
Intel - 10M40DAF484C7G Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	2500
Number of Logic Elements/Cells	40000
Total RAM Bits	1290240
Number of I/O	360
Number of Gates	-
Voltage - Supply	1.15V ~ 1.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/intel/10m40daf484c7g

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Intel[®] MAX[®] 10 FPGA Device Datasheet

This datasheet describes the electrical characteristics, switching characteristics, configuration specifications, and timing for Intel $MAX^{(R)}$ 10 devices.

Table 1. Intel MAX 10 Device Grades and Speed Grades Supported

Device Grade	Speed Grade Supported
Commercial	 -C7 -C8 (slowest)
Industrial	 -I6 (fastest) -I7
Automotive	 -A6 -A7

Note: The –I6 and –A6 speed grades of the Intel MAX 10 FPGA devices are not available by default in the Intel Quartus[®] Prime software. Contact your local Intel sales representatives for support.

Related Information

Device Ordering Information, Intel MAX 10 FPGA Device Overview Provides more information about the densities and packages of devices in the Intel MAX 10.

Electrical Characteristics

The following sections describe the operating conditions and power consumption of Intel MAX 10 devices.

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered

*Other names and brands may be claimed as the property of others.

Condition (V)	Overshoot Duration as % of High Time	Unit
4.32	2.6	%
4.37	1.6	%
4.42	1.0	%
4.47	0.6	%
4.52	0.3	%
4.57	0.2	%

Recommended Operating Conditions

This section lists the functional operation limits for the AC and DC parameters for Intel MAX 10 devices. The tables list the steady-state voltage values expected from Intel MAX 10 devices. Power supply ramps must all be strictly monotonic, without plateaus.

Single Supply Devices Power Supplies Recommended Operating Conditions

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{CC_ONE} ⁽¹⁾	Supply voltage for core and periphery through on- die voltage regulator	_	2.85/3.135	3.0/3.3	3.15/3.465	V
V _{CCIO} ⁽²⁾	Supply voltage for input and output buffers	3.3 V	3.135	3.3	3.465	V
		3.0 V	2.85	3	3.15	V
		2.5 V	2.375	2.5	2.625	V
		1.8 V	1.71	1.8	1.89	V
		1.5 V	1.425	1.5	1.575	V
			•			continued

 $^{^{(1)}\,}$ V_{CCA} must be connected to V_{CC}\,_{ONE} through a filter.

⁽²⁾ V_{CCIO} for all I/O banks must be powered up during user mode because V_{CCIO} I/O banks are used for the ADC and I/O functionalities.

Recommended Operating Conditions

Table 8. Recommended Operating Conditions for Intel MAX 10 Devices

Symbol	Parameter	Condition	Min	Max	Unit
VI	DC input voltage	-	-0.5	3.6	V
Vo	Output voltage for I/O pins	—	0	V _{CCIO}	V
Тј	Operating junction temperature	Commercial	0	85	°C
		Industrial	-40 ⁽⁶⁾	100	°C
		Automotive	-40 ⁽⁶⁾	125	°C
t _{RAMP}	Power supply ramp time	-	(7)	10	ms
I _{Diode}	Magnitude of DC current across PCI* clamp diode when enabled	_	_	10	mA

Programming/Erasure Specifications

Table 9. Programming/Erasure Specifications for Intel MAX 10 Devices

This table shows the programming cycles and data retention duration of the user flash memory (UFM) and configuration flash memory (CFM) blocks.

For more information about data retention duration with 10,000 programming cycles for automotive temperature devices, contact your Intel quality representative.

Erase and reprogram cycles (E/P) ⁽⁸⁾ (Cycles/ page)	Temperature (°C)	Data retention duration (Years)
10,000	85	20
10,000	100	10

⁽⁶⁾ -40°C is only applicable to Start of Test, when the device is powered-on. The device does not stay at the minimum junction temperature for a long time.

⁽⁷⁾ There is no absolute minimum value for the ramp time requirement. Intel characterized the minimum ramp time at 200 μ s.

⁽⁸⁾ The number of E/P cycles applies to the smallest possible flash block that can be erased or programmed in each Intel MAX 10 device. Each Intel MAX 10 device has multiple flash pages per device.

