

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	1000
Number of Logic Elements/Cells	16000
Total RAM Bits	562176
Number of I/O	246
Number of Gates	-
Voltage - Supply	2.85V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	324-LFBGA
Supplier Device Package	324-UBGA (15x15)
Purchase URL	https://www.e-xfl.com/product-detail/intel/10m16scu324c8g

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

DC Characteristics

Supply Current and Power Consumption

Intel offers two ways to estimate power for your design—the Excel-based Early Power Estimator (EPE) and the Intel Quartus Prime Power Analyzer feature.

Use the Excel-based EPE before you start your design to estimate the supply current for your design. The EPE provides a magnitude estimate of the device power because these currents vary greatly with the usage of the resources.

The Intel Quartus Prime Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-and-route. The Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yield very accurate power estimates.

Related Information

- Early Power Estimator User Guide
 Provides more information about power estimation tools.
- Power Analysis chapter, Intel Quartus Prime Handbook
 Provides more information about power estimation tools.

I/O Pin Leakage Current

The values in the table are specified for normal device operation. The values vary during device power-up. This applies for all V_{CCIO} settings (3.3, 3.0, 2.5, 1.8, 1.5, 1.35, and 1.2 V).

 $10 \mu A$ I/O leakage current limit is applicable when the internal clamping diode is off. A higher current can be the observed when the diode is on.

Input channel leakage of ADC I/O pins due to hot socket is up to maximum of 1.8 mA. The input channel leakage occurs when the ADC IP core is enabled or disabled. This is applicable to all Intel MAX 10 devices with ADC IP core, which are 10M04, 10M08, 10M16, 10M25, 10M40, and 10M50 devices. The ADC I/O pins are in Bank 1A.

Table 10. I/O Pin Leakage Current for Intel MAX 10 Devices

Symbol	Parameter	Condition	Min	Max	Unit
II	Input pin leakage current	V _I = 0 V to V _{CCIOMAX}	-10	10	μΑ
I _{OZ}	Tristated I/O pin leakage current	V _O = 0 V to V _{CCIOMAX}	-10	10	μΑ

Table 15. OCT Variation after Calibration at Device Power-Up for Intel MAX 10 Devices

This table lists the change percentage of the OCT resistance with voltage and temperature.

Description	Nominal Voltage	dR/dT (%/°C)	dR/dV (%/mV)
OCT variation after calibration at device power-up	3.00	0.25	-0.027
	2.50	0.245	-0.04
	1.80	0.242	-0.079
	1.50	0.235	-0.125
	1.35	0.229	-0.16
	1.20	0.197	-0.208

Figure 1. Equation for OCT Resistance after Calibration at Device Power-Up

$$\Delta R_V = (V_2 - V_1) \times 1000 \times dR/dV$$

$$\Delta R_T = (T_2 - T_1) \times dR/dT$$
For $\Delta R_X < 0$; $MF_X = 1/(|\Delta R_X|/100 + 1)$
For $\Delta R_X > 0$; $MF_X = \Delta R_X/100 + 1$

$$MF = MF_V \times MF_T$$

$$R_{final} = R_{initial} \times MF$$

The definitions for equation are as follows:

- T₁ is the initial temperature.
- T₂ is the final temperature.
- MF is multiplication factor.
- R_{initial} is initial resistance.
- R_{final} is final resistance.

M10-DATASHEET | 2018.06.29

- Subscript x refers to both V and T.
- ΔR_V is variation of resistance with voltage.
- ΔR_T is variation of resistance with temperature.
- dR/dT is the change percentage of resistance with temperature after calibration at device power-up.
- dR/dV is the change percentage of resistance with voltage after calibration at device power-up.
- V₁ is the initial voltage.
- V₂ is final voltage.

The following figure shows the example to calculate the change of 50 Ω I/O impedance from 25°C at 3.0 V to 85°C at 3.15 V.

