Intel - 10M40DAF484C8G Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	2500
Number of Logic Elements/Cells	40000
Total RAM Bits	1290240
Number of I/O	360
Number of Gates	-
Voltage - Supply	1.15V ~ 1.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/intel/10m40daf484c8g

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Intel[®] MAX[®] 10 FPGA Device Datasheet

This datasheet describes the electrical characteristics, switching characteristics, configuration specifications, and timing for Intel $MAX^{\mbox{\scriptsize B}}$ 10 devices.

Table 1. Intel MAX 10 Device Grades and Speed Grades Supported

Device Grade	Speed Grade Supported
Commercial	 -C7 -C8 (slowest)
Industrial	 -I6 (fastest) -I7
Automotive	 -A6 -A7

Note: The –I6 and –A6 speed grades of the Intel MAX 10 FPGA devices are not available by default in the Intel Quartus[®] Prime software. Contact your local Intel sales representatives for support.

Related Information

Device Ordering Information, Intel MAX 10 FPGA Device Overview Provides more information about the densities and packages of devices in the Intel MAX 10.

Electrical Characteristics

The following sections describe the operating conditions and power consumption of Intel MAX 10 devices.

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered

*Other names and brands may be claimed as the property of others.

Symbol	Parameter	Min	Мах	Unit
V _{CCD_PLL}	Supply voltage for PLL regulator (digital)	-0.5	1.63	V
V _{CCA_ADC}	Supply voltage for ADC analog block	-0.5	3.41	V
V _{CCINT}	Supply voltage for ADC digital block	-0.5	1.63	V

Absolute Maximum Ratings

Table 4. Absolute Maximum Ratings for Intel MAX 10 Devices

Symbol	Parameter	Min	Мах	Unit
VI	DC input voltage	-0.5	4.12	V
I _{OUT}	DC output current per pin	-25	25	mA
T _{STG}	Storage temperature	-65	150	°C
Тյ	Operating junction temperature	-40	125	°C

Maximum Allowed Overshoot During Transitions over a 11.4-Year Time Frame

During transitions, input signals may overshoot to the voltage listed in the following table and undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.

The maximum allowed overshoot duration is specified as a percentage of high time over the lifetime of the device. A DC signal is equivalent to 100% duty cycle.

For example, a signal that overshoots to 4.17 V can only be at 4.17 V for $\sim 11.7\%$ over the lifetime of the device; for a device lifetime of 11.4 years, this amounts to 1.33 years.

Table 5. Maximum Allowed Overshoot During Transitions over a 11.4-Year Time Frame for Intel MAX 10 Devices

Condition (V)	Overshoot Duration as % of High Time	Unit
4.12	100.0	%
4.17	11.7	%
4.22	7.1	%
4.27	4.3	%
		continued

DC Characteristics

Supply Current and Power Consumption

Intel offers two ways to estimate power for your design—the Excel-based Early Power Estimator (EPE) and the Intel Quartus Prime Power Analyzer feature.

Use the Excel-based EPE before you start your design to estimate the supply current for your design. The EPE provides a magnitude estimate of the device power because these currents vary greatly with the usage of the resources.

The Intel Quartus Prime Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-and-route. The Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yield very accurate power estimates.

Related Information

- Early Power Estimator User Guide Provides more information about power estimation tools.
- Power Analysis chapter, Intel Quartus Prime Handbook Provides more information about power estimation tools.

I/O Pin Leakage Current

The values in the table are specified for normal device operation. The values vary during device power-up. This applies for all V_{CCIO} settings (3.3, 3.0, 2.5, 1.8, 1.5, 1.35, and 1.2 V).

10 μ A I/O leakage current limit is applicable when the internal clamping diode is off. A higher current can be the observed when the diode is on.

Input channel leakage of ADC I/O pins due to hot socket is up to maximum of 1.8 mA. The input channel leakage occurs when the ADC IP core is enabled or disabled. This is applicable to all Intel MAX 10 devices with ADC IP core, which are 10M04, 10M08, 10M16, 10M25, 10M40, and 10M50 devices. The ADC I/O pins are in Bank 1A.