Pin Capacitance

Table 16. Pin Capacitance for Intel MAX 10 Devices

Symbol	Parameter	Maximum	Unit
C _{IOB}	Input capacitance on bottom I/O pins	8	pF
C _{IOLRT}	Input capacitance on left/right/top I/O pins	7	pF
C _{LVDSB}	Input capacitance on bottom I/O pins with dedicated LVDS output ⁽⁹⁾	8	pF
C _{ADCL}	Input capacitance on left I/O pins with ADC input ⁽¹⁰⁾	9	pF
C _{VREFLRT}	Input capacitance on left/right/top dual purpose V_{REF} pin when used as V_{REF} or user I/O pin $^{(11)}$	48	pF
C _{VREFB}	Input capacitance on bottom dual purpose V_{REF} pin when used as V_{REF} or user I/O pin	50	pF
C _{CLKB}	Input capacitance on bottom dual purpose clock input pins (12)	7	pF
C _{CLKLRT}	Input capacitance on left/right/top dual purpose clock input pins (12)	6	pF

Internal Weak Pull-Up Resistor

All I/O pins, except configuration, test, and JTAG pins, have an option to enable weak pull-up.

- ⁽¹¹⁾ When V_{REF} pin is used as regular input or output, F_{max} performance is reduced due to higher pin capacitance. Using the V_{REF} pin capacitance specification from device datasheet, perform SI analysis on your board setup to determine the F_{max} of your system.
- ⁽¹²⁾ 10M40 and 10M50 devices have dual purpose clock input pins at top/bottom I/O banks.

⁽⁹⁾ Dedicated LVDS output buffer is only available at bottom I/O banks.

⁽¹⁰⁾ ADC pins are only available at left I/O banks.

Table 17. Internal Weak Pull-Up Resistor for Intel MAX 10 Devices

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
R_PU	Value of I/O pin (dedicated and dual-purpose)	$V_{CCIO} = 3.3 V \pm 5\%$	7	12	34	kΩ
	pull-up resistor before and during configuration, as well as user mode if the programmable pull-up	$V_{CCIO} = 3.0 V \pm 5\%$	8	13	37	kΩ
	resistor option is enabled	$V_{CCIO} = 2.5 V \pm 5\%$	10	15	46	kΩ
		$V_{CCIO} = 1.8 V \pm 5\%$	16	25	75	kΩ
		$V_{CCIO} = 1.5 V \pm 5\%$	20	36	106	kΩ
		$V_{CCIO} = 1.2 V \pm 5\%$	33	82	179	kΩ

Pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO} .

Hot-Socketing Specifications

Table 18. Hot-Socketing Specifications for Intel MAX 10 Devices

Symbol	Parameter	Maximum
I _{IOPIN(DC)}	DC current per I/O pin	300 µA
I _{IOPIN(AC)}	AC current per I/O pin	8 mA ⁽¹³⁾

Hysteresis Specifications for Schmitt Trigger Input

Intel MAX 10 devices support Schmitt trigger input on all I/O pins. A Schmitt trigger feature introduces hysteresis to the input signal for improved noise immunity, especially for signal with slow edge rate.

⁽¹³⁾ The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, $|I_{IOPIN}| = C dv/dt$, in which C is I/O pin capacitance and dv/dt is the slew rate.

I/O Standard	V _{CCI0} (V)			V _{DIF(D}	V _{DIF(DC)} (V) V			V _{X(AC)} (V)		V _{CM(DC)} (V)		
	Min	Тур	Max	Min	Max	Min	Тур	Мах	Min	Тур	Max	Min
HSTL-18 Class I, II	1.71	1.8	1.89	0.2	_	0.85	_	0.95	0.85	-	0.95	0.4
HSTL-15 Class I, II	1.425	1.5	1.575	0.2	_	0.71	_	0.79	0.71	_	0.79	0.4
HSTL-12 Class I, II	1.14	1.2	1.26	0.16	V _{CCIO}	0.48 × V _{CCIO}	$0.5 \times V_{CCIO}$	0.52 × V _{CCIO}	0.48 × V _{CCIO}	$0.5 \times V_{CCIO}$	0.52 × V _{CCIO}	0.3
HSUL-12	1.14	1.2	1.3	0.26	-	0.5 × V _{CCIO} – 0.12	$0.5 \times V_{CCIO}$	0.5 × V _{CCIO} + 0.12	$0.4 \times V_{CCIO}$	0.5 × V _{CCIO}	0.6 × V _{CCIO}	0.44

