## Intel - 10M40DCF672C8G Datasheet





Welcome to <u>E-XFL.COM</u>

#### Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

#### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

#### Details

| Product Status                 | Active                                                    |
|--------------------------------|-----------------------------------------------------------|
| Number of LABs/CLBs            | 2500                                                      |
| Number of Logic Elements/Cells | 40000                                                     |
| Total RAM Bits                 | 1290240                                                   |
| Number of I/O                  | 500                                                       |
| Number of Gates                | -                                                         |
| Voltage - Supply               | 1.15V ~ 1.25V                                             |
| Mounting Type                  | Surface Mount                                             |
| Operating Temperature          | 0°C ~ 85°C (TJ)                                           |
| Package / Case                 | 672-BGA                                                   |
| Supplier Device Package        | 672-FBGA (27x27)                                          |
| Purchase URL                   | https://www.e-xfl.com/product-detail/intel/10m40dcf672c8g |
|                                |                                                           |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



## **Operating Conditions**

Intel MAX 10 devices are rated according to a set of defined parameters. To maintain the highest possible performance and reliability of the Intel MAX 10 devices, you must consider the operating requirements described in this section.

## **Absolute Maximum Ratings**

This section defines the maximum operating conditions for Intel MAX 10 devices. The values are based on experiments conducted with the devices and theoretical modeling of breakdown and damage mechanisms. The functional operation of the device is not implied for these conditions.

**Caution:** Conditions outside the range listed in the absolute maximum ratings tables may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

#### **Single Supply Devices Absolute Maximum Ratings**

#### Table 2. Absolute Maximum Ratings for Intel MAX 10 Single Supply Devices

| Symbol Parameter    |                                                                                                               | Min  | Мах | Unit |
|---------------------|---------------------------------------------------------------------------------------------------------------|------|-----|------|
| V <sub>CC_ONE</sub> | Supply voltage for core and periphery through on-die voltage regulator                                        | -0.5 | 3.9 | V    |
| V <sub>CCIO</sub>   | Supply voltage for input and output buffers                                                                   | -0.5 | 3.9 | V    |
| V <sub>CCA</sub>    | Supply voltage for phase-locked loop (PLL) regulator and analog-to-<br>digital converter (ADC) block (analog) | -0.5 | 3.9 | V    |

#### **Dual Supply Devices Absolute Maximum Ratings**

#### Table 3. Absolute Maximum Ratings for Intel MAX 10 Dual Supply Devices

| Symbol            | Parameter                                   | Min  | Мах  | Unit |  |
|-------------------|---------------------------------------------|------|------|------|--|
| V <sub>CC</sub>   | Supply voltage for core and periphery       | -0.5 | 1.63 | V    |  |
| V <sub>CCIO</sub> | Supply voltage for input and output buffers | -0.5 | 3.9  | V    |  |
| V <sub>CCA</sub>  | Supply voltage for PLL regulator (analog)   | -0.5 | 3.41 | V    |  |
| continued         |                                             |      |      |      |  |



#### **Recommended Operating Conditions**

#### Table 8. Recommended Operating Conditions for Intel MAX 10 Devices

| Symbol             | Parameter                                                    | Condition  | Min                | Max               | Unit |
|--------------------|--------------------------------------------------------------|------------|--------------------|-------------------|------|
| VI                 | DC input voltage                                             | -          | -0.5               | 3.6               | V    |
| Vo                 | Output voltage for I/O pins                                  | _          | 0                  | V <sub>CCIO</sub> | V    |
| Тյ                 | Operating junction temperature                               | Commercial | 0                  | 85                | °C   |
|                    |                                                              | Industrial | -40 <sup>(6)</sup> | 100               | °C   |
|                    |                                                              | Automotive | -40 <sup>(6)</sup> | 125               | °C   |
| t <sub>RAMP</sub>  | Power supply ramp time                                       | -          | (7)                | 10                | ms   |
| I <sub>Diode</sub> | Magnitude of DC current across PCI* clamp diode when enabled | _          | _                  | 10                | mA   |

## **Programming/Erasure Specifications**

#### Table 9. Programming/Erasure Specifications for Intel MAX 10 Devices

This table shows the programming cycles and data retention duration of the user flash memory (UFM) and configuration flash memory (CFM) blocks.