Table 10. I/O Pin Leakage Current for Intel MAX 10 Devices

Symbol	Parameter	Condition	Min	Max	Unit
II	Input pin leakage current	$V_{I} = 0 V$ to $V_{CCIOMAX}$	-10	10	μA
I _{OZ}	Tristated I/O pin leakage current	$V_{O} = 0 V$ to $V_{CCIOMAX}$	-10	10	μA

Table 17. Internal Weak Pull-Up Resistor for Intel MAX 10 Devices

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
R_ _{PU}	Value of I/O pin (dedicated and dual-purpose)	$V_{CCIO} = 3.3 V \pm 5\%$	7	12	34	kΩ
	as well as user mode if the programmable pull-up	$V_{CCIO} = 3.0 V \pm 5\%$	8	13	37	kΩ
	resistor option is enabled	$V_{CCIO} = 2.5 V \pm 5\%$	10	15	46	kΩ
		$V_{CCIO} = 1.8 V \pm 5\%$	16	25	75	kΩ
		$V_{CCIO} = 1.5 V \pm 5\%$	20	36	106	kΩ
		$V_{CCIO} = 1.2 V \pm 5\%$	33	82	179	kΩ

Pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO} .

Hot-Socketing Specifications

Table 18. Hot-Socketing Specifications for Intel MAX 10 Devices

Symbol	Parameter	Maximum		
I _{IOPIN(DC)}	DC current per I/O pin	300 µA		
I _{IOPIN(AC)}	AC current per I/O pin	8 mA ⁽¹³⁾		

Hysteresis Specifications for Schmitt Trigger Input

Intel MAX 10 devices support Schmitt trigger input on all I/O pins. A Schmitt trigger feature introduces hysteresis to the input signal for improved noise immunity, especially for signal with slow edge rate.

⁽¹³⁾ The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, $|I_{IOPIN}| = C dv/dt$, in which C is I/O pin capacitance and dv/dt is the slew rate.

Single-Ended SSTL, HSTL, and HSUL I/O Standards Signal Specifications

Table 22. Single-Ended SSTL, HSTL, and HSUL I/O Standards Signal Specifications for Intel MAX 10 Devices

To meet the I_{OL} and I_{OH} specifications, you must set the current strength settings accordingly. For example, to meet the SSTL-15 Class I specification (8 mA), you should set the current strength settings to 8 mA. Setting at lower current strength may not meet the I_{OL} and I_{OH} specifications in the datasheet.

I/O Standard	Standard V _{IL(DC)} (V)		V _{IH(DC}	;) (V)	V _{IL(A}	c) (V)	V _{IH(AC}	c) (V)	V _{OL} (V)	V _{он} (V)	I _{OL} (mA)	I _{OH} (mA)
	Min	Max	Min	Max	Min	Max	Min	Мах	Max	Min		
SSTL-2 Class I	—	V _{REF} - 0.18	V _{REF} + 0.18	—	_	V _{REF} - 0.31	V _{REF} + 0.31	—	V _{TT} – 0.57	V _{TT} + 0.57	8.1	-8.1
SSTL-2 Class II	—	V _{REF} - 0.18	V _{REF} + 0.18	—	—	V _{REF} - 0.31	V _{REF} + 0.31	—	V _{TT} – 0.76	V _{TT} + 0.76	16.4	-16.4
SSTL-18 Class I	—	V _{REF} – 0.125	V _{REF} + 0.125	—	_	V _{REF} - 0.25	V _{REF} + 0.25	—	V _{TT} – 0.475	V _{TT} + 0.475	6.7	-6.7
SSTL-18 Class II	—	V _{REF} – 0.125	V _{REF} + 0.125	—	_	V _{REF} – 0.25	V _{REF} + 0.25	—	0.28	V _{CCIO} – 0.28	13.4	-13.4
SSTL-15 Class I	—	V _{REF} - 0.1	V _{REF} + 0.1	—	—	V _{REF} - 0.175	V _{REF} + 0.175	—	$0.2 \times V_{CCIO}$	$0.8 \times V_{CCIO}$	8	-8
SSTL-15 Class II	—	V _{REF} - 0.1	V _{REF} + 0.1	—	_	V _{REF} - 0.175	V _{REF} + 0.175	—	$0.2 \times V_{CCIO}$	0.8 × V _{CCIO}	16	-16
SSTL-135	_	V _{REF} – 0.09	V _{REF} + 0.09	—	-	V _{REF} - 0.16	V _{REF} + 0.16	—	0.2 × V _{CCIO}	0.8 × V _{CCIO}	-	_
HSTL-18 Class I	_	V _{REF} - 0.1	V _{REF} + 0.1	—	-	V _{REF} - 0.2	V _{REF} + 0.2	_	0.4	V _{CCIO} - 0.4	8	-8
HSTL-18 Class II	_	V _{REF} - 0.1	V _{REF} + 0.1	_	_	V _{REF} - 0.2	V _{REF} + 0.2	_	0.4	V _{CCIO} - 0.4	16	-16
HSTL-15 Class I	_	V _{REF} - 0.1	V _{REF} + 0.1	_	_	V _{REF} - 0.2	V _{REF} + 0.2	_	0.4	V _{CCIO} – 0.4	8	-8
HSTL-15 Class II	_	V _{REF} - 0.1	V _{REF} + 0.1	_	_	V _{REF} - 0.2	V _{REF} + 0.2	_	0.4	V _{CCIO} - 0.4	16	-16
		•					•				CC	ontinued