Table 24. Differential HSTL and HSUL I/O Standards Specifications for Intel MAX 10 Devices

Differential I/O Standards Specifications

Table 25. Differential I/O Standards Specifications for Intel MAX 10 Devices

I/O Standard	,	V _{CCIO} (V)		V _{ID} (mV)	V _{ICM} (V) ⁽¹⁸⁾			V _{OD} (mV) ⁽¹⁹⁾⁽²⁰⁾			V _{OS} (V) ⁽¹⁹⁾		
	Min	Тур	Max	Min	Мах	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max
LVPECL (21)	2.375	2.5	2.625	100	_	0.05	$D_{MAX} \leq 500 \text{ Mbps}$	1.8	-	_	_	-	_	-
						0.55	$500 \text{ Mbps} \leq D_{MAX} \leq 700 \text{ Mbps}$	1.8						
						1.05	D _{MAX} > 700 Mbps	1.55						
LVDS	2.375	2.5	2.625	100	_	0.05	$D_{MAX} \leq 500 \text{ Mbps}$	1.8	247	_	600	1.125	1.25	1.375
						0.55	500 Mbps $\leq D_{MAX} \leq$ 700 Mbps	1.8						
									•	•			cont	inued

 $^{(18)}$ V_{IN} range: 0 V \leq V_{IN} \leq 1.85 V.

⁽¹⁹⁾ R_L range: $90 \leq R_L \leq 110 \Omega$.

 $^{(20)}$ Low V_{OD} setting is only supported for RSDS standard.

⁽²¹⁾ LVPECL input standard is only supported at clock input. Output standard is not supported.

Symbol	Parameter	Condition	Min	Тур	Max	Unit
t _{PLL_PSERR}	Accuracy of PLL phase shift	—	—	—	±50	ps
t _{ARESET}	Minimum pulse width on areset signal.	—	10	—	—	ns
t _{CONFIGPLL}	Time required to reconfigure scan chains for PLLs	_	_	3.5 ⁽³²⁾	_	SCANCLK cycles
f _{SCANCLK}	scanclk frequency	_	_	_	100	MHz

Table 28. PLL Specifications for Intel MAX 10 Single Supply Devices

For V36 package, the PLL specification is based on single supply devices.

Symbol	Parameter	Condition	Мах	Unit
t _{OUTJITTER_PERIOD_DEDCLK} (31)	Dedicated clock output period jitter	$F_{OUT} \ge 100 \text{ MHz}$	660	ps
		F _{OUT} < 100 MHz	66	mUI
t _{OUTJITTER_CCJ_DEDCLK} (31)	Dedicated clock output cycle-to-cycle jitter	$F_{OUT} \ge 100 \text{ MHz}$	660	ps
		F _{OUT} < 100 MHz	66	mUI

Table 29. PLL Specifications for Intel MAX 10 Dual Supply Devices

Symbol	Parameter	Condition	Мах	Unit
t _{OUTJITTER_PERIOD_DEDCLK} (31)	Dedicated clock output period jitter	$F_{OUT} \ge 100 \text{ MHz}$	300	ps
		F _{OUT} < 100 MHz	30	mUI
toutjitter_CCJ_DEDCLK (31)	Dedicated clock output cycle-to-cycle jitter	F _{OUT} ≥ 100 MHz	300	ps
		F _{OUT} < 100 MHz	30	mUI

⁽³²⁾ With 100 MHz scanclk frequency.