For more information about data retention duration with 10,000 programming cycles for automotive temperature devices, contact your Intel quality representative.

| Erase and reprogram cycles (E/P) <sup>(8)</sup> (Cycles/<br>page) | Temperature (°C) | Data retention duration (Years) |
|-------------------------------------------------------------------|------------------|---------------------------------|
| 10,000                                                            | 85               | 20                              |
| 10,000                                                            | 100              | 10                              |

<sup>&</sup>lt;sup>(6)</sup> -40°C is only applicable to Start of Test, when the device is powered-on. The device does not stay at the minimum junction temperature for a long time.

<sup>(7)</sup> There is no absolute minimum value for the ramp time requirement. Intel characterized the minimum ramp time at 200  $\mu$ s.

<sup>(8)</sup> The number of E/P cycles applies to the smallest possible flash block that can be erased or programmed in each Intel MAX 10 device. Each Intel MAX 10 device has multiple flash pages per device.



- Subscript x refers to both V and T.
- $\Delta R_V$  is variation of resistance with voltage.
- $\Delta R_T$  is variation of resistance with temperature.
- dR/dT is the change percentage of resistance with temperature after calibration at device power-up.
- dR/dV is the change percentage of resistance with voltage after calibration at device power-up.
- V<sub>1</sub> is the initial voltage.
- V<sub>2</sub> is final voltage.

The following figure shows the example to calculate the change of 50  $\Omega$  I/O impedance from 25°C at 3.0 V to 85°C at 3.15 V.

## Figure 2. Example for OCT Resistance Calculation after Calibration at Device Power-Up

 $\Delta R_V = (3.15 - 3) \times 1000 \times -0.027 = -4.05$  $\Delta R_T = (85 - 25) \times 0.25 = 15$ 

Because  $\Delta R_V$  is negative,

 $MF_V = 1/(4.05/100 + 1) = 0.961$ 

Because  $\Delta R_T$  is positive,

 $MF_T = 15/100 + 1 = 1.15$  $MF = 0.961 \times 1.15 = 1.105$ 

 $R_{final} = 50 \times 1.105 = 55.25\Omega$ 



#### Table 17. Internal Weak Pull-Up Resistor for Intel MAX 10 Devices

| Symbol           | Parameter                                                                                                                           | Condition                  | Min | Тур | Мах | Unit |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----|-----|-----|------|
| R_ <sub>PU</sub> | Value of I/O pin (dedicated and dual-purpose)                                                                                       | $V_{CCIO} = 3.3 V \pm 5\%$ | 7   | 12  | 34  | kΩ   |
|                  | pull-up resistor before and during configuration,<br>as well as user mode if the programmable pull-up<br>resistor option is enabled | $V_{CCIO} = 3.0 V \pm 5\%$ | 8   | 13  | 37  | kΩ   |
|                  |                                                                                                                                     | $V_{CCIO} = 2.5 V \pm 5\%$ | 10  | 15  | 46  | kΩ   |
|                  |                                                                                                                                     | $V_{CCIO} = 1.8 V \pm 5\%$ | 16  | 25  | 75  | kΩ   |
|                  |                                                                                                                                     | $V_{CCIO} = 1.5 V \pm 5\%$ | 20  | 36  | 106 | kΩ   |
|                  |                                                                                                                                     | $V_{CCIO} = 1.2 V \pm 5\%$ | 33  | 82  | 179 | kΩ   |

Pin pull-up resistance values may be lower if an external source drives the pin higher than  $V_{CCIO}$ .