P	arameter	Symbol	Condition	Min	Тур	Max	Unit
	Integral non linearity	INL	-	-2	—	2	LSB
AC Accuracy	Total harmonic distortion	THD	$F_{IN} = 50 \text{ kHz}, F_S = 1 \text{ MHz}, PLL$	-65 ⁽³⁷⁾	_	_	dB
	Signal-to-noise ratio	SNR	$F_{IN} = 50 \text{ kHz}, F_S = 1 \text{ MHz}, PLL$	54 ⁽³⁸⁾	_	_	dB
	Signal-to-noise and distortion	SINAD	$F_{IN} = 50 \text{ kHz}, F_S = 1 \text{ MHz},$ PLL	53 ⁽³⁹⁾	_	_	dB
On-Chip Temperature	Temperature sampling rate	Τ _S	-	-	_	50	kSPS
Sensor	Absolute accuracy	_	-40 to 125°C, with 64 samples averaging (40)	_	_	±10	°C
Conversion Rate (41)	Conversion time	_	Single measurement	-	_	1	Cycle
			Continuous measurement	_	—	1	Cycle
			Temperature measurement	_	_	1	Cycle

Related Information

SPICE Models for Intel FPGAs

⁽⁴¹⁾ For more detailed description, refer to the Timing section in the *Intel MAX 10 Analog-to-Digital Converter User Guide*.

 $^{^{(37)}}$ THD with prescalar enabled is 6dB less than the specification.

 $^{^{(38)}}$ SNR with prescalar enabled is 6dB less than the specification.

⁽³⁹⁾ SINAD with prescalar enabled is 6dB less than the specification.

⁽⁴⁰⁾ For the Intel Quartus Prime software version 15.0 and later, Modular ADC Core Intel FPGA IP and Modular Dual ADC Core Intel FPGA IP cores handle the 64 samples averaging. For the Intel Quartus Prime software versions prior to 14.1, you need to implement your own averaging calculation.

Parameter		Symbol	Condition	Min	Тур	Max	Unit
Conversion Rate ⁽⁵²⁾ Conversion time		-	Single measurement	-	-	1	Cycle
			Continuous measurement	-	-	1	Cycle
			Temperature measurement	_	_	1	Cycle

Related Information

SPICE Models for Intel FPGAs

Periphery Performance Specifications

This section describes the periphery performance, high-speed I/O, and external memory interface.

Actual achievable frequency depends on design and system specific factors. Ensure proper timing closure in your design and perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.

High-Speed I/O Specifications

For more information about the high-speed and low-speed I/O performance pins, refer to the respective device pin-out files.

Related Information

Documentation: Pin-Out Files for Intel FPGAs

⁽⁵²⁾ For more detailed description, refer to the Timing section in the *Intel MAX 10 Analog-to-Digital Converter User Guide*.

