

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	1563
Number of Logic Elements/Cells	25000
Total RAM Bits	691200
Number of I/O	360
Number of Gates	-
Voltage - Supply	1.15V ~ 1.25V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/intel/10m25daf484i7g

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

el® MAX® 10 FPGA Device Datasheet	3
Electrical CharacteristicsOperating Conditions	
Operating Conditions	
Switching Characteristics	2!
Core Performance Specifications	20
Periphery Performance Specifications	3!
Configuration Specifications	
JTAG Timing Parameters	58
Remote System Upgrade Circuitry Timing Specifications	59
User Watchdog Internal Circuitry Timing Specifications	59
Uncompressed Raw Binary File (.rbf) Sizes	59
Internal Configuration Time	60
Internal Configuration Timing Parameter	6
I/O Timing	6
Programmable IOE Delay	62
Programmable IOE Delay On Row Pins	
Programmable IOE Delay for Column Pins	63
Glossary	64
Document Revision History for the Intel MAX 10 FPGA Device Datasheet	60

This datasheet describes the electrical characteristics, switching characteristics, configuration specifications, and timing for Intel $MAX^{(i)}$ 10 devices.

Table 1. Intel MAX 10 Device Grades and Speed Grades Supported

Device Grade	Speed Grade Supported
Commercial	• -C7 • -C8 (slowest)
Industrial	-I6 (fastest)-I7
Automotive	-A6-A7

Note:

The –I6 and –A6 speed grades of the Intel MAX 10 FPGA devices are not available by default in the Intel Quartus® Prime software. Contact your local Intel sales representatives for support.

Related Information

Device Ordering Information, Intel MAX 10 FPGA Device Overview

Provides more information about the densities and packages of devices in the Intel MAX 10.

Electrical Characteristics

The following sections describe the operating conditions and power consumption of Intel MAX 10 devices.

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered

M10-DATASHEET | 2018.06.29

Symbol	Parameter	Min	Max	Unit
V _{CCD_PLL}	Supply voltage for PLL regulator (digital)	-0.5	1.63	V
V _{CCA_ADC}	Supply voltage for ADC analog block	-0.5	3.41	V
V _{CCINT}	Supply voltage for ADC digital block	-0.5	1.63	V

Absolute Maximum Ratings

Table 4. Absolute Maximum Ratings for Intel MAX 10 Devices

Symbol	Parameter	Min	Max	Unit
V _I	DC input voltage	-0.5	4.12	V
I _{OUT}	DC output current per pin	-25	25	mA
T _{STG}	Storage temperature	-65	150	°C
T _J	Operating junction temperature	-40	125	°C

Maximum Allowed Overshoot During Transitions over a 11.4-Year Time Frame

During transitions, input signals may overshoot to the voltage listed in the following table and undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.

The maximum allowed overshoot duration is specified as a percentage of high time over the lifetime of the device. A DC signal is equivalent to 100% duty cycle.

For example, a signal that overshoots to 4.17 V can only be at 4.17 V for \sim 11.7% over the lifetime of the device; for a device lifetime of 11.4 years, this amounts to 1.33 years.

Table 5. Maximum Allowed Overshoot During Transitions over a 11.4-Year Time Frame for Intel MAX 10 Devices

Condition (V)	Overshoot Duration as % of High Time	Unit
4.12	100.0	%
4.17	11.7	%
4.22	7.1	%
4.27	4.3	%
		continued

Table 15. OCT Variation after Calibration at Device Power-Up for Intel MAX 10 Devices

This table lists the change percentage of the OCT resistance with voltage and temperature.

Description	Nominal Voltage	dR/dT (%/°C)	dR/dV (%/mV)
OCT variation after calibration at device power-up	3.00	0.25	-0.027
	2.50	0.245	-0.04
	1.80	0.242	-0.079
	1.50	0.235	-0.125
	1.35	0.229	-0.16
	1.20	0.197	-0.208

Figure 1. Equation for OCT Resistance after Calibration at Device Power-Up

$$\Delta R_V = (V_2 - V_1) \times 1000 \times dR/dV$$

$$\Delta R_T = (T_2 - T_1) \times dR/dT$$
For $\Delta R_X < 0$; $MF_X = 1/(|\Delta R_X|/100 + 1)$
For $\Delta R_X > 0$; $MF_X = \Delta R_X/100 + 1$

$$MF = MF_V \times MF_T$$

$$R_{final} = R_{initial} \times MF$$

The definitions for equation are as follows:

- T₁ is the initial temperature.
- T₂ is the final temperature.
- MF is multiplication factor.
- R_{initial} is initial resistance.
- R_{final} is final resistance.