#### **Hot-Socketing Specifications**

#### Table 18. Hot-Socketing Specifications for Intel MAX 10 Devices

| Symbol                 | Parameter              | Maximum              |  |
|------------------------|------------------------|----------------------|--|
| I <sub>IOPIN(DC)</sub> | DC current per I/O pin | 300 µA               |  |
| I <sub>IOPIN(AC)</sub> | AC current per I/O pin | 8 mA <sup>(13)</sup> |  |

#### Hysteresis Specifications for Schmitt Trigger Input

Intel MAX 10 devices support Schmitt trigger input on all I/O pins. A Schmitt trigger feature introduces hysteresis to the input signal for improved noise immunity, especially for signal with slow edge rate.

<sup>(13)</sup> The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns,  $|I_{IOPIN}| = C dv/dt$ , in which C is I/O pin capacitance and dv/dt is the slew rate.



## Table 19. Hysteresis Specifications for Schmitt Trigger Input for Intel MAX 10 Devices

| Symbol           | Parameter                            | Condition                 | Minimum | Unit |
|------------------|--------------------------------------|---------------------------|---------|------|
| V <sub>HYS</sub> | Hysteresis for Schmitt trigger input | $V_{CCIO} = 3.3 V$        | 180     | mV   |
|                  |                                      | $V_{CCIO} = 2.5 V$        | 150     | mV   |
|                  |                                      | $V_{CCIO} = 1.8 V$        | 120     | mV   |
|                  |                                      | V <sub>CCIO</sub> = 1.5 V | 110     | mV   |



#### Single-Ended I/O Standards Specifications

## Table 20. Single-Ended I/O Standards Specifications for Intel MAX 10 Devices

To meet the  $I_{OL}$  and  $I_{OH}$  specifications, you must set the current strength settings accordingly. For example, to meet the 3.3-V LVTTL specification (4 mA), you should set the current strength settings to 4 mA. Setting at lower current strength may not meet the  $I_{OL}$  and  $I_{OH}$  specifications in the datasheet.