Intel[®] MAX[®] 10 FPGA Device Datasheet

M10-DATASHEET | 2018.06.29

Symbol	Parameter	Mode	-16,	-A6, -C7,	-17		-A7			-C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
		×8	80	-	100	80	-	100	80	-	100	Mbps
		×7	70	-	100	70	-	100	70	-	100	Mbps
		×4	40	-	100	40	-	100	40	-	100	Mbps
		×2	20	-	100	20	-	100	20	-	100	Mbps
		×1	10	-	100	10	-	100	10	-	100	Mbps
t _{DUTY}	Duty cycle on transmitter output clock	_	45	-	55	45	-	55	45	_	55	%
TCCS ⁽⁵⁵⁾	Transmitter channel- to-channel skew	-	-	-	300	-	-	300	_	-	300	ps
t _{x Jitter} (56)	Output jitter (high- speed I/O performance pin)	_	-	-	425	-	-	425	-	-	425	ps
	Output jitter (low- speed I/O performance pin)	-	-	-	470	-	-	470	-	-	470	ps
t _{RISE}	Rise time	20 - 80%, C _{LOAD} = 5 pF	-	500	_	-	500	-	_	500	-	ps
t _{FALL}	Fall time	20 - 80%, C _{LOAD} = 5 pF	_	500	-	-	500	-	_	500	_	ps
t _{LOCK}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	-	_	_	1	_	_	1	_	_	1	ms

 $^{^{\}rm (55)}$ TCCS specifications apply to I/O banks from the same side only.

 $^{^{(56)}}$ TX jitter is the jitter induced from core noise and I/O switching noise.

Intel[®] MAX[®] 10 FPGA Device Datasheet M10-DATASHEET | 2018.06.29

Symbol	Parameter	Mode		-16		-A	-A6, -C7, -I7		-A7			-C8			Unit
			Min	Тур	Мах	Min	Тур	Мах	Min	Тур	Max	Min	Тур	Мах	
		×1	10	-	360	10	-	350	10	-	320	10	_	320	Mbps
t _{DUTY}	Duty cycle on transmitter output clock	_	45	_	55	45	_	55	45	_	55	45	_	55	%
TCCS ⁽⁶⁵⁾	Transmitter channel-to- channel skew	-	_	_	300	_	_	300	_	_	300	_	_	300	ps
t _x _{Jitter} (66)	Output jitter	_	—	_	380	_	_	380	_	_	380	_	_	380	ps
t _{RISE}	Rise time	20 – 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	-	500	_	ps
t _{FALL}	Fall time	20 - 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	-	500	_	ps
t _{LOCK}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	_	_	_	1	_	_	1	_	_	1	_	_	1	ms

⁽⁶⁵⁾ TCCS specifications apply to I/O banks from the same side only.

⁽⁶⁶⁾ TX jitter is the jitter induced from core noise and I/O switching noise.

Dual Supply Devices Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications

Table 44. Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices

Symbol	Parameter	Mode	-16,	-A6, -C7,	-17		-A7			- C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
f _{HSCLK}	Input clock frequency	×10	5	_	300	5	_	275	5	_	275	MHz
	performance pin)	×8	5	_	300	5	-	275	5	_	275	MHz
		×7	5	_	300	5	-	275	5	_	275	MHz
		×4	5	-	300	5	-	275	5	_	275	MHz
		×2	5	_	300	5	_	275	5	_	275	MHz
		×1	5	-	300	5	-	275	5	-	275	MHz
HSIODR	Data rate (high-speed I/O performance pin)	×10	100	_	600	100	_	550	100	_	550	Mbps
		×8	80	—	600	80	—	550	80		550	Mbps
		×7	70	—	600	70	—	550	70		550	Mbps
		×4	40	—	600	40	—	550	40		550	Mbps
		×2	20	—	600	20	—	550	20		550	Mbps
		×1	10	_	300	10	_	275	10		275	Mbps
f _{HSCLK}	Input clock frequency	×10	5	_	150	5	—	150	5		150	MHz
	performance pin)	×8	5	_	150	5	_	150	5		150	MHz
		×7	5	_	150	5	—	150	5		150	MHz
		×4	5	—	150	5	—	150	5		150	MHz
		×2	5	—	150	5	_	150	5		150	MHz
		×1	5	—	300	5	—	300	5		300	MHz
HSIODR	Data rate (low-speed	×10	100	—	300	100	—	300	100		300	Mbps
	1/O performance pin)	×8	80	_	300	80	_	300	80	_	300	Mbps
											con	tinued

Emulated LVDS_E_3R, SLVS, and Sub-LVDS transmitters are supported at the output pin of all I/O banks.