	Parameter	Symbol	Condition	Min	Тур	Мах	Unit
	Integral non linearity	INL	-	-2	-	2	LSB
AC Accuracy	Total harmonic distortion	THD	$F_{IN} = 50 \text{ kHz}, F_S = 1 \text{ MHz}, PLL$	-65 ⁽³⁷⁾	-	-	dB
	Signal-to-noise ratio	SNR	$F_{IN} = 50 \text{ kHz}, F_S = 1 \text{ MHz}, PLL$	54 ⁽³⁸⁾	-	-	dB
	Signal-to-noise and distortion	SINAD	$F_{IN} = 50 \text{ kHz}, F_S = 1 \text{ MHz}, PLL$	53 ⁽³⁹⁾	_	-	dB
On-Chip Temperature	Temperature sampling rate	T _S	-	_	-	50	kSPS
Sensor	Absolute accuracy	-	-40 to 125°C, with 64 samples averaging (40)	_	_	±10	°C
Conversion Rate (41)	Conversion time	-	Single measurement	_	-	1	Cycle
			Continuous measurement	_	-	1	Cycle
			Temperature measurement	_	_	1	Cycle

Related Information

SPICE Models for Intel FPGAs

⁽⁴¹⁾ For more detailed description, refer to the Timing section in the *Intel MAX 10 Analog-to-Digital Converter User Guide*.

 $^{^{(37)}}$ THD with prescalar enabled is 6dB less than the specification.

 $^{^{(38)}}$ SNR with prescalar enabled is 6dB less than the specification.

⁽³⁹⁾ SINAD with prescalar enabled is 6dB less than the specification.

⁽⁴⁰⁾ For the Intel Quartus Prime software version 15.0 and later, Modular ADC Core Intel FPGA IP and Modular Dual ADC Core Intel FPGA IP cores handle the 64 samples averaging. For the Intel Quartus Prime software versions prior to 14.1, you need to implement your own averaging calculation.

	Parameter	Symbol	Condition	Min	Тур	Max	Unit
			Internal V _{REF} , no missing code	-1	_	1.7	LSB
	Integral non linearity	INL	-	-2	_	2	LSB
AC Accuracy	Total harmonic distortion	THD	$F_{IN} = 50 \text{ kHz}, F_S = 1 \text{ MHz}, PLL$	-70 ⁽⁴⁴⁾⁽⁴⁵⁾ (46)	_	-	dB
	Signal-to-noise ratio	SNR	$F_{IN} = 50 \text{ kHz}, F_S = 1 \text{ MHz}, PLL$	62 (47)(48)(46)	_	-	dB
	Signal-to-noise and distortion	SINAD	$F_{IN} = 50 \text{ kHz}, F_S = 1 \text{ MHz}, PLL$	61.5 ⁽⁴⁹⁾ (50)(46)	_	-	dB
On-Chip Temperature	Temperature sampling rate	T _S	-	-	_	50	kSPS
Sensor	Absolute accuracy	-	-40 to 125°C, with 64 samples averaging	_	_	±5	°C
	•		•			•	continued

- $^{(44)}$ Total harmonic distortion is -65 dB for dual function pin.
- ⁽⁴⁵⁾ THD with prescalar enabled is 6dB less than the specification.
- ⁽⁴⁶⁾ When using internal V_{REF} , THD = 66 dB, SNR = 58 dB and SINAD = 57.5 dB for dedicated ADC input channels.
- ⁽⁴⁷⁾ Signal-to-noise ratio is 54 dB for dual function pin.
- $^{(48)}$ SNR with prescalar enabled is 6dB less than the specification.
- ⁽⁴⁹⁾ Signal-to-noise and distortion is 53 dB for dual function pin.
- ⁽⁵⁰⁾ SINAD with prescalar enabled is 6dB less than the specification.
- ⁽⁵¹⁾ For the Intel Quartus Prime software version 15.0 and later, Modular ADC Core and Modular Dual ADC Core IP cores handle the 64 samples averaging. For the Intel Quartus Prime software versions prior to 14.1, you need to implement your own averaging calculation.