Figure 2. Example for OCT Resistance Calculation after Calibration at Device Power-Up

$$\Delta R_V = (3.15 - 3) \times 1000 \times -0.027 = -4.05$$

$$\Delta R_T = (85 - 25) \times 0.25 = 15$$

Because ΔR_V is negative,

$$MF_V = 1/(4.05/100 + 1) = 0.961$$

Because ΔR_T is positive,

$$MF_T = 15/100 + 1 = 1.15$$

$$MF = 0.961 \times 1.15 = 1.105$$

$$R_{final} = 50 \times 1.105 = 55.25\Omega$$

Pin Capacitance

Table 16. Pin Capacitance for Intel MAX 10 Devices

Symbol	Parameter	Maximum	Unit
C _{IOB}	Input capacitance on bottom I/O pins	8	pF
C _{IOLRT}	Input capacitance on left/right/top I/O pins	7	pF
C _{LVDSB}	Input capacitance on bottom I/O pins with dedicated LVDS output ⁽⁹⁾	8	pF
C _{ADCL}	Input capacitance on left I/O pins with ADC input (10)	9	pF
C _{VREFLRT}	Input capacitance on left/right/top dual purpose $\rm V_{REF}$ pin when used as $\rm V_{REF}$ or user I/O pin $^{(11)}$	48	pF
C _{VREFB}	Input capacitance on bottom dual purpose V_{REF} pin when used as V_{REF} or user I/O pin	50	pF
C _{CLKB}	Input capacitance on bottom dual purpose clock input pins (12)	7	pF
C _{CLKLRT}	Input capacitance on left/right/top dual purpose clock input pins (12)	6	pF

Internal Weak Pull-Up Resistor

All I/O pins, except configuration, test, and JTAG pins, have an option to enable weak pull-up.

⁽⁹⁾ Dedicated LVDS output buffer is only available at bottom I/O banks.

⁽¹⁰⁾ ADC pins are only available at left I/O banks.

When V_{REF} pin is used as regular input or output, F_{max} performance is reduced due to higher pin capacitance. Using the V_{REF} pin capacitance specification from device datasheet, perform SI analysis on your board setup to determine the F_{max} of your system.

^{(12) 10}M40 and 10M50 devices have dual purpose clock input pins at top/bottom I/O banks.

Table 19. Hysteresis Specifications for Schmitt Trigger Input for Intel MAX 10 Devices

Symbol	Parameter	Condition	Minimum	Unit
V _{HYS}	Hysteresis for Schmitt trigger input	V _{CCIO} = 3.3 V	180	mV
		V _{CCIO} = 2.5 V	150	mV
		V _{CCIO} = 1.8 V	120	mV
		V _{CCIO} = 1.5 V	110	mV

I/O Standard	,	V _{CCIO} (V) V _{ID} (mV) V _{ICM}			V _{ICM} (V) (18)		V _{OD}	(mV) ⁽¹⁹)(20)	V	os (V) (19))		
	Min	Тур	Max	Min	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max
HiSpi	2.375	2.5	2.625	100	_	0.05	0.05 D _{MAX} ≤ 500 Mbps		_	_	_	_	_	_
						0.55	0.55 500 Mbps ≤ D _{MAX} ≤ 700 Mbps							
						1.05	1.05 D _{MAX} > 700 Mbps							

Related Information

Intel MAX 10 LVDS SERDES I/O Standards Support, Intel MAX 10 High-Speed LVDS I/O User Guide Provides the list of I/O standards supported in single supply and dual supply devices.

Switching Characteristics

This section provides the performance characteristics of Intel MAX 10 core and periphery blocks.

- (24) Supported with requirement of an external level shift
- (25) Sub-LVDS input buffer is using 2.5 V differential buffer.
- (26) Differential output depends on the values of the external termination resistors.
- (27) Differential output offset voltage depends on the values of the external termination resistors.

⁽¹⁸⁾ V_{IN} range: $0 \text{ V} \leq V_{IN} \leq 1.85 \text{ V}$. (19) R_L range: $90 \leq R_L \leq 110 \Omega$.

⁽²⁰⁾ Low V_{OD} setting is only supported for RSDS standard.

 $^{^{(22)}}$ No fixed V_{IN} , V_{OD} , and V_{OS} specifications for Bus LVDS (BLVDS). They are dependent on the system topology.