Pin Capacitance

Table 16. Pin Capacitance for Intel MAX 10 Devices

Symbol	Parameter	Maximum	Unit
C _{IOB}	Input capacitance on bottom I/O pins	8	pF
C _{IOLRT}	Input capacitance on left/right/top I/O pins	7	pF
C _{LVDSB}	Input capacitance on bottom I/O pins with dedicated LVDS output ⁽⁹⁾	8	pF
C _{ADCL}	Input capacitance on left I/O pins with ADC input (10)	9	pF
C _{VREFLRT}	Input capacitance on left/right/top dual purpose $\rm V_{REF}$ pin when used as $\rm V_{REF}$ or user I/O pin $^{(11)}$	48	pF
C _{VREFB}	Input capacitance on bottom dual purpose V_{REF} pin when used as V_{REF} or user I/O pin	50	pF
C _{CLKB}	Input capacitance on bottom dual purpose clock input pins (12)	7	pF
C _{CLKLRT}	Input capacitance on left/right/top dual purpose clock input pins (12)	6	pF

Internal Weak Pull-Up Resistor

All I/O pins, except configuration, test, and JTAG pins, have an option to enable weak pull-up.

⁽⁹⁾ Dedicated LVDS output buffer is only available at bottom I/O banks.

⁽¹⁰⁾ ADC pins are only available at left I/O banks.

When V_{REF} pin is used as regular input or output, F_{max} performance is reduced due to higher pin capacitance. Using the V_{REF} pin capacitance specification from device datasheet, perform SI analysis on your board setup to determine the F_{max} of your system.

^{(12) 10}M40 and 10M50 devices have dual purpose clock input pins at top/bottom I/O banks.

Table 24. Differential HSTL and HSUL I/O Standards Specifications for Intel MAX 10 Devices

I/O Standard	V _{CCIO} (V)			V _{DIF(D}	c) (V)		V _{X(AC)} (V)			V _{DIF(AC)} (V)		
	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min
HSTL-18 Class I, II	1.71	1.8	1.89	0.2	_	0.85	_	0.95	0.85	_	0.95	0.4
HSTL-15 Class I, II	1.425	1.5	1.575	0.2	_	0.71	_	0.79	0.71	_	0.79	0.4
HSTL-12 Class I, II	1.14	1.2	1.26	0.16	V _{CCIO}	0.48 × V _{CCIO}	0.5 × V _{CCIO}	0.52 × V _{CCIO}	0.48 × V _{CCIO}	0.5 × V _{CCIO}	0.52 × V _{CCIO}	0.3
HSUL-12	1.14	1.2	1.3	0.26	_	0.5 × V _{CCIO} - 0.12	0.5 × V _{CCIO}	0.5 × V _{CCIO} + 0.12	0.4 × V _{CCIO}	0.5 × V _{CCIO}	0.6 × V _{CCIO}	0.44

Differential I/O Standards Specifications

Table 25. Differential I/O Standards Specifications for Intel MAX 10 Devices

I/O Standard	V _{CCIO} (V)			V _{ID} (mV)			V _{ICM} (V) (18)	V _{OD} (mV) ⁽¹⁹⁾⁽²⁰⁾			V _{OS} (V) ⁽¹⁹⁾			
	Min	Тур	Max	Min	Max	Min	Min Condition M		Min	Тур	Max	Min	Тур	Max
LVPECL (21)	2.375	2.5	2.625	100	_	0.05 D _{MAX} ≤ 500 Mbps		1.8	_	_	_	_	_	_
						0.55	500 Mbps ≤ D _{MAX} ≤ 1.8 700 Mbps							
						1.05	D _{MAX} > 700 Mbps	1.55						
LVDS	2.375	2.5	2.625	100	_	0.05	D _{MAX} ≤ 500 Mbps	1.8	247	_	600	1.125	1.25	1.375
						0.55	0.55 500 Mbps ≤ D _{MAX} ≤ 700 Mbps							

 $^{(18)}$ V_{IN} range: 0 V \leq V_{IN} \leq 1.85 V.

⁽¹⁹⁾ R_L range: $90 \le R_L \le 110 \Omega$.