Intel[®] MAX[®] 10 FPGA Device Datasheet

Symbol	Parameter	Mode	-16,	-A6, -C7,	-17		-A7			-C8		Unit
			Min	Тур	Мах	Min	Тур	Мах	Min	Тур	Мах	
		×4	40	-	300	40	-	300	40	-	300	Mbps
		×2	20	-	300	20	-	300	20	-	300	Mbps
		×1	10	_	300	10	_	300	10	_	300	Mbps
t _{DUTY}	Duty cycle on transmitter output clock	-	45	-	55	45	-	55	45	-	55	%
TCCS ⁽⁵³⁾	Transmitter channel- to-channel skew	-	_	-	300	_	-	300	_	-	300	ps
t _{x Jitter} ⁽⁵⁴⁾	Output jitter (high- speed I/O performance pin)	-	_	-	425	_	-	425	_	-	425	ps
	Output jitter (low- speed I/O performance pin)	-	_	-	470	_	-	470	_	-	470	ps
t _{RISE}	Rise time	20 – 80%, C _{LOAD} = 5 pF	_	500	-	_	500	_	_	500	_	ps
t _{FALL}	Fall time	20 - 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	ps
t _{LOCK}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	-	_	_	1	_	_	1	_	_	1	ms

 $^{^{\}rm (53)}$ TCCS specifications apply to I/O banks from the same side only.

 $^{^{(54)}}$ TX jitter is the jitter induced from core noise and I/O switching noise.

True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications

Single Supply Devices True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications

Table 37. True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Single Supply Devices

True RSDS transmitter is only supported at bottom I/O banks. Emulated RSDS transmitter is supported at the output pin of all I/O banks.

Symbol	Parameter	Mode	-16,	-A6, -C7	, -17		-A7			- C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Мах	1
f _{HSCLK}	Input clock frequency	×10	5	_	50	5	_	50	5	_	50	MHz
	(high-speed I/O performance pin)	×8	5	_	50	5	-	50	5	-	50	MHz
		×7	5	-	50	5	-	50	5	-	50	MHz
		×4	5	_	50	5	_	50	5	_	50	MHz
		×2	5	-	50	5	-	50	5	-	50	MHz
		×1	5	_	100	5	-	100	5	-	100	MHz
HSIODR	Data rate (high-speed	×10	100	-	100	100	-	100	100	-	100	Mbps
	I/O performance pin)	×8	80	_	100	80	-	100	80	-	100	Mbps
		×7	70	-	100	70	-	100	70	-	100	Mbps
		×4	40	_	100	40	-	100	40	-	100	Mbps
		×2	20	_	100	20	-	100	20	-	100	Mbps
		×1	10	-	100	10	-	100	10	-	100	Mbps
f _{HSCLK}	Input clock frequency	×10	5	-	50	5	-	50	5	-	50	MHz
	(low-speed I/O performance pin)	×8	5	-	50	5	-	50	5	-	50	MHz
		×7	5	_	50	5	-	50	5	-	50	MHz
		×4	5	_	50	5	-	50	5	-	50	MHz
		×2	5	_	50	5	-	50	5	-	50	MHz
		×1	5	_	100	5	-	100	5	-	100	MHz
HSIODR	Data rate (low-speed I/O performance pin)	×10	100	-	100	100	-	100	100	-	100	Mbps
	1										сог	ntinued

Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications

Single Supply Devices Emulated LVDS_E_3R Transmitter Timing Specifications

Table 43. Emulated LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Single Supply Devices

Emulated LVDS_E_3R transmitters are supported at the output pin of all I/O banks.

Symbol	Parameter	Mode		-C7, -I7			-A7			-C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max]
f _{HSCLK}	Input clock frequency	×10	5	-	142.5	5	-	100	5	-	100	MHz
	(high-speed I/O performance pin)	×8	5	-	142.5	5	-	100	5	-	100	MHz
	-	×7	5	-	142.5	5	-	100	5	-	100	MHz
		×4	5	-	142.5	5	-	100	5	-	100	MHz
		×2	5	-	142.5	5	-	100	5	-	100	MHz
		×1	5	-	285	5	-	200	5	-	200	MHz
HSIODR	Data rate (high-speed	×10	100	-	285	100	-	200	100	-	200	Mbps
	I/O performance pin)	×8	80	-	285	80	-	200	80	-	200	Mbps
		×7	70	-	285	70	-	200	70	-	200	Mbps
		×4	40	-	285	40	-	200	40	-	200	Mbps
		×2	20	-	285	20	-	200	20	-	200	Mbps
		×1	10	-	285	10	-	200	10	-	200	Mbps
f _{HSCLK}	Input clock frequency	×10	5	-	100	5	-	100	5	-	100	MHz
	(low-speed I/O performance pin)	×8	5	-	100	5	-	100	5	-	100	MHz
		×7	5	-	100	5	-	100	5	-	100	MHz
		×4	5	-	100	5	-	100	5	-	100	MHz
		×2	5	-	100	5	-	100	5	-	100	MHz
		×1	5	-	200	5	-	200	5	-	200	MHz
HSIODR	Data rate (low-speed I/O performance pin)	×10	100	-	200	100	-	200	100	-	200	Mbps
	· · · · ·			I	·	ı		I	I	I	cor	ntinued