LVDS, TMDS, HiSpi, SLVS, and Sub-LVDS Receiver Timing Specifications

Single Supply Devices LVDS Receiver Timing Specifications

Table 45. LVDS Receiver Timing Specifications for Intel MAX 10 Single Supply Devices

LVDS receivers are supported at all banks.

Symbol	Parameter	Mode	-C7,	-17	-4	7	-C8		Unit
			Min	Мах	Min	Мах	Min	Мах	
f _{HSCLK}	Input clock frequency (high-	×10	5	145	5	100	5	100	MHz
	speed 1/O performance pin)	×8	5	145	5	100	5	100	MHz
		×7	5	145	5	100	5	100	MHz
		×4	5	145	5	100	5	100	MHz
		×2	5	145	5	100	5	100	MHz
		×1	5	290	5	200	5	200	MHz
HSIODR	Data rate (high-speed I/O performance pin)	×10	100	290	100	200	100	200	Mbps
		×8	80	290	80	200	80	200	Mbps
		×7	70	290	70	200	70	200	Mbps
		×4	40	290	40	200	40	200	Mbps
		×2	20	290	20	200	20	200	Mbps
		×1	10	290	10	200	10	200	Mbps
f _{HSCLK}	Input clock frequency (low-	×10	5	100	5	100	5	100	MHz
	speed 1/0 performance pin)	×8	5	100	5	100	5	100	MHz
		×7	5	100	5	100	5	100	MHz
		×4	5	100	5	100	5	100	MHz
		×2	5	100	5	100	5	100	MHz
		×1	5	200	5	200	5	200	MHz
HSIODR	Data rate (low-speed I/O performance pin)	×10	100	200	100	200	100	200	Mbps
						· · · · · · · · · · · · · · · · · · ·		c	continued

Remote System Upgrade Circuitry Timing Specifications

Table 50. Remote System Upgrade Circuitry Timing Specifications for Intel MAX 10 Devices

Parameter	Device	Minimum	Maximum	Unit
t _{MAX_RU_CLK}	All	—	40	MHz
t _{RU_nCONFIG}	10M02, 10M04, 10M08, 10M16, 10M25	250	_	ns
	10M40, 10M50	350	—	ns
t _{RU_nRSTIMER}	10M02, 10M04, 10M08, 10M16, 10M25	300	—	ns
	10M40, 10M50	500	_	ns

User Watchdog Internal Circuitry Timing Specifications

Table 51. User Watchdog Timer Specifications for Intel MAX 10 Devices

The specifications are subject to PVT changes.

Parameter	Device	Minimum	Typical	Maximum	Unit
User watchdog frequency	10M02, 10M04, 10M08, 10M16, 10M25	3.4	5.1	7.3	MHz
	10M40, 10M50	2.2	3.3	4.8	MHz

Uncompressed Raw Binary File (.rbf) Sizes

Table 52. Uncompressed .rbf Sizes for Intel MAX 10 Devices

Device	CFM Data Size (bits)			
	Without Memory Initialization	With Memory Initialization		
10M02	554,000	_		
10M04	1,540,000	1,880,000		
10M08	1,540,000	1,880,000		
10M16	2,800,000	3,430,000		
		continued		

Table 54. Internal Configuration Time for Intel MAX 10 Devices (Compressed .rbf)

Compression ratio depends on design complexity. The minimum value is based on the best case (25% of original .rbf sizes) and the maximum value is based on the typical case (70% of original .rbf sizes).

Device	Internal Configuration Time (ms)								
	Unencrypted/Encrypted								
	Without Memor	ry Initialization	With Memory Initialization						
	Min	Мах	Min	Мах					
10M02	0.3	5.2	_	-					
10M04	0.6	10.7	1.0	13.9					
10M08	0.6	10.7	1.0	13.9					
10M16	1.1	17.9	1.4	22.3					
10M25	1.1	26.9	1.4	32.2					
10M40	2.6	66.1	3.2	82.2					
10M50	2.6	66.1	3.2	82.2					

Internal Configuration Timing Parameter

Table 55. Internal Configuration Timing Parameter for Intel MAX 10 Devices

Symbol	Parameter	Device	Minimum	Maximum	Unit
t _{CD2UM}	CONF_DONE high to	10M02, 10M04, 10M08, 10M16, 10M25	182.8	385.5	μs
	user mode	10M40, 10M50	275.3	605.7	μs

I/O Timing

The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis.