 $^{(20)}$ Low V_{OD} setting is only supported for RSDS standard.

(21) LVPECL input standard is only supported at clock input. Output standard is not supported.

Symbol	Parameter	Mode	-16,	-A6, -C7,	, –17		-A7			-C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	İ
		×4	40	_	300	40	_	300	40	_	300	Mbps
		×2	20	_	300	20	_	300	20	_	300	Mbps
		×1	10	_	300	10	_	300	10	_	300	Mbps
t _{DUTY}	Duty cycle on transmitter output clock	_	45	_	55	45	_	55	45	_	55	%
TCCS ⁽⁵³⁾	Transmitter channel- to-channel skew	_	_	_	300	_	_	300	_	_	300	ps
t _{x Jitter} (54)	Output jitter (high- speed I/O performance pin)	_	_	_	425	_	_	425	_	_	425	ps
	Output jitter (low- speed I/O performance pin)	_	_	_	470	_	_	470	_	_	470	ps
t _{RISE}	Rise time	20 – 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	ps
t _{FALL}	Fall time	20 - 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	ps
t _{LOCK}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	_	_	_	1	_	_	1	_	-	1	ms

 $^{^{(53)}}$ TCCS specifications apply to I/O banks from the same side only.

 $^{^{(54)}}$ TX jitter is the jitter induced from core noise and I/O switching noise.

Symbol	Parameter	Mode	-16,	-A6, -C7	, –17		-A7			-C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
		×4	40	_	300	40	_	300	40	_	300	Mbps
		×2	20	_	300	20	_	300	20	_	300	Mbps
		×1	10	_	300	10	_	300	10	_	300	Mbps
t _{DUTY}	Duty cycle on transmitter output clock	_	45	_	55	45	_	55	45	_	55	%
TCCS ⁽⁵⁷⁾	Transmitter channel- to-channel skew	_	_	_	300	_	_	300	_	_	300	ps
t _{x Jitter} (58)	Output jitter (high- speed I/O performance pin)	-	_	_	425	_	_	425	_	_	425	ps
	Output jitter (low- speed I/O performance pin)	_	_	_	470	_	_	470	_	_	470	ps
t _{RISE}	Rise time	20 - 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	ps
t _{FALL}	Fall time	20 - 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	ps
t _{LOCK}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	_	_	_	1	_	_	1	_	-	1	ms

 $^{^{(57)}}$ TCCS specifications apply to I/O banks from the same side only.

 $^{^{(58)}}$ TX jitter is the jitter induced from core noise and I/O switching noise.

True Mini-LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications

Table 40. True Mini-LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply **Devices**

True mini-LVDS transmitter is only supported at the bottom I/O banks. Emulated mini-LVDS_E_3R transmitter is supported at the output pin of all I/O banks.

Symbol	Parameter	Mode	-16,	-A6, -C7,	-17		-A7			-C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	1
f _{HSCLK} Input clock frequency		×10	5	_	155	5	_	155	5	_	155	MHz
	(high-speed I/O performance pin)	×8	5	_	155	5	_	155	5	_	155	MHz
		×7	5	_	155	5	_	155	5	_	155	MHz
		×4	5	_	155	5	_	155	5	_	155	MHz
		×2	5	_	155	5	_	155	5	_	155	MHz
		×1	5	_	310	5	_	310	5	_	310	MHz
HSIODR	Data rate (high-speed	×10	100	_	310	100	_	310	100	_	310	Mbps
	I/O performance pin)	×8	80	_	310	80	_	310	80	_	310	Mbps
		×7	70	_	310	70	_	310	70	_	310	Mbps
		×4	40	_	310	40	_	310	40	_	310	Mbps
		×2	20	_	310	20	_	310	20	_	310	Mbps
		×1	10	_	310	10	_	310	10	_	310	Mbps
f _{HSCLK}	Input clock frequency	×10	5	_	150	5	_	150	5	_	150	MHz
	(low-speed I/O performance pin)	×8	5	_	150	5	_	150	5	_	150	MHz
		×7	5	_	150	5	_	150	5	_	150	MHz
		×4	5	_	150	5	_	150	5	_	150	MHz
		×2	5	_	150	5	_	150	5	_	150	MHz
		×1	5	_	300	5	_	300	5	_	300	MHz
HSIODR	Data rate (low-speed	×10	100	_	300	100	_	300	100	_	300	Mbps
	I/O performance pin)	×8	80	_	300	80	_	300	80	_	300	Mbps
						•					cor	tinued