⁽²³⁾ Mini-LVDS, RSDS, and Point-to-Point Differential Signaling (PPDS) standards are only supported at the output pins for Intel MAX 10 devices.

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{VCO} ⁽²⁹⁾	PLL internal voltage-controlled oscillator (VCO) operating range	_	600	_	1300	MHz
f _{INDUTY}	Input clock duty cycle	_	40	_	60	%
t _{INJITTER_CCJ} (30)	Input clock cycle-to-cycle jitter	F _{INPFD} ≥ 100 MHz	_	_	0.15	UI
		F _{INPFD} < 100 MHz	_	_	±750	ps
f _{OUT_EXT} (28)	PLL output frequency for external clock output	-	_	_	472.5	MHz
f _{OUT}	PLL output frequency to global clock	-6 speed grade	_	_	472.5	MHz
		-7 speed grade	_	_	450	MHz
		-8 speed grade	_	_	402.5	MHz
t _{OUTDUTY}	Duty cycle for external clock output	Duty cycle set to 50%	45	50	55	%
t _{LOCK}	Time required to lock from end of device configuration	_	_	_	1	ms
t _{DLOCK}	Time required to lock dynamically	After switchover, reconfiguring any non-post-scale counters or delays, or when areset is deasserted	_	_	1	ms
t _{OUTJITTER_PERIOD_IO}	Regular I/O period jitter	F _{OUT} ≥ 100 MHz	_	_	650	ps
(31)		F _{OUT} < 100 MHz	_	_	75	mUI
t _{OUTJITTER_CCJ_IO} (31)	Regular I/O cycle-to-cycle jitter	F _{OUT} ≥ 100 MHz	_	_	650	ps
		F _{OUT} < 100 MHz	_	_	75	mUI
					'	continued

The VCO frequency reported by the Intel Quartus Prime software in the PLL summary section of the compilation report takes into consideration the VCO post-scale counter κ value. Therefore, if the counter κ has a value of 2, the frequency reported can be lower than the f_{VCO} specification.

⁽³⁰⁾ A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source, which is less than 200 ps.

 $^{^{(31)}}$ Peak-to-peak jitter with a probability level of 10^{-12} (14 sigma, 99.9999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied.

ADC Performance Specifications

Single Supply Devices ADC Performance Specifications

Table 34. ADC Performance Specifications for Intel MAX 10 Single Supply Devices

	Parameter.	Complete	Constitution	B41		Mana	1115				
	Parameter	Symbol	Condition	Min	Тур	Max	Unit				
ADC resolution		_	_	_	_	12	bits				
ADC supply voltage		V _{CC_ONE}	_	2.85	3.0/3.3 3.465 - VCC_ONE - 1 M! 25 125 - VREF - 3.6 (36) - (36)						
External reference vo	reference voltage		eference voltage		rnal reference voltage		_	V _{CC_ONE} - 0.5	_	V _{CC_ONE}	V
Sampling rate		F _S	Accumulative sampling rate	_	_	1	MSPS				
Operating junction ter	mperature range	T ₁	_	-40	25	125	°C				
Analog input voltage		V _{IN}	Prescalar disabled	0	_	V _{REF}	V				
			Prescalar enabled (35)	0			V				
Input resistance		R _{IN}	_	_	(36)	_	_				
Input capacitance		C _{IN}	_	_	(36)	_	_				
DC Accuracy	Offset error and drift	E _{offset}	Prescalar disabled	-0.2	_	0.2	%FS				
			Prescalar enabled	-0.5	_	0.5	%FS				
	Gain error and drift	Egain	Prescalar disabled	-0.5	_	0.5	%FS				
			Prescalar enabled	-0.75	_	0.75	%FS				
	Differential non linearity	DNL	External V _{REF} , no missing code	-0.9	_	0.9	LSB				
			Internal V _{REF} , no missing code	-1	_	1.7	LSB				
	<u> </u>	,	,		1		continued				

⁽³⁵⁾ Prescalar function divides the analog input voltage by half. The analog input handles up to 3.6 V for the Intel MAX 10 single supply devices.