The Intel Quartus Prime Timing Analyzer provides a more accurate and precise I/O timing data based on the specific device and design after you complete place-and-route.

Programmable IOE Delay for Column Pins

Table 58. IOE Programmable Delay on Column Pins for Intel MAX 10 Devices

The incremental values for the settings are generally linear. For exact values of each setting, refer to the **Assignment Name** column in the latest version of the Intel Quartus Prime software.

Parameter	Paths Affected	Number of	Minimum	Maximum Offset							Unit
		Settings	Unset	Fast Corner		Slow Corner					
				-17	-C8	-A6	-C7	-C8	-17	-A7	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	0.81	0.868	1.823	1.802	1.864	1.862	1.912	ns
Input delay from pin to input register	Pad to I/O input register	8	0	0.914	0.981	2.06	2.032	2.101	2.102	2.161	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.435	0.466	0.971	0.97	1.013	1.001	1.028	ns

The minimum and maximum offset timing numbers are in reference to setting '0' as available in the Intel Quartus Prime software.

Glossary

Table 59.Glossary

Term	Definition					
JTAG Timing Specifications	TMS TDI $t_{JCP} \rightarrow t_{JCL} \rightarrow t_{JPSU} \rightarrow t_{JPH}$ TCK $t_{JPZX} \rightarrow t_{JPCO} \rightarrow t_{JPXZ}$					
RL	eceiver differential input discrete resistor (external to Intel MAX 10 devices).					
RSKM (Receiver input skew margin)	HIGH-SPEED I/O block: The total margin left after accounting for the sampling window and TCCS. RSKM = (TUI – SW – TCCS) / 2.					
Sampling window (SW)	HIGH-SPEED I/O Block: The period of time during which the data must be valid to capture it correctly. The setup and hold times determine the ideal strobe position in the sampling window.					
Single-ended voltage referenced I/O standard	The AC input signal values indicate the voltage levels at which the receiver must meet its timing specifications. The DC input signal values indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. After the receiver input crosses the AC value, the receiver changes to the new logic state. The new logic state is then maintained as long as the input stays beyond the DC threshold. This approach is intended to provide predictable receiver timing in the presence of input waveform ringing.					
t _C	High-speed receiver/transmitter input and output clock period.					
TCCS (Channel-to- channel-skew)	HIGH-SPEED I/O block: The timing difference between the fastest and slowest output edges, including t_{CO} variation and clock skew. The clock is included in the TCCS measurement.					
t _{cin}	Delay from clock pad to I/O input register.					
t _{co}	Delay from clock pad to I/O output.					
t _{cout}	Delay from clock pad to I/O output register.					
	continued					

Intel[®] MAX[®] 10 FPGA Device Datasheet M10-DATASHEET | 2018.06.29

Term	Definition
t _{duty}	HIGH-SPEED I/O Block: Duty cycle on high-speed transmitter output clock.
t _{FALL}	Signal high-to-low transition time (80–20%).
t _H	Input register hold time.
Timing Unit Interval (TUI)	HIGH-SPEED I/O block: The timing budget allowed for skew, propagation delays, and data sampling window. (TUI = 1/(Receiver Input Clock Frequency Multiplication Factor) = t_C/w).
t _{INJITTER}	Period jitter on PLL clock input.
toutjitter_dedclk	Period jitter on dedicated clock output driven by a PLL.
t _{outjitter_io}	Period jitter on general purpose I/O driven by a PLL.
t _{pllcin}	Delay from PLL inclk pad to I/O input register.
t _{pllcout}	Delay from PLL inclk pad to I/O output register.
t _{RISE}	Signal low-to-high transition time (20–80%).
t _{su}	Input register setup time.
V _{CM(DC)}	DC common mode input voltage.
V _{DIF(AC)}	AC differential input voltage: The minimum AC input differential voltage required for switching.
V _{DIF(DC)}	DC differential input voltage: The minimum DC input differential voltage required for switching.
V _{HYS}	Hysteresis for Schmitt trigger input.
V _{ICM}	Input common mode voltage: The common mode of the differential signal at the receiver.
V _{ID}	Input differential Voltage Swing: The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.
V _{IH}	Voltage input high: The minimum positive voltage applied to the input which is accepted by the device as a logic high.
V _{IH(AC)}	High-level AC input voltage.
V _{IH(DC)}	High-level DC input voltage.
V _{IL}	Voltage input low: The maximum positive voltage applied to the input which is accepted by the device as a logic low.
V _{IL (AC)}	Low-level AC input voltage.
V _{IL (DC)}	Low-level DC input voltage.
VIN	DC input voltage.
	continued