Symbol	Parameter	Mode	-16,	-A6, -C7,	-17		-A7			-C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
		×7	70	_	300	70	_	300	70	_	300	Mbps
		×4	40	_	300	40	_	300	40	_	300	Mbps
		×2	20	_	300	20	_	300	20	_	300	Mbps
		×1	10	_	300	10	_	300	10	_	300	Mbps
t _{DUTY}	Duty cycle on transmitter output clock	_	45	_	55	45	_	55	45	_	55	%
TCCS ⁽⁶¹⁾	Transmitter channel- to-channel skew	_	_	_	300	_	_	300	_	_	300	ps
t _{x Jitter} ⁽⁶²⁾	Output jitter (high- speed I/O performance pin)	_	_	_	425	_	_	425	_	_	425	ps
	Output jitter (low- speed I/O performance pin)	_	_	_	470	_	_	470	_	_	470	ps
t _{RISE}	Rise time	20 - 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	ps
t _{FALL}	Fall time	20 - 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	ps
t _{LOCK}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	_	Ι	_	1	-	_	1	_	_	1	ms

 $^{^{(61)}}$ TCCS specifications apply to I/O banks from the same side only.

 $^{^{(62)}}$ TX jitter is the jitter induced from core noise and I/O switching noise.

Symbol	Parameter	Mode		-C7, -I7			-A7			-C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
		×8	80	_	200	80	_	200	80	_	200	Mbps
		×7	70	_	200	70	_	200	70	_	200	Mbps
		×4	40	_	200	40	_	200	40	_	200	Mbps
		×2	20	_	200	20	_	200	20	_	200	Mbps
		×1	10	_	200	10	_	200	10	_	200	Mbps
t _{DUTY}	Duty cycle on transmitter output clock	_	45	_	55	45	_	55	45	_	55	%
TCCS ⁽⁶⁷⁾	Transmitter channel- to-channel skew	_	_	_	300	_	_	300	_	_	300	ps
t _{x Jitter} (68)	Output jitter	_	_	_	1,000	_	_	1,000	_	_	1,000	ps
t _{RISE}	Rise time	20 - 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	ps
t _{FALL}	Fall time	20 - 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	ps
t _{LOCK}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	_	_	_	1	_	_	1	-	_	1	ms

 $^{^{(67)}}$ TCCS specifications apply to I/O banks from the same side only.

⁽⁶⁸⁾ TX jitter is the jitter induced from core noise and I/O switching noise.

Symbol	Parameter	Mode	-16,	-A6, -C7,	-17		-A7			-C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
		×7	70	_	300	70	_	300	70	_	300	Mbps
		×4	40	_	300	40	_	300	40	_	300	Mbps
		×2	20	_	300	20	_	300	20	_	300	Mbps
		×1	10	_	300	10	_	300	10	_	300	Mbps
t _{DUTY}	Duty cycle on transmitter output clock	_	45	_	55	45	_	55	45	_	55	%
TCCS ⁽⁶⁹⁾	Transmitter channel- to-channel skew	_	_	_	300	_	_	300	_	_	300	ps
t _{x Jitter} ⁽⁷⁰⁾	Output jitter (high- speed I/O performance pin)	_	_	_	425	_	-	425	_	_	425	ps
	Output jitter (low- speed I/O performance pin)	_	_	_	470	_	_	470	_	_	470	ps
t _{RISE}	Rise time	20 - 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	ps
t _{FALL}	Fall time	20 - 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	ps
t _{LOCK}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	-	_	_	1	_	_	1	_	_	1	ms

 $^{^{(69)}}$ TCCS specifications apply to I/O banks from the same side only.

 $^{^{(70)}}$ TX jitter is the jitter induced from core noise and I/O switching noise.

Symbol	Parameter	Mode	-I6, -A6,	-C7, -I7	-1	17	-(C8	Unit
			Min	Max	Min	Max	Min	Max	
	Sampling window (low- speed I/O performance pin)	_	_	910	_	910	_	910	ps
t _{x Jitter} (72)	Input jitter	_	_	500	_	500	_	500	ps
t _{LOCK}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	_	_	1	_	1	_	1	ms

Memory Standards Supported by the Soft Memory Controller

Table 47. Memory Standards Supported by the Soft Memory Controller for Intel MAX 10 Devices

Contact your local sales representatives for access to the -I6 or -A6 speed grade devices in the Intel Quartus Prime software.