| I/O Standard           |       | V <sub>CCIO</sub> (V) |       | VIL  | (V)                         | VIH                         | (V)                        | V <sub>OL</sub> (V)         | V <sub>OH</sub> (V)         | I <sub>OL</sub> (mA) | I <sub>OH</sub> (mA) |
|------------------------|-------|-----------------------|-------|------|-----------------------------|-----------------------------|----------------------------|-----------------------------|-----------------------------|----------------------|----------------------|
|                        | Min   | Тур                   | Max   | Min  | Max                         | Min                         | Max                        | Max                         | Min                         |                      |                      |
| 3.3 V LVTTL            | 3.135 | 3.3                   | 3.465 | -0.3 | 0.8                         | 1.7                         | 3.6                        | 0.45                        | 2.4                         | 4                    | -4                   |
| 3.3 V LVCMOS           | 3.135 | 3.3                   | 3.465 | -0.3 | 0.8                         | 1.7                         | 3.6                        | 0.2                         | V <sub>CCIO</sub> - 0.2     | 2                    | -2                   |
| 3.0 V LVTTL            | 2.85  | 3                     | 3.15  | -0.3 | 0.8                         | 1.7                         | V <sub>CCIO</sub><br>+ 0.3 | 0.45                        | 2.4                         | 4                    | -4                   |
| 3.0 V LVCMOS           | 2.85  | 3                     | 3.15  | -0.3 | 0.8                         | 1.7                         | V <sub>CCIO</sub><br>+ 0.3 | 0.2                         | V <sub>CCIO</sub> - 0.2     | 0.1                  | -0.1                 |
| 2.5 V LVTTL and LVCMOS | 2.375 | 2.5                   | 2.625 | -0.3 | 0.7                         | 1.7                         | V <sub>CCIO</sub><br>+ 0.3 | 0.4                         | 2                           | 1                    | -1                   |
| 1.8 V LVTTL and LVCMOS | 1.71  | 1.8                   | 1.89  | -0.3 | 0.35 ×<br>V <sub>CCIO</sub> | 0.65 ×<br>V <sub>CCIO</sub> | 2.25                       | 0.45                        | V <sub>CCIO</sub> -<br>0.45 | 2                    | -2                   |
| 1.5 V LVCMOS           | 1.425 | 1.5                   | 1.575 | -0.3 | 0.35 ×<br>V <sub>CCIO</sub> | 0.65 ×<br>V <sub>CCIO</sub> | V <sub>CCIO</sub><br>+ 0.3 | 0.25 ×<br>V <sub>CCIO</sub> | 0.75 ×<br>V <sub>CCIO</sub> | 2                    | -2                   |
| 1.2 V LVCMOS           | 1.14  | 1.2                   | 1.26  | -0.3 | 0.35 ×<br>V <sub>CCIO</sub> | 0.65 ×<br>V <sub>CCIO</sub> | V <sub>CCI0</sub><br>+ 0.3 | 0.25 ×<br>V <sub>CCIO</sub> | 0.75 ×<br>V <sub>CCIO</sub> | 2                    | -2                   |
| 3.3 V Schmitt Trigger  | 3.135 | 3.3                   | 3.465 | -0.3 | 0.8                         | 1.7                         | V <sub>CCIO</sub><br>+ 0.3 | -                           | -                           | -                    | -                    |
| 2.5 V Schmitt Trigger  | 2.375 | 2.5                   | 2.625 | -0.3 | 0.7                         | 1.7                         | V <sub>CCIO</sub><br>+ 0.3 | -                           | -                           | -                    | -                    |
| 1.8 V Schmitt Trigger  | 1.71  | 1.8                   | 1.89  | -0.3 | 0.35 ×<br>V <sub>CCIO</sub> | 0.65 ×<br>V <sub>CCIO</sub> | V <sub>CCI0</sub><br>+ 0.3 | -                           | -                           | —                    | _                    |
| 1.5 V Schmitt Trigger  | 1.425 | 1.5                   | 1.575 | -0.3 | 0.35 ×<br>V <sub>CCIO</sub> | 0.65 ×<br>V <sub>CCIO</sub> | V <sub>CCI0</sub><br>+ 0.3 | -                           | -                           | —                    | -                    |
| 3.0 V PCI              | 2.85  | 3                     | 3.15  | _    | 0.3 ×<br>V <sub>CCIO</sub>  | $0.5 \times V_{CCIO}$       | V <sub>CCI0</sub><br>+ 0.3 | 0.1 ×<br>V <sub>CCIO</sub>  | 0.9 ×<br>V <sub>CCIO</sub>  | 1.5                  | -0.5                 |

