single Supply Devices

For V36 package, the PLL specification is based on single supply devices.

Symbol	Parameter	Condition	Мах	Unit
t _{OUTJITTER_PERIOD_DEDCLK} (31)	Dedicated clock output period jitter	$F_{OUT} \ge 100 \text{ MHz}$	660	ps
		F _{OUT} < 100 MHz	66	mUI
t _{OUTJITTER_CCJ_DEDCLK} (31)	Dedicated clock output cycle-to-cycle jitter	$F_{OUT} \ge 100 \text{ MHz}$	660	ps
		F _{OUT} < 100 MHz	66	mUI

Table 29. PLL Specifications for Intel MAX 10 Dual Supply Devices

Symbol	Parameter	Condition	Мах	Unit
t _{OUTJITTER_PERIOD_DEDCLK} (31)	Dedicated clock output period jitter	$F_{OUT} \ge 100 \text{ MHz}$	300	ps
		F _{OUT} < 100 MHz	30	mUI
toutjitter_CCJ_DEDCLK (31)	Dedicated clock output cycle-to-cycle jitter	F _{OUT} ≥ 100 MHz	300	ps
		F _{OUT} < 100 MHz	30	mUI

⁽³²⁾ With 100 MHz scanclk frequency.

Embedded Multiplier Specifications

Table 30. Embedded Multiplier Specifications for Intel MAX 10 Devices

Mode	Number of Multipliers	Power Supply Mode		Performance		Unit
			-16	-A6, -C7, -I7, -A7	-C8	
9 × 9-bit multiplier	1	Single supply mode	198	183	160	MHz
		Dual supply mode	310	260	210	MHz
18 × 18-bit multiplier	1	Single supply mode	198	183	160	MHz
		Dual supply mode	265	240	190	MHz

Memory Block Performance Specifications

Table 31. Memory Block Performance Specifications for Intel MAX 10 Devices

Memory	Mode	Resourc	es Used	Power Supply Mode		Performance		Unit
		LEs	M9K Memory	-	-16	-A6, -C7, -I7, -A7	-C8	
M9K Block	FIFO 256 × 36	47	1	Single supply mode	232	219	204	MHz
				Dual supply mode	330	300	250	MHz
	Single-port 256 × 36	0	1	Single supply mode	232	219	204	MHz
				Dual supply mode	330	300	250	MHz
	Simple dual-port 256 × 36	0	1	Single supply mode	232	219	204	MHz
	CLK			Dual supply mode	330	300	250	MHz
	True dual port 512 × 18	0	1	Single supply mode	232	219	204	MHz
	single CLK			Dual supply mode	330	300	250	MHz

	Parameter	Symbol	Condition	Min	Тур	Мах	Unit
	Integral non linearity	INL	-	-2	_	2	LSB
AC Accuracy	Total harmonic distortion	THD	$F_{IN} = 50 \text{ kHz}, F_S = 1 \text{ MHz}, PLL$	-65 ⁽³⁷⁾	-	-	dB
	Signal-to-noise ratio	SNR	$F_{IN} = 50 \text{ kHz}, F_S = 1 \text{ MHz}, PLL$	54 ⁽³⁸⁾	-	-	dB
	Signal-to-noise and distortion	SINAD	$F_{IN} = 50 \text{ kHz}, F_S = 1 \text{ MHz}, PLL$	53 ⁽³⁹⁾	_	-	dB
On-Chip Temperature	Temperature sampling rate	T _S	-	_	_	50	kSPS
Sensor	Absolute accuracy	-	-40 to 125°C, with 64 samples averaging (40)	_	_	±10	°C
Conversion Rate (41)	Conversion time	_	Single measurement	_	-	1	Cycle
			Continuous measurement	_	_	1	Cycle
			Temperature measurement	_	—	1	Cycle

Related Information

SPICE Models for Intel FPGAs

⁽⁴¹⁾ For more detailed description, refer to the Timing section in the *Intel MAX 10 Analog-to-Digital Converter User Guide*.