⁽³⁶⁾ Download the SPICE models for simulation.

True PPDS and Emulated PPDS_E_3R Transmitter Timing Specifications

Table 36. True PPDS and Emulated PPDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices

True PPDS transmitter is only supported at bottom I/O banks. Emulated PPDS transmitter is supported at the output pin of all I/O banks.

Symbol	Parameter	Mode	-16,	-A6, -C7,	-17		-A7			-C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
f _{HSCLK}	Input clock frequency	×10	5	_	155	5	_	155	5	_	155	MHz
	(high-speed I/O performance pin)	×8	5	_	155	5	_	155	5	_	155	MHz
		×7	5	_	155	5	_	155	5	_	155	MHz
		×4	5	_	155	5	_	155	5	_	155	MHz
		×2	5	_	155	5	_	155	5	_	155	MHz
		×1	5	_	310	5	_	310	5	_	310	MHz
HSIODR	Data rate (high-speed	×10	100	_	310	100	_	310	100	_	310	Mbps
	I/O performance pin)	×8	80	_	310	80	_	310	80	_	310	Mbps
		×7	70	_	310	70	_	310	70	_	310	Mbps
		×4	40	_	310	40	_	310	40	_	310	Mbps
		×2	20	_	310	20	_	310	20	_	310	Mbps
		×1	10	_	310	10	_	310	10	_	310	Mbps
f _{HSCLK}	Input clock frequency	×10	5	_	150	5	_	150	5	_	150	MHz
	(low-speed I/O performance pin)	×8	5	_	150	5	_	150	5	_	150	MHz
		×7	5	_	150	5	_	150	5	_	150	MHz
		×4	5	_	150	5	_	150	5	_	150	MHz
		×2	5	_	150	5	_	150	5	_	150	MHz
		×1	5	_	300	5	_	300	5	_	300	MHz
HSIODR	Data rate (low-speed	×10	100	_	300	100	_	300	100	_	300	Mbps
	I/O performance pin)	×8	80	_	300	80	_	300	80	_	300	Mbps
		×7	70	_	300	70	_	300	70	_	300	Mbps
			•		•		•	•		•	con	tinued

True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications

Single Supply Devices True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications

True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Single Supply Devices Table 37. True **RSDS** transmitter is only supported at bottom I/O banks. Emulated **RSDS** transmitter is supported at the output pin of all I/O banks.

Symbol	Parameter	Mode	-16,	-A6, -C7,	-17		-A7			-C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	1
f _{HSCLK}	Input clock frequency	×10	5	_	50	5	_	50	5	_	50	MHz
	(high-speed I/O performance pin)	×8	5	_	50	5	_	50	5	_	50	MHz
		×7	5	_	50	5	_	50	5	_	50	MHz
		×4	5	_	50	5	_	50	5	_	50	MHz
		×2	5	_	50	5	_	50	5	_	50	MHz
		×1	5	_	100	5	_	100	5	_	100	MHz
HSIODR	Data rate (high-speed	×10	100	_	100	100	_	100	100	_	100	Mbps
	I/O performance pin)	×8	80	_	100	80	_	100	80	_	100	Mbps
		×7	70	_	100	70	_	100	70	_	100	Mbps
		×4	40	_	100	40	_	100	40	_	100	Mbps
		×2	20	_	100	20	_	100	20	_	100	Mbps
		×1	10	_	100	10	_	100	10	_	100	Mbps
f _{HSCLK}	Input clock frequency	×10	5	_	50	5	_	50	5	_	50	MHz
	(low-speed I/O performance pin)	×8	5	_	50	5	_	50	5	_	50	MHz
		×7	5	_	50	5	_	50	5	_	50	MHz
		×4	5	_	50	5	_	50	5	_	50	MHz
		×2	5	_	50	5	_	50	5	_	50	MHz
		×1	5	_	100	5	_	100	5	_	100	MHz
HSIODR	Data rate (low-speed I/O performance pin)	×10	100	_	100	100	_	100	100	_	100	Mbps
	· '				•	'	•	'	'	'	cor	ntinued