External Memory Interface Standard	Rate Support	Speed Grade	Voltage (V)	Max Frequency (MHz)
DDR3 SDRAM	Half	-16	1.5	303
DDR3L SDRAM	Half	-16	1.35	303
DDR2 SDRAM	Half	-16	1.8	200
		-I7 and -C7		167
LPDDR2 ⁽⁷³⁾	Half	-I6	1.2	200 ⁽⁷⁴⁾

Related Information

External Memory Interface Spec Estimator

Provides the specific details of the memory standards supported.

⁽⁷²⁾ TX jitter is the jitter induced from core noise and I/O switching noise.

⁽⁷³⁾ Intel MAX 10 devices support only single-die LPDDR2.

 $^{^{(74)}}$ To achieve the specified performance, constrain the memory device I/O and core power supply variation to within $\pm 3\%$. By default, the frequency is 167 MHz.

Memory Output Clock Jitter Specifications

Intel MAX 10 devices support external memory interfaces up to 303 MHz. The external memory interfaces for Intel MAX 10 devices calibrate automatically.

The memory output clock jitter measurements are for 200 consecutive clock cycles.

The clock jitter specification applies to memory output clock pins generated using DDIO circuits clocked by a PLL output routed on a PHY clock network.

DDR3 and LPDDR2 SDRAM memory interfaces are only supported on the fast speed grade device.

Table 48. Memory Output Clock Jitter Specifications for Intel MAX 10 Devices

Parameter	Symbol	-6 Spee	d Grade	-7 Spee	Unit	
		Min	Max	Min	Max	
Clock period jitter	t _{JIT(per)}	-127	127	-215	215	ps
Cycle-to-cycle period jitter	t _{JIT(cc)}	_	242	_	360	ps

Related Information

Literature: External Memory Interfaces

Provides more information about external memory system performance specifications, board design guidelines, timing analysis, simulation, and debugging information.

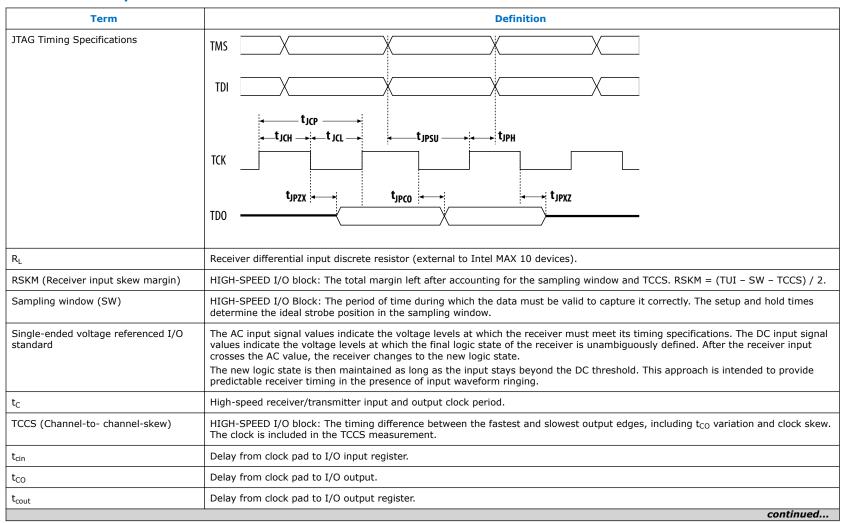
Configuration Specifications

This section provides configuration specifications and timing for Intel MAX 10 devices.

Programmable IOE Delay for Column Pins

Table 58. IOE Programmable Delay on Column Pins for Intel MAX 10 Devices

The incremental values for the settings are generally linear. For exact values of each setting, refer to the **Assignment Name** column in the latest version of the Intel Quartus Prime software.


The minimum and maximum offset timing numbers are in reference to setting '0' as available in the Intel Quartus Prime software.