 $^{^{(37)}}$ THD with prescalar enabled is 6dB less than the specification.

 $^{^{(38)}}$ SNR with prescalar enabled is 6dB less than the specification.

⁽³⁹⁾ SINAD with prescalar enabled is 6dB less than the specification.

⁽⁴⁰⁾ For the Intel Quartus Prime software version 15.0 and later, Modular ADC Core Intel FPGA IP and Modular Dual ADC Core Intel FPGA IP cores handle the 64 samples averaging. For the Intel Quartus Prime software versions prior to 14.1, you need to implement your own averaging calculation.

Intel[®] MAX[®] 10 FPGA Device Datasheet

Symbol	Parameter	Mode	-16,	-A6, -C7,	-17		-A7			-C8		Unit
			Min	Тур	Мах	Min	Тур	Мах	Min	Тур	Мах	
		×4	40	_	300	40	-	300	40	-	300	Mbps
		×2	20	-	300	20	_	300	20	-	300	Mbps
		×1	10	_	300	10	_	300	10	_	300	Mbps
t _{DUTY}	Duty cycle on transmitter output clock	_	45	-	55	45	-	55	45	-	55	%
TCCS ⁽⁵³⁾	Transmitter channel- to-channel skew	-	_	-	300	_	-	300	-	-	300	ps
t _{x Jitter} ⁽⁵⁴⁾	Output jitter (high- speed I/O performance pin)	-	_	-	425	_	-	425	_	-	425	ps
	Output jitter (low- speed I/O performance pin)	-	_	-	470	_	-	470	_	-	470	ps
t _{RISE}	Rise time	20 - 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	-	500	_	ps
t _{FALL}	Fall time	20 - 80%, C _{LOAD} = 5 pF	_	500	-	-	500	-	-	500	_	ps
t _{lock}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	_	_	_	1	_	_	1	_	_	1	ms

 $^{^{\}rm (53)}$ TCCS specifications apply to I/O banks from the same side only.

 $^{^{(54)}}$ TX jitter is the jitter induced from core noise and I/O switching noise.

Intel[®] MAX[®] 10 FPGA Device Datasheet

M10-DATASHEET | 2018.06.29

Symbol	Parameter	Mode	-16,	-A6, -C7,	-17		-A7			- C 8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
		×8	80	-	100	80	-	100	80	-	100	Mbps
		×7	70	-	100	70	-	100	70	-	100	Mbps
		×4	40	-	100	40	-	100	40	-	100	Mbps
		×2	20	-	100	20	-	100	20	-	100	Mbps
		×1	10	-	100	10	-	100	10	-	100	Mbps
t _{DUTY}	Duty cycle on transmitter output clock	_	45	-	55	45	-	55	45	-	55	%
TCCS ⁽⁵⁵⁾	Transmitter channel- to-channel skew	-	_	-	300	-	-	300	_	_	300	ps
t _{x Jitter} (56)	Output jitter (high- speed I/O performance pin)	_	_	-	425	-	_	425	_	_	425	ps
	Output jitter (low- speed I/O performance pin)	-	—	-	470	-	_	470	_	_	470	ps
t _{RISE}	Rise time	20 - 80%, C _{LOAD} = 5 pF	_	500	-	-	500	-	_	500	-	ps
t _{FALL}	Fall time	20 - 80%, C _{LOAD} = 5 pF	_	500	-	-	500	-	_	500	-	ps
t _{LOCK}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	-	_	_	1	_	_	1	_	_	1	ms

 $^{^{\}rm (55)}$ TCCS specifications apply to I/O banks from the same side only.

 $^{^{(56)}}$ TX jitter is the jitter induced from core noise and I/O switching noise.

True Mini-LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications

Table 40. True Mini-LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices

True **mini-LVDS** transmitter is only supported at the bottom I/O banks. Emulated **mini-LVDS_E_3R** transmitter is supported at the output pin of all I/O banks.