Symbol	Parameter	Mode	-16,	-A6, -C7	, –17		-A7			-C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
		×4	40	_	170	40	_	170	40	_	170	Mbps
		×2	20	_	170	20	_	170	20	_	170	Mbps
		×1	10	_	170	10	_	170	10	_	170	Mbps
t _{DUTY}	Duty cycle on transmitter output clock	_	45	_	55	45	_	55	45	_	55	%
TCCS ⁽⁵⁹⁾	Transmitter channel- to-channel skew	_	_	_	300	_	_	300	_	_	300	ps
t _{x Jitter} (60)	Output jitter (high- speed I/O performance pin)	_	_	_	425	_	_	425	_	_	425	ps
	Output jitter (low- speed I/O performance pin)	_	_	_	470	_	_	470	_	_	470	ps
t _{RISE}	Rise time	20 – 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	ps
t _{FALL}	Fall time	20 - 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	ps
t _{LOCK}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	_	_	_	1	_	_	1	_	_	1	ms

 $^{^{(59)}}$ TCCS specifications apply to I/O banks from the same side only.

 $^{^{(60)}}$ TX jitter is the jitter induced from core noise and I/O switching noise.

True Mini-LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications

Table 40. True Mini-LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply **Devices**

True mini-LVDS transmitter is only supported at the bottom I/O banks. Emulated mini-LVDS_E_3R transmitter is supported at the output pin of all I/O banks.

Symbol	Parameter	Mode	-16,	-A6, -C7,	-17		-A7			-C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	1
f _{HSCLK}	Input clock frequency	×10	5	_	155	5	_	155	5	_	155	MHz
	(high-speed I/O performance pin)	×8	5	_	155	5	_	155	5	_	155	MHz
		×7	5	_	155	5	_	155	5	_	155	MHz
		×4	5	_	155	5	_	155	5	_	155	MHz
		×2	5	_	155	5	_	155	5	_	155	MHz
		×1	5	_	310	5	_	310	5	_	310	MHz
HSIODR	Data rate (high-speed	×10	100	_	310	100	_	310	100	_	310	Mbps
	I/O performance pin)	×8	80	_	310	80	_	310	80	_	310	Mbps
		×7	70	_	310	70	_	310	70	_	310	Mbps
		×4	40	_	310	40	_	310	40	_	310	Mbps
		×2	20	_	310	20	_	310	20	_	310	Mbps
		×1	10	_	310	10	_	310	10	_	310	Mbps
f _{HSCLK}	Input clock frequency	×10	5	_	150	5	_	150	5	_	150	MHz
	(low-speed I/O performance pin)	×8	5	_	150	5	_	150	5	_	150	MHz
		×7	5	_	150	5	_	150	5	_	150	MHz
		×4	5	_	150	5	_	150	5	_	150	MHz
		×2	5	_	150	5	_	150	5	_	150	MHz
		×1	5	_	300	5	_	300	5	_	300	MHz
HSIODR	Data rate (low-speed	×10	100	_	300	100	_	300	100	_	300	Mbps
	I/O performance pin)	×8	80	_	300	80	_	300	80	_	300	Mbps
			1	·		<u> </u>	·	'	'	·	cor	tinued

Symbol	Parameter	Mode	-16,	, –A6, –C7,	-17		-A7			-C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Ì
		×7	70	_	300	70	_	300	70	_	300	Mbps
		×4	40	_	300	40	_	300	40	_	300	Mbps
		×2	20	_	300	20	_	300	20	_	300	Mbps
		×1	10	_	300	10	_	300	10	_	300	Mbps
t _{DUTY}	Duty cycle on transmitter output clock	-	45	_	55	45	_	55	45	_	55	%
TCCS ⁽⁶¹⁾	Transmitter channel- to-channel skew	_	_	_	300	_	_	300	_	_	300	ps
t _{x Jitter} (62)	Output jitter (high- speed I/O performance pin)	-	_	_	425	_	_	425	_	_	425	ps
	Output jitter (low- speed I/O performance pin)	_	_	_	470	_	_	470	_	_	470	ps
t _{RISE}	Rise time	20 - 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	ps
t _{FALL}	Fall time	20 - 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	ps
t _{LOCK}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	_	_	_	1	_	_	1	_	_	1	ms

 $^{^{(61)}}$ TCCS specifications apply to I/O banks from the same side only.