Parameter	Paths Affected	Number of	Minimum		Maximum Offset								
		Settings	Offset	Fast C	Corner								
				-17	-C8	-A6	-C7	-C8	-17	-A7			
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	0.81	0.868	1.823	1.802	1.864	1.862	1.912	ns		
Input delay from pin to input register	Pad to I/O input register	8	0	0.914	0.981	2.06	2.032	2.101	2.102	2.161	ns		
Delay from output register to output pin	I/O output register to pad	2	0	0.435	0.466	0.971	0.97	1.013	1.001	1.028	ns		

Glossary

Table 59. Glossary

Term	Definition
V _{OCM}	Output common mode voltage: The common mode of the differential signal at the transmitter.
V _{OD}	Output differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission line at the transmitter. $V_{OD} = V_{OH} - V_{OL}$.
V _{OH}	Voltage output high: The maximum positive voltage from an output which the device considers is accepted as the minimum positive high level.
V _{OL}	Voltage output low: The maximum positive voltage from an output which the device considers is accepted as the maximum positive low level.
V _{OS}	Output offset voltage: $V_{OS} = (V_{OH} + V_{OL}) / 2$.
V _{OX (AC)}	AC differential Output cross point voltage: The voltage at which the differential output signals must cross.
V _{REF}	Reference voltage for SSTL, HSTL, and HSUL I/O Standards.
V _{REF(AC)}	AC input reference voltage for SSTL, HSTL, and HSUL I/O Standards. $V_{REF(AC)} = V_{REF(DC)} + \text{noise}$. The peak-to-peak AC noise on V_{REF} should not exceed 2% of $V_{REF(DC)}$.
V _{REF(DC)}	DC input reference voltage for SSTL, HSTL, and HSUL I/O Standards.
V _{SWING (AC)}	AC differential input voltage: AC Input differential voltage required for switching.
V _{SWING (DC)}	DC differential input voltage: DC Input differential voltage required for switching.
Vπ	Termination voltage for SSTL, HSTL, and HSUL I/O Standards.
V _{X (AC)}	AC differential Input cross point voltage: The voltage at which the differential input signals must cross.

Document Revision History for the Intel MAX 10 FPGA Device Datasheet

Document Version	Changes
2018.06.29	 Removed links on instant-on feature. Added JTAG timing specifications term in <i>Glossary</i>. Renamed the following IP cores as per Intel rebranding: Renamed Altera Modular ADC IP core to Modular ADC core Intel FPGA IP core. Renamed Altera Modular Dual ADC IP core to Modular Dual ADC core Intel FPGA IP core.

Date	Version	Changes
		Added -A6 speed grade in the following tables: — Intel MAX 10 Device Grades and Speed Grades Supported — Series OCT without Calibration Specifications for Intel MAX 10 Devices — Clock Tree Specifications for Intel MAX 10 Devices — Embedded Multiplier Specifications for Intel MAX 10 Devices — Memory Block Performance Specifications for Intel MAX 10 Devices — True PPDS and Emulated PPDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices — True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices — Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices — True Mini-LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices — True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices — True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices — Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices — LVDS, TMDS, HiSpi, SLVS, and Sub-LVDS Receiver Timing Specifications for Intel MAX 10 Dual Supply Devices — IOE Programmable Delay on Row Pins for Intel MAX 10 Devices — IOE Programmable Delay on Column Pins for Intel MAX 10 Devices — Updated the maximum value for input clock cycle-to-cycle jitter (t _{INJITTER_CCJ}) with F _{INPFD} < 100 MHz condition from 750 ps to ±750 ps in PLL Specifications for Intel MAX 10 Devices table. • Updated the dual supply mode performance in Embedded Multiplier Specifications for Intel MAX 10 Devices table. • Updated the dual supply mode performance in Embedded Multiplier Specifications for Intel MAX 10 Devices table. • Updated specifications in UFM Performance Specifications for Intel MAX 10 Devices table. • Updated specifications in UFM Performance Specifications for Intel MAX 10 Devices table. • Updated Specifications in UFM Performance Specifications for Intel MAX 10 Devices table. • Updated IOE programmable delay for r
June 2015	2015.06.12	 Updated the maximum values in Internal Weak Pull-Up Resistor for Intel MAX 10 Devices table. Removed Internal Weak Pull-Up Resistor equation. Updated the note for input resistance and input capacitance parameters in the ADC Performance Specifications table for both single supply and dual supply devices. Note: Download the SPICE models for simulation. Added a note to AC Accuracy - THD, SNR, and SINAD parameters in the ADC Performance Specifications for Intel MAX 10 Dual Supply Devices table. Note: When using internal V_{REF}, THD = 66 dB, SNR = 58 dB and SINAD = 57.5 dB for dedicated ADC input channels. Updated clock period jitter and cycle-to-cycle period jitter parameters in the Memory Output Clock Jitter Specifications for Intel MAX 10 Devices table.
	L	continued