Symbol	Parameter	Mode	-I6, -A6,	-I6, -A6, -C7, -I7		-A7		-C8	
			Min	Max	Min	Max	Min	Max	
	Sampling window (low- speed I/O performance pin)	_	-	910	-	910	_	910	ps
t _{x Jitter} ⁽⁷²⁾	Input jitter	_	-	500	_	500	_	500	ps
t _{LOCK}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	_	_	1	_	1	_	1	ms

Memory Standards Supported by the Soft Memory Controller

Table 47. Memory Standards Supported by the Soft Memory Controller for Intel MAX 10 Devices

Contact your local sales representatives for access to the -I6 or -A6 speed grade devices in the Intel Quartus Prime software.

External Memory Interface Standard	Rate Support	Speed Grade	Voltage (V)	Max Frequency (MHz)
DDR3 SDRAM	Half	-I6	1.5	303
DDR3L SDRAM	Half	-I6	1.35	303
DDR2 SDRAM	Half	-I6	1.8	200
		-I7 and -C7		167
LPDDR2 ⁽⁷³⁾	Half	-I6	1.2	200 ⁽⁷⁴⁾

Related Information

External Memory Interface Spec Estimator

Provides the specific details of the memory standards supported.

⁽⁷²⁾ TX jitter is the jitter induced from core noise and I/O switching noise.

⁽⁷³⁾ Intel MAX 10 devices support only single-die LPDDR2.

⁽⁷⁴⁾ To achieve the specified performance, constrain the memory device I/O and core power supply variation to within ±3%. By default, the frequency is 167 MHz.

Memory Output Clock Jitter Specifications

Intel MAX 10 devices support external memory interfaces up to 303 MHz. The external memory interfaces for Intel MAX 10 devices calibrate automatically.

The memory output clock jitter measurements are for 200 consecutive clock cycles.

The clock jitter specification applies to memory output clock pins generated using DDIO circuits clocked by a PLL output routed on a PHY clock network.

DDR3 and LPDDR2 SDRAM memory interfaces are only supported on the fast speed grade device.

Table 48. Memory Output Clock Jitter Specifications for Intel MAX 10 Devices

Parameter	Symbol	-6 Spee	d Grade	-7 Spee	Unit	
		Min	Max	Min	Max	
Clock period jitter	t _{JIT(per)}	-127	127	-215	215	ps
Cycle-to-cycle period jitter	t _{JIT(cc)}	_	242	_	360	ps

Related Information

Literature: External Memory Interfaces

Provides more information about external memory system performance specifications, board design guidelines, timing analysis, simulation, and debugging information.

Configuration Specifications

This section provides configuration specifications and timing for Intel MAX 10 devices.

JTAG Timing Parameters

Table 49. JTAG Timing Parameters for Intel MAX 10 Devices

The values are based on $C_L = 10 \text{ pF of TDO}$.

The affected Boundary Scan Test (BST) instructions are SAMPLE/PRELOAD, EXTEST, INTEST, and CHECK_STATUS.