 $^{^{(62)}}$ TX jitter is the jitter induced from core noise and I/O switching noise.

Dual Supply Devices Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications

Table 44. Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices

Emulated LVDS_E_3R, SLVS, and Sub-LVDS transmitters are supported at the output pin of all I/O banks.

Symbol	Parameter	Mode	-16,	-A6, -C7,	-17	-A7			-C8			Unit		
					Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	1
f _{HSCLK}	Input clock frequency	×10	5	_	300	5	_	275	5	_	275	MHz		
	(high-speed I/O performance pin)	×8	5	_	300	5	_	275	5	_	275	MHz		
		×7	5	_	300	5	_	275	5	_	275	MHz		
		×4	5	_	300	5	_	275	5	_	275	MHz		
		×2	5	_	300	5	_	275	5	_	275	MHz		
		×1	5	_	300	5	_	275	5	_	275	MHz		
HSIODR	Data rate (high-speed	×10	100	_	600	100	_	550	100	_	550	Mbps		
	I/O performance pin)	×8	80	_	600	80	_	550	80	_	550	Mbps		
		×7	70	_	600	70	_	550	70	_	550	Mbps		
		×4	40	_	600	40	_	550	40	_	550	Mbps		
		×2	20	_	600	20	_	550	20	_	550	Mbps		
		×1	10	_	300	10	_	275	10	_	275	Mbps		
f _{HSCLK}	Input clock frequency	×10	5	_	150	5	_	150	5	_	150	MHz		
	(low-speed I/O performance pin)	×8	5	_	150	5	_	150	5	_	150	MHz		
		×7	5	_	150	5	_	150	5	_	150	MHz		
		×4	5	_	150	5	_	150	5	_	150	MHz		
		×2	5	_	150	5	_	150	5	_	150	MHz		
		×1	5	_	300	5	_	300	5	_	300	MHz		
HSIODR	Data rate (low-speed	×10	100	_	300	100	_	300	100	_	300	Mbps		
	I/O performance pin)		80	_	300	80	_	300	80	_	300	Mbps		
	•		•			•					cor	tinued		

Symbol	Parameter	Mode	-I6, -A6	, -C7, -I7	-	A7	-0	C8	Unit
			Min	Max	Min	Max	Min	Max	
		×2	5	360	5	320	5	320	MHz
		×1	5	360	5	320	5	320	MHz
HSIODR	Data rate (high-speed I/O	×10	100	700	100	640	100	640	Mbps
	performance pin)	×8	80	720	80	640	80	640	Mbps
		×7	70	700	70	640	70	640	Mbps
		×4	40	720	40	640	40	640	Mbps
		×2	20	720	20	640	20	640	Mbps
		×1	10	360	10	320	10	320	Mbps
f _{HSCLK}	Input clock frequency (low- speed I/O performance pin)	×10	5	150	5	150	5	150	MHz
		×8	5	150	5	150	5	150	MHz
		×7	5	150	5	150	5	150	MHz
		×4	5	150	5	150	5	150	MHz
		×2	5	150	5	150	5	150	MHz
		×1	5	300	5	300	5	300	MHz
HSIODR	Data rate (low-speed I/O	×10	100	300	100	300	100	300	Mbps
	performance pin)	×8	80	300	80	300	80	300	Mbps
		×7	70	300	70	300	70	300	Mbps
		×4	40	300	40	300	40	300	Mbps
		×2	20	300	20	300	20	300	Mbps
		×1	10	300	10	300	10	300	Mbps
SW	Sampling window (high- speed I/O performance pin)	_	_	510	_	510	_	510	ps
				-	_			<u> </u>	continued

Symbol	Parameter	Mode	-I6, -A6,	-I6, -A6, -C7, -I7		-A7		-C8	
			Min	Max	Min	Max	Min	Max	
	Sampling window (low- speed I/O performance pin)	_	_	910	_	910	_	910	ps
t _{x Jitter} (72)	Input jitter	_	_	500	_	500	_	500	ps
t _{LOCK}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	_	_	1	_	1	_	1	ms

Memory Standards Supported by the Soft Memory Controller

Table 47. Memory Standards Supported by the Soft Memory Controller for Intel MAX 10 Devices

Contact your local sales representatives for access to the -I6 or -A6 speed grade devices in the Intel Quartus Prime software.