Symbol	Parameter	Mode	-16,	-A6, -C7	, -17		-A7			-C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	-
f _{HSCLK}	Input clock frequency	×10	5	_	155	5	-	155	5	-	155	MHz
	(high-speed I/O performance pin)	×8	5	-	155	5	-	155	5	-	155	MHz
		×7	5	_	155	5	_	155	5	-	155	MHz
		×4	5	-	155	5	-	155	5	-	155	MHz
		×2	5	-	155	5	-	155	5	-	155	MHz
		×1	5	-	310	5	-	310	5	-	310	MHz
HSIODR	Data rate (high-speed	×10	100	-	310	100	-	310	100	-	310	Mbps
	I/O performance pin)	×8	80	_	310	80	_	310	80	-	310	Mbps
		×7	70	-	310	70	-	310	70	-	310	Mbps
		×4	40	-	310	40	-	310	40	-	310	Mbps
		×2	20	-	310	20	-	310	20	-	310	Mbps
		×1	10	-	310	10	-	310	10	-	310	Mbps
f _{HSCLK}	Input clock frequency	×10	5	-	150	5	-	150	5	-	150	MHz
	(low-speed I/O performance pin)	×8	5	-	150	5	-	150	5	-	150	MHz
		×7	5	-	150	5	-	150	5	-	150	MHz
		×4	5	-	150	5	-	150	5	-	150	MHz
		×2	5	-	150	5	-	150	5	-	150	MHz
		×1	5	-	300	5	-	300	5	-	300	MHz
HSIODR	Data rate (low-speed	×10	100	-	300	100	-	300	100	-	300	Mbps
	I/O performance pin)	×8	80	-	300	80	-	300	80	-	300	Mbps
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	•				•		•	cor	tinued

True LVDS Transmitter Timing

Single Supply Devices True LVDS Transmitter Timing Specifications

Table 41. True LVDS Transmitter Timing Specifications for Intel MAX 10 Single Supply Devices

True **LVDS** transmitter is only supported at the bottom I/O banks.

Symbol	Parameter	Mode		-C7, -I7			-A7			-C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	1
f _{HSCLK}	Input clock frequency	×10	5	_	145	5	_	100	5	_	100	MHz
		×8	5	_	145	5	-	100	5	-	100	MHz
	×7	5	_	145	5	-	100	5	-	100	MHz	
		×4	5	_	145	5	-	100	5	_	100	MHz
		×2	5	-	145	5	-	100	5	_	100	MHz
		×1	5	_	290	5	-	200	5	_	200	MHz
HSIODR	Data rate	×10	100	_	290	100	-	200	100	-	200	Mbps
		×8	80	_	290	80	-	200	80	-	200	Mbps
		×7	70	_	290	70	-	200	70	-	200	Mbps
		×4	40	-	290	40	-	200	40	-	200	Mbps
		×2	20	_	290	20	-	200	20	-	200	Mbps
		×1	10	_	290	10	-	200	10	-	200	Mbps
t _{DUTY}	Duty cycle on transmitter output clock	_	45	-	55	45	_	55	45	_	55	%
TCCS ⁽⁶³⁾	Transmitter channel- to-channel skew	_	-	-	300	_	-	300	_	_	300	ps
t _{x Jitter} (64)	Output jitter	_	_	_	1,000	_	_	1,000	_	_	1,000	ps
							•	1			con	tinued

⁽⁶³⁾ TCCS specifications apply to I/O banks from the same side only.

⁽⁶⁴⁾ TX jitter is the jitter induced from core noise and I/O switching noise.