Date	Version	Changes
May 2015	2015.05.04	Updated a note to V _{CCIO} for both single supply and dual supply power supplies recommended operating conditions tables. Note updated: V _{CCIO} for all I/O banks must be powered up during user mode because V _{CCIO} I/O banks are used for the ADC and I/O functionalities.
		Updated Example for OCT Resistance Calculation after Calibration at Device Power-Up.
		Removed a note to BLVDS in Differential I/O Standards Specifications for Intel MAX 10 Devices table. BLVDS is now supported in Intel MAX 10 single supply devices. Note removed: BLVDS TX is not supported in single supply devices.
		Updated ADC Performance Specifications for both single supply and dual supply devices.
		— Changed the symbol for Operating junction temperature range parameter from T_{Δ} to T_{1} .
		Edited sampling rate maximum value from 1000 kSPS to 1 MSPS.
		Added a note to analog input voltage parameter.
		Removed input frequency, f _{IN} specification.
		 Updated the condition for DNL specification: External V_{REF}, no missing code. Added DNL specification for condition: Internal V_{RFF}, no missing code.
		 Added notes to AC accuracy specifications that the value with prescalar enabled is 6dB less than the specification.
		 Added a note to On-Chip Temperature Sensor (absolute accuracy) parameter about the averaging calculation.
		Updated ADC Performance Specifications for Intel MAX 10 Single Supply Devices table.
		 Added condition for On-Chip Temperature Sensor (absolute accuracy) parameter: with 64 samples averaging.
		Updated ADC Performance Specifications for Intel MAX 10 Dual Supply Devices table.
		 Updated Digital Supply Voltage minimum value from 1.14 V to 1.15 V and maximum value from 1.26 V to 1.25 V. Updated f_{HSCLK} and HSIODR specifications for -A7 speed grade in the following tables:
		True PPDS and Emulated PPDS E 3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices
		True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices
		True Mini-LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Device
		True LVDS Transmitter Timing Specifications for Intel MAX 10 Single Supply Devices
		True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices
		— Emulated LVDS E 3R Transmitter Timing Specifications for Intel MAX 10 Single Supply Devices
		Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices
		LVDS Receiver Timing Specifications for Intel MAX 10 Single Supply Devices
		LVDS, TMDS, HiSpi, SLVS, and Sub-LVDS Receiver Timing Specifications for Intel MAX 10 Dual Supply Devices
	l	continued

Date	Version	Changes
		 Updated TCCS specifications in the following tables: True PPDS and Emulated PPDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True Mini-LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True LVDS Transmitter Timing Specifications for Intel MAX 10 Single Supply Devices Emulated LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Single Supply Devices Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Updated t_x Jitter specifications in the following tables: True PPDS and Emulated PPDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Updated SW specifications in LVDS Receiver Timing Specifications for Intel MAX 10 Single Supply Devices table. Added a note to t_x litter for all LVDS tables. Note: TX jitter is the jitter induced from core noise and I/O switching noise. <
January 2015	2015.01.23	 Removed a note to V_{CCA} in Power Supplies Recommended Operating Conditions for Intel MAX 10 Dual Supply Devices table. This note is not valid: All V_{CCA} pins must be connected together for EQFP package. Corrected the maximum value for t_{OUTJITTER_CCJ_IO} (F_{OUT} ≥ 100 MHz) from 60 ps to 650 ps in PLL Specifications for Intel MAX 10 Devices table.
December 2014	2014.12.15	 Restructured Programming/Erasure Specifications for Intel MAX 10 Devices table to add temperature specifications that affect the data retention duration. Added statements in the I/O Pin Leakage Current section: Input channel leakage of ADC I/O pins due to hot socket is up to maximum of 1.8 mA. The input channel leakage occurs when the ADC IP core is enabled or disabled. This is applicable to all Intel MAX 10 devices with ADC IP core, which are 10M04, 10M08, 10M16, 10M25, 10M40, and 10M50 devices. The ADC I/O pins are in Bank 1A. Added a statement in the I/O Standards Specifications section: You must perform timing closure analysis to determine the maximum achievable frequency for general purpose I/O standards.