External Memory Interface Standard	Rate Support	Speed Grade	Voltage (V)	Max Frequency (MHz)
DDR3 SDRAM	Half	-16	1.5	303
DDR3L SDRAM	Half	-16	1.35	303
DDR2 SDRAM	Half	-16	1.8	200
		-I7 and -C7		167
LPDDR2 ⁽⁷³⁾	Half	-I6	1.2	200 ⁽⁷⁴⁾

Related Information

External Memory Interface Spec Estimator

Provides the specific details of the memory standards supported.

⁽⁷²⁾ TX jitter is the jitter induced from core noise and I/O switching noise.

⁽⁷³⁾ Intel MAX 10 devices support only single-die LPDDR2.

 $^{^{(74)}}$ To achieve the specified performance, constrain the memory device I/O and core power supply variation to within $\pm 3\%$. By default, the frequency is 167 MHz.

Programmable IOE Delay for Column Pins

Table 58. IOE Programmable Delay on Column Pins for Intel MAX 10 Devices

The incremental values for the settings are generally linear. For exact values of each setting, refer to the **Assignment Name** column in the latest version of the Intel Quartus Prime software.

The minimum and maximum offset timing numbers are in reference to setting '0' as available in the Intel Quartus Prime software.

Parameter			Minimum Offset								
		Settings	Offset	Fast Corner		Slow Corner					
				-17	-C8	-A6	-C7	-C8	-17	-A7	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	0.81	0.868	1.823	1.802	1.864	1.862	1.912	ns
Input delay from pin to input register	Pad to I/O input register	8	0	0.914	0.981	2.06	2.032	2.101	2.102	2.161	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.435	0.466	0.971	0.97	1.013	1.001	1.028	ns

Term	Definition
t _{DUTY}	HIGH-SPEED I/O Block: Duty cycle on high-speed transmitter output clock.
t _{FALL}	Signal high-to-low transition time (80–20%).
t _H	Input register hold time.
Timing Unit Interval (TUI)	HIGH-SPEED I/O block: The timing budget allowed for skew, propagation delays, and data sampling window. (TUI = $1/(Receiver Input Clock Frequency Multiplication Factor) = t_C/w)$.
t _{INJITTER}	Period jitter on PLL clock input.
toutjitter_dedclk	Period jitter on dedicated clock output driven by a PLL.
t _{OUTJITTER_IO}	Period jitter on general purpose I/O driven by a PLL.
t _{pllcin}	Delay from PLL inclk pad to I/O input register.
t _{pllcout}	Delay from PLL inclk pad to I/O output register.
t _{RISE}	Signal low-to-high transition time (20–80%).
t _{SU}	Input register setup time.
V _{CM(DC)}	DC common mode input voltage.
V _{DIF(AC)}	AC differential input voltage: The minimum AC input differential voltage required for switching.
V _{DIF(DC)}	DC differential input voltage: The minimum DC input differential voltage required for switching.
V _{HYS}	Hysteresis for Schmitt trigger input.
V _{ICM}	Input common mode voltage: The common mode of the differential signal at the receiver.
V _{ID}	Input differential Voltage Swing: The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.
V _{IH}	Voltage input high: The minimum positive voltage applied to the input which is accepted by the device as a logic high.
V _{IH(AC)}	High-level AC input voltage.
V _{IH(DC)}	High-level DC input voltage.
V _{IL}	Voltage input low: The maximum positive voltage applied to the input which is accepted by the device as a logic low.
V _{IL (AC)}	Low-level AC input voltage.
V _{IL (DC)}	Low-level DC input voltage.
V _{IN}	DC input voltage.
	continued