Term	Definition
V _{OCM}	Output common mode voltage: The common mode of the differential signal at the transmitter.
V _{OD}	Output differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission line at the transmitter. $V_{OD} = V_{OH} - V_{OL}$.
V _{OH}	Voltage output high: The maximum positive voltage from an output which the device considers is accepted as the minimum positive high level.
V _{OL}	Voltage output low: The maximum positive voltage from an output which the device considers is accepted as the maximum positive low level.
V _{os}	Output offset voltage: $V_{OS} = (V_{OH} + V_{OL}) / 2$.
V _{OX (AC)}	AC differential Output cross point voltage: The voltage at which the differential output signals must cross.
V _{REF}	Reference voltage for SSTL, HSTL, and HSUL I/O Standards.
V _{REF(AC)}	AC input reference voltage for SSTL, HSTL, and HSUL I/O Standards. $V_{REF(AC)} = V_{REF(DC)} + noise$. The peak-to-peak AC noise on V_{REF} should not exceed 2% of $V_{REF(DC)}$.
V _{REF(DC)}	DC input reference voltage for SSTL, HSTL, and HSUL I/O Standards.
V _{SWING (AC)}	AC differential input voltage: AC Input differential voltage required for switching.
V _{SWING (DC)}	DC differential input voltage: DC Input differential voltage required for switching.
VTT	Termination voltage for SSTL, HSTL, and HSUL I/O Standards.
V _{X (AC)}	AC differential Input cross point voltage: The voltage at which the differential input signals must cross.

Document Revision History for the Intel MAX 10 FPGA Device Datasheet

Document Version	Changes
2018.06.29	 Removed links on instant-on feature. Added JTAG timing specifications term in <i>Glossary</i>. Renamed the following IP cores as per Intel rebranding: Renamed Altera Modular ADC IP core to Modular ADC core Intel FPGA IP core. Renamed Altera Modular Dual ADC IP core to Modular Dual ADC core Intel FPGA IP core.

Date	Version	Changes
May 2015	2015.05.04	 Updated a note to V_{CCIO} for both single supply and dual supply power supplies recommended operating conditions tables. Note updated: V_{CCIO} for all I/O banks must be powered up during user mode because V_{CCIO} I/O banks are used for the ADC and I/O functionalities.
		Updated Example for OCT Resistance Calculation after Calibration at Device Power-Up.
		 Removed a note to BLVDS in Differential I/O Standards Specifications for Intel MAX 10 Devices table. BLVDS is now supported in Intel MAX 10 single supply devices. Note removed: BLVDS TX is not supported in single supply devices.
		Updated ADC Performance Specifications for both single supply and dual supply devices.
		– Changed the symbol for Operating junction temperature range parameter from T_A to T_J .
		 Edited sampling rate maximum value from 1000 kSPS to 1 MSPS.
		 Added a note to analog input voltage parameter.
		- Removed input frequency, f _{IN} specification.
		 Updated the condition for DNL specification: External V_{REF}, no missing code. Added DNL specification for condition: Internal V_{REF}, no missing code.
		 Added notes to AC accuracy specifications that the value with prescalar enabled is 6dB less than the specification.
		 Added a note to On-Chip Temperature Sensor (absolute accuracy) parameter about the averaging calculation.
		Updated ADC Performance Specifications for Intel MAX 10 Single Supply Devices table.
		 Added condition for On-Chip Temperature Sensor (absolute accuracy) parameter: with 64 samples averaging.
		Updated ADC Performance Specifications for Intel MAX 10 Dual Supply Devices table.
		 Updated Digital Supply Voltage minimum value from 1.14 V to 1.15 V and maximum value from 1.26 V to 1.25 V.
		 Updated f_{HSCLK} and HSIODR specifications for –A7 speed grade in the following tables:
		 True PPDS and Emulated PPDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices
		 True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices
		 True Mini-LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices
		 True LVDS Transmitter Timing Specifications for Intel MAX 10 Single Supply Devices
		 True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices
		 Emulated LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Single Supply Devices
		 Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices
		 LVDS Receiver Timing Specifications for Intel MAX 10 Single Supply Devices
		 LVDS, TMDS, HiSpi, SLVS, and Sub-LVDS Receiver Timing Specifications for Intel MAX 10 Dual Supply Devices
	•	continued