Intel[®] MAX[®] 10 FPGA Device Datasheet M10-DATASHEET | 2018.06.29

Symbol	Parameter	Mode	-C7, -I7		-A7			-C8			Unit	
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
		×8	80	-	200	80	-	200	80	-	200	Mbps
		×7	70	-	200	70	-	200	70	-	200	Mbps
		×4	40	-	200	40	_	200	40	-	200	Mbps
		×2	20	-	200	20	-	200	20	-	200	Mbps
		×1	10	-	200	10	_	200	10	-	200	Mbps
t _{duty}	Duty cycle on transmitter output clock	_	45	-	55	45	-	55	45	-	55	%
TCCS ⁽⁶⁷⁾	Transmitter channel- to-channel skew	_	_	-	300	_	-	300	_	-	300	ps
t _{x Jitter} (68)	Output jitter	_	_	-	1,000	_	-	1,000	-	-	1,000	ps
t _{RISE}	Rise time	20 - 80%, C _{LOAD} = 5 pF	_	500	-	_	500	-	_	500	-	ps
t _{FALL}	Fall time	20 - 80%, C _{LOAD} = 5 pF	_	500	-	_	500	-	_	500	-	ps
t _{lock}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	_	_	_	1	_	_	1	_	_	1	ms

 $^{(67)}$ TCCS specifications apply to I/O banks from the same side only.

⁽⁶⁸⁾ TX jitter is the jitter induced from core noise and I/O switching noise.

Symbol Parameter		Mode	-I6, -A6, -C7, -I7		-A7		-C8		Unit
			Min	Max	Min	Max	Min	Max	
	Sampling window (low- speed I/O performance pin)	_	-	910	-	910	_	910	ps
t _{x Jitter} ⁽⁷²⁾	Input jitter	_	-	500	_	500	_	500	ps
t _{LOCK}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	_	_	1	_	1	_	1	ms

Memory Standards Supported by the Soft Memory Controller

Table 47. Memory Standards Supported by the Soft Memory Controller for Intel MAX 10 Devices

Contact your local sales representatives for access to the -I6 or -A6 speed grade devices in the Intel Quartus Prime software.

External Memory Interface Standard	Rate Support	Speed Grade	Voltage (V)	Max Frequency (MHz)	
DDR3 SDRAM	Half	-I6	1.5	303	
DDR3L SDRAM	Half	-I6	1.35	303	
DDR2 SDRAM Half		-I6	1.8	200	
		-I7 and -C7		167	
LPDDR2 ⁽⁷³⁾	Half	-I6	1.2	200 ⁽⁷⁴⁾	

Related Information

External Memory Interface Spec Estimator

Provides the specific details of the memory standards supported.

⁽⁷²⁾ TX jitter is the jitter induced from core noise and I/O switching noise.

⁽⁷³⁾ Intel MAX 10 devices support only single-die LPDDR2.

⁽⁷⁴⁾ To achieve the specified performance, constrain the memory device I/O and core power supply variation to within ±3%. By default, the frequency is 167 MHz.

Memory Output Clock Jitter Specifications

Intel MAX 10 devices support external memory interfaces up to 303 MHz. The external memory interfaces for Intel MAX 10 devices calibrate automatically.

The memory output clock jitter measurements are for 200 consecutive clock cycles.

The clock jitter specification applies to memory output clock pins generated using DDIO circuits clocked by a PLL output routed on a PHY clock network.

DDR3 and LPDDR2 SDRAM memory interfaces are only supported on the fast speed grade device.

Table 48. Memory Output Clock Jitter Specifications for Intel MAX 10 Devices

Parameter	Symbol	-6 Speed Grade		-7 Spee	Unit	
		Min	Max	Min	Max	
Clock period jitter	t _{JIT(per)}	-127	127	-215	215	ps
Cycle-to-cycle period jitter	t _{JIT(cc)}	_	242	_	360	ps

Related Information

Literature: External Memory Interfaces

Provides more information about external memory system performance specifications, board design guidelines, timing analysis, simulation, and debugging information.

Configuration Specifications

This section provides configuration specifications and timing for Intel MAX 10 devices.