Term	Definition
V _{OCM}	Output common mode voltage: The common mode of the differential signal at the transmitter.
V _{OD}	Output differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission line at the transmitter. $V_{OD} = V_{OH} - V_{OL}$.
V _{OH}	Voltage output high: The maximum positive voltage from an output which the device considers is accepted as the minimum positive high level.
V _{OL}	Voltage output low: The maximum positive voltage from an output which the device considers is accepted as the maximum positive low level.
V _{OS}	Output offset voltage: $V_{OS} = (V_{OH} + V_{OL}) / 2$.
V _{OX (AC)}	AC differential Output cross point voltage: The voltage at which the differential output signals must cross.
V _{REF}	Reference voltage for SSTL, HSTL, and HSUL I/O Standards.
V _{REF(AC)}	AC input reference voltage for SSTL, HSTL, and HSUL I/O Standards. $V_{REF(AC)} = V_{REF(DC)} + \text{noise}$. The peak-to-peak AC noise on V_{REF} should not exceed 2% of $V_{REF(DC)}$.
V _{REF(DC)}	DC input reference voltage for SSTL, HSTL, and HSUL I/O Standards.
V _{SWING (AC)}	AC differential input voltage: AC Input differential voltage required for switching.
V _{SWING (DC)}	DC differential input voltage: DC Input differential voltage required for switching.
Vπ	Termination voltage for SSTL, HSTL, and HSUL I/O Standards.
V _{X (AC)}	AC differential Input cross point voltage: The voltage at which the differential input signals must cross.

Document Revision History for the Intel MAX 10 FPGA Device Datasheet

Document Version	Changes
2018.06.29	 Removed links on instant-on feature. Added JTAG timing specifications term in <i>Glossary</i>. Renamed the following IP cores as per Intel rebranding: Renamed Altera Modular ADC IP core to Modular ADC core Intel FPGA IP core. Renamed Altera Modular Dual ADC IP core to Modular Dual ADC core Intel FPGA IP core.

Date	Version	Changes
		Updated SSTL-2 Class I and II I/O standard specifications for JEDEC compliance as follows:
		$-$ VIL(AC) Max: Updated from V_{REF} – 0.35 to V_{REF} – 0.31
		- VIH(AC) Min: Updated from V _{REF} + 0.35 to V _{REF} + 0.31
		Added a note to BLVDS in Differential I/O Standards Specifications for Intel MAX 10 Devices table: BLVDS TX is not supported in single supply devices.
		Added a link to MAX 10 High-Speed LVDS I/O User Guide for the list of I/O standards supported in single supply and dual supply devices.
		Added a statement in PLL Specifications for Intel MAX 10 Single Supply Device table: For V36 package, the PLL specification is based on single supply devices.
		Added Internal Oscillator Specifications from Intel MAX 10 Clocking and PLL User Guide.
		Added UFM specifications for serial interface.
		Updated total harmonic distortion (THD) specifications as follows:
		— Single supply devices: Updated from 65 dB to -65 dB
		 — Dual supply devices: Updated from 70 dB to −70 dB (updated from 65 dB to −65 dB for dual function pin)
		Added condition for On-Chip Temperature Sensor—Absolute accuracy parameter in ADC Performance Specifications for Intel MAX 10 Dual Supply Devices table. The condition is: with 64 samples averaging.
		Updated the description in Periphery Performance Specifications to mention that proper timing closure is required in design.
		Updated HSIODR and f _{HSCLK} specifications for x10 and x7 modes in True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices.
		• Added specifications for low-speed I/O performance pin sampling window in LVDS Receiver Timing Specifications for Intel MAX 10 Single Supply Devices table: Max = 900 ps for -C7, -I7, -A7, and -C8 speed grades.
		 Added t_{RU_nCONFIG} and t_{RU_nRSTIMER} specifications for different devices in Remote System Upgrade Circuitry Timing Specifications for Intel MAX 10 Devices table.
		Removed the word "internal oscillator" in User Watchdog Timer Specifications for Intel MAX 10 Devices table to avoid confusion.
		Added IOE programmable delay specifications.
September 2014	2014.09.22	Initial release.