Intel[®] MAX[®] 10 FPGA Device Datasheet M10-DATASHEET | 2018.06.29

Date	Version	Changes
		 Updated TCCS specifications in the following tables: True PPDS and Emulated PPDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True Mini-LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True LVDS Transmitter Timing Specifications for Intel MAX 10 Single Supply Devices Emulated LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Single Supply Devices Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True PPDS and Emulated PPDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True PDDS and Emulated RSDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True RNI-LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True LVDS Transmitter Timi
January 2015	2015.01.23	 Removed a note to V_{CCA} in Power Supplies Recommended Operating Conditions for Intel MAX 10 Dual Supply Devices table. This note is not valid: All V_{CCA} pins must be connected together for EQFP package. Corrected the maximum value for t_{OUTJITTER_CCJ_IO} (F_{OUT} ≥ 100 MHz) from 60 ps to 650 ps in PLL Specifications for Intel MAX 10 Devices table.
December 2014	2014.12.15	 Restructured Programming/Erasure Specifications for Intel MAX 10 Devices table to add temperature specifications that affect the data retention duration. Added statements in the I/O Pin Leakage Current section: Input channel leakage of ADC I/O pins due to hot socket is up to maximum of 1.8 mA. The input channel leakage occurs when the ADC IP core is enabled or disabled. This is applicable to all Intel MAX 10 devices with ADC IP core, which are 10M04, 10M08, 10M16, 10M25, 10M40, and 10M50 devices. The ADC I/O pins are in Bank 1A. Added a statement in the I/O Standards Specifications section: You must perform timing closure analysis to determine the maximum achievable frequency for general purpose I/O standards.
		continued

Date	Version	Changes
		Updated SSTL-2 Class I and II I/O standard specifications for JEDEC compliance as follows:
		- VIL(AC) Max: Updated from V _{REF} - 0.35 to V _{REF} - 0.31
		$-$ VIH(AC) Min: Opdated from $v_{REF} + 0.31$
		 Added a note to BLVDS in Differential I/O Standards Specifications for Intel MAX 10 Devices table: BLVDS IX is not supported in single supply devices.
		 Added a link to MAX 10 High-Speed LVDS I/O User Guide for the list of I/O standards supported in single supply and dual supply devices.
		 Added a statement in PLL Specifications for Intel MAX 10 Single Supply Device table: For V36 package, the PLL specification is based on single supply devices.
		Added Internal Oscillator Specifications from Intel MAX 10 Clocking and PLL User Guide.
		Added UFM specifications for serial interface.
		Updated total harmonic distortion (THD) specifications as follows:
		 — Single supply devices: Updated from 65 dB to -65 dB
		- Dual supply devices: Updated from 70 dB to -70 dB (updated from 65 dB to -65 dB for dual function pin)
		• Added condition for On-Chip Temperature Sensor—Absolute accuracy parameter in ADC Performance Specifications for Intel MAX 10 Dual Supply Devices table. The condition is: with 64 samples averaging.
		Updated the description in Periphery Performance Specifications to mention that proper timing closure is required in design.
		 Updated HSIODR and f_{HSCLK} specifications for x10 and x7 modes in True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices.
		 Added specifications for low-speed I/O performance pin sampling window in LVDS Receiver Timing Specifications for Intel MAX 10 Single Supply Devices table: Max = 900 ps for -C7, -I7, -A7, and -C8 speed grades.
		 Added t_{RU_nCONFIG} and t_{RU_nRSTIMER} specifications for different devices in Remote System Upgrade Circuitry Timing Specifications for Intel MAX 10 Devices table.
		Removed the word "internal oscillator" in User Watchdog Timer Specifications for Intel MAX 10 Devices table to avoid confusion.
		Added IOE programmable delay specifications.
September 2014	2014.09.22	Initial release.