Symbol	Parameter	Non-BST and non-	-CONFIG_IO Operation	BST and C	ONFIG_IO Operation	Unit
		Minimum	Maximum	Minimum	Maximum	
t _{JCP}	TCK clock period	40	-	50	-	ns
t _{JCH}	TCK clock high time	20	-	25	-	ns
t _{JCL}	TCK clock low time	20	-	25	-	ns
t _{JPSU_TDI}	JTAG port setup time	2	-	2	-	ns
t _{JPSU_TMS}	JTAG port setup time	3	-	3	-	ns
t _{JPH}	JTAG port hold time	10	-	10	-	ns
t _{JPCO}	JTAG port clock to output	_	 15 (for V_{CCIO} = 3.3, 3.0, and 2.5 V) 17 (for V_{CCIO} = 1.8 and 1.5 V) 	_	• 18 (for $V_{CCIO} = 3.3, 3.0,$ and 2.5 V) • 20 (for $V_{CCIO} = 1.8$ and 1.5 V)	ns
t _{JPZX}	JTAG port high impedance to valid output	-	 15 (for V_{CCIO} = 3.3, 3.0, and 2.5 V) 17 (for V_{CCIO} = 1.8 and 1.5 V) 	_	 15 (for V_{CCIO} = 3.3, 3.0, and 2.5 V) 17 (for V_{CCIO} = 1.8 and 1.5 V) 	ns
t _{JPXZ}	JTAG port valid output to high impedance	-	 15 (for V_{CCIO} = 3.3, 3.0, and 2.5 V) 17 (for V_{CCIO} = 1.8 and 1.5 V) 	_	 15 (for V_{CCIO} = 3.3, 3.0, and 2.5 V) 17 (for V_{CCIO} = 1.8 and 1.5 V) 	ns

Remote System Upgrade Circuitry Timing Specifications

Table 50. Remote System Upgrade Circuitry Timing Specifications for Intel MAX 10 Devices

Parameter	Device	Minimum	Maximum	Unit
t _{MAX_RU_CLK}	All	—	40	MHz
t _{RU_nCONFIG}	10M02, 10M04, 10M08, 10M16, 10M25	250	_	ns
	10M40, 10M50	350	—	ns
t _{ru_nrstimer}	10M02, 10M04, 10M08, 10M16, 10M25	300	_	ns
	10M40, 10M50	500	—	ns

User Watchdog Internal Circuitry Timing Specifications

Table 51. User Watchdog Timer Specifications for Intel MAX 10 Devices

The specifications are subject to PVT changes.

Parameter	Device	Minimum	Typical	Maximum	Unit
User watchdog frequency	10M02, 10M04, 10M08, 10M16, 10M25	3.4	5.1	7.3	MHz
	10M40, 10M50	2.2	3.3	4.8	MHz

Uncompressed Raw Binary File (.rbf) Sizes

Table 52. Uncompressed .rbf Sizes for Intel MAX 10 Devices

Device	CFM Data Size (bits)				
	Without Memory Initialization	With Memory Initialization			
10M02	554,000 —				
10M04	1,540,000	1,880,000			
10M08	1,540,000	1,880,000			
10M16	2,800,000	3,430,000			
	•	continued			

Device	CFM Data Size (bits)				
	Without Memory Initialization	With Memory Initialization			
10M25	4,140,000	4,780,000			
10M40	7,840,000	9,670,000			
10M50	7,840,000	9,670,000			

Internal Configuration Time

The internal configuration time measurement is from the rising edge of nSTATUS signal to the rising edge of $CONF_DONE$ signal.

Table 53. Internal Configuration Time for Intel MAX 10 Devices (Uncompressed .rbf)

Device		Internal Configuration Time (ms)									
		Unenci	rypted		Encrypted						
	Without Memor	Without Memory Initialization		With Memory Initialization		Without Memory Initialization		With Memory Initialization			
	Min	Max	Min	Мах	Min	Max	Min	Max			
10M02	0.3	1.7	_	_	1.7	5.4	_	_			
10M04	0.6	2.7	1.0	3.4	5.0	15.0	6.8	19.6			
10M08	0.6	2.7	1.0	3.4	5.0	15.0	6.8	19.6			
10M16	1.1	3.7	1.4	4.5	9.3	25.3	11.7	31.5			
10M25	1.0	3.7	1.3	4.4	14.0	38.1	16.9	45.7			
10M40	2.6	6.9	3.2	9.8	41.5	112.1	51.7	139.6			
10M50	2.6	6.9	3.2	9.8	41.5	112.1	51.7	139.6			

Programmable IOE Delay for Column Pins

Table 58. IOE Programmable Delay on Column Pins for Intel MAX 10 Devices

The incremental values for the settings are generally linear. For exact values of each setting, refer to the **Assignment Name** column in the latest version of the Intel Quartus Prime software.

Parameter	Paths Affected	Number of		Maximum Offset							Unit
		Settings	Offset	Fast Corner		Slow Corner					
				-17	-C8	-A6	-C7	-C8	-17	-A7	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	0.81	0.868	1.823	1.802	1.864	1.862	1.912	ns
Input delay from pin to input register	Pad to I/O input register	8	0	0.914	0.981	2.06	2.032	2.101	2.102	2.161	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.435	0.466	0.971	0.97	1.013	1.001	1.028	ns

The minimum and maximum offset timing numbers are in reference to setting '0' as available in the Intel Quartus Prime software.

Glossary

Table 59.Glossary

Term	Definition					
JTAG Timing Specifications	TMS TDI $t_{JCP} \rightarrow t_{JPSU} \rightarrow t_{JPH}$ TCK $t_{JPZX} \leftarrow t_{JPCO} \leftarrow t_{JPXZ}$					
RL	Receiver differential input discrete resistor (external to Intel MAX 10 devices).					
RSKM (Receiver input skew margin)	HIGH-SPEED I/O block: The total margin left after accounting for the sampling window and TCCS. RSKM = (TUI – SW – TCCS) / 2.					
Sampling window (SW)	HIGH-SPEED I/O Block: The period of time during which the data must be valid to capture it correctly. The setup and hold times determine the ideal strobe position in the sampling window.					
Single-ended voltage referenced I/O standard	The AC input signal values indicate the voltage levels at which the receiver must meet its timing specifications. The DC input signal values indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. After the receiver input crosses the AC value, the receiver changes to the new logic state. The new logic state is then maintained as long as the input stays beyond the DC threshold. This approach is intended to provide predictable receiver timing in the presence of input waveform ringing.					
t _C	High-speed receiver/transmitter input and output clock period.					
TCCS (Channel-to- channel-skew)	HIGH-SPEED I/O block: The timing difference between the fastest and slowest output edges, including t_{CO} variation and clock skew. The clock is included in the TCCS measurement.					
t _{cin}	Delay from clock pad to I/O input register.					
t _{co}	Delay from clock pad to I/O output.					
t _{cout}	Delay from clock pad to I/O output register.					
	continued					

Intel[®] MAX[®] 10 FPGA Device Datasheet M10-DATASHEET | 2018.06.29

Date	Version	Changes
		 Added -A6 speed grade in the following tables: Intel MAX 10 Device Grades and Speed Grades Supported Series OCT without Calibration Specifications for Intel MAX 10 Devices Clock Tree Specifications for Intel MAX 10 Devices Embedded Multiplier Specifications for Intel MAX 10 Devices Memory Block Performance Specifications for Intel MAX 10 Devices True PPDS and Emulated PPDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True Mini-LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices LVDS, TMDS, HiSpi, SLVS, and Sub-LVDS Receiver Timing Specifications for Intel MAX 10 Dual Supply Devices IOE Programmable Delay on Row Pins for Intel MAX 10 Devices UD Programmable Delay on Column Pins for Intel MAX 10 Devices Updated the dual supply mode performance in Embedded Multiplier Specifications for Intel MAX 10 Devices table. Updated the dual supply mode performance in Embedded Multiplier Specifications for Intel MAX 10 Devices table. Updated the dual supply mode performance in Memory Block Performance Specifications for Intel MAX 10 Devices table. Updated the dual supply mode performance in Memory Block Performance Specifications for Intel MAX 10 Devices table. U
June 2015	2015.06.12	 Updated the maximum values in Internal Weak Pull-Up Resistor for Intel MAX 10 Devices table. Removed Internal Weak Pull-Up Resistor equation. Updated the note for input resistance and input capacitance parameters in the ADC Performance Specifications table for both single supply and dual supply devices. Note: Download the SPICE models for simulation. Added a note to AC Accuracy - THD, SNR, and SINAD parameters in the ADC Performance Specifications for Intel MAX 10 Dual Supply Devices table. Note: When using internal V_{REF}, THD = 66 dB, SNR = 58 dB and SINAD = 57.5 dB for dedicated ADC input channels. Updated clock period jitter and cycle-to-cycle period jitter parameters in the Memory Output Clock Jitter Specifications for Intel MAX 10 Devices table.