## Intel<sup>®</sup> MAX<sup>®</sup> 10 FPGA Device Datasheet M10-DATASHEET | 2018.06.29



| Symbol                               | Parameter                                                        | Condition                                                                                                    | Min | Тур | Max   | Unit      |
|--------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----|-----|-------|-----------|
| f <sub>VCO</sub> <sup>(29)</sup>     | PLL internal voltage-controlled oscillator (VCO) operating range | _                                                                                                            | 600 | _   | 1300  | MHz       |
| f <sub>INDUTY</sub>                  | Input clock duty cycle                                           | -                                                                                                            | 40  | -   | 60    | %         |
| t <sub>INJITTER_CCJ</sub> (30)       | Input clock cycle-to-cycle jitter                                | $F_{INPFD} \ge 100 \text{ MHz}$                                                                              | -   | -   | 0.15  | UI        |
|                                      |                                                                  | $F_{INPFD}$ < 100 MHz                                                                                        | -   | -   | ±750  | ps        |
| f <sub>OUT_EXT</sub> <sup>(28)</sup> | PLL output frequency for external clock output                   | -                                                                                                            | -   | -   | 472.5 | MHz       |
| f <sub>OUT</sub>                     | PLL output frequency to global clock                             | -6 speed grade                                                                                               | -   | -   | 472.5 | MHz       |
|                                      |                                                                  | -7 speed grade                                                                                               | -   | -   | 450   | MHz       |
|                                      |                                                                  | -8 speed grade                                                                                               | -   | -   | 402.5 | MHz       |
| toutduty                             | Duty cycle for external clock output                             | Duty cycle set to 50%                                                                                        | 45  | 50  | 55    | %         |
| t <sub>LOCK</sub>                    | Time required to lock from end of device configuration           | _                                                                                                            | _   | _   | 1     | ms        |
| t <sub>DLOCK</sub>                   | Time required to lock dynamically                                | After switchover, reconfiguring<br>any non-post-scale counters or<br>delays, or when areset is<br>deasserted | _   | _   | 1     | ms        |
| toutjitter_period_io                 | Regular I/O period jitter                                        | F <sub>OUT</sub> ≥ 100 MHz                                                                                   | -   | -   | 650   | ps        |
|                                      |                                                                  | F <sub>OUT</sub> < 100 MHz                                                                                   | -   | -   | 75    | mUI       |
| t <sub>OUTJITTER_CCJ_IO</sub> (31)   | Regular I/O cycle-to-cycle jitter                                | F <sub>OUT</sub> ≥ 100 MHz                                                                                   | -   | -   | 650   | ps        |
|                                      |                                                                  | F <sub>OUT</sub> < 100 MHz                                                                                   | -   | -   | 75    | mUI       |
|                                      |                                                                  | •                                                                                                            |     |     |       | continued |

<sup>&</sup>lt;sup>(29)</sup> The VCO frequency reported by the Intel Quartus Prime software in the PLL summary section of the compilation report takes into consideration the VCO post-scale counter  $\kappa$  value. Therefore, if the counter  $\kappa$  has a value of 2, the frequency reported can be lower than the f<sub>VCO</sub> specification.

<sup>(30)</sup> A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source, which is less than 200 ps.

<sup>(31)</sup> Peak-to-peak jitter with a probability level of 10<sup>-12</sup> (14 sigma, 99.9999999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied.



## **Internal Oscillator Specifications**

## Table 32. Internal Oscillator Frequencies for Intel MAX 10 Devices

You can access to the internal oscillator frequencies in this table. The duty cycle of internal oscillator is approximately 45%–55%.

| Device |         | Unit    |         |     |
|--------|---------|---------|---------|-----|
|        | Minimum | Typical | Maximum |     |
| 10M02  | 55      | 82      | 116     | MHz |
| 10M04  |         |         |         |     |
| 10M08  |         |         |         |     |
| 10M16  |         |         |         |     |
| 10M25  |         |         |         |     |
| 10M40  | 35      | 52      | 77      | MHz |
| 10M50  |         |         |         |     |

## **UFM Performance Specifications**

## Table 33. UFM Performance Specifications for Intel MAX 10 Devices

| Block | Mode                          | Interface              | Device                                      | Frequency |         | Unit |
|-------|-------------------------------|------------------------|---------------------------------------------|-----------|---------|------|
|       |                               |                        |                                             | Minimum   | Maximum |      |
| UFM   | Avalon <sup>®</sup> -MM slave | Parallel (33)          | 10M02 <sup>(34)</sup>                       | 3.43      | 7.25    | MHz  |
|       |                               |                        | 10M04, 10M08, 10M16, 10M25, 10M40,<br>10M50 | 5         | 116     | MHz  |
|       |                               | Serial <sup>(34)</sup> | 10M02, 10M04, 10M08, 10M16, 10M25           | 3.43      | 7.25    | MHz  |
|       |                               |                        | 10M40, 10M50                                | 2.18      | 4.81    | MHz  |

<sup>&</sup>lt;sup>(33)</sup> Clock source is derived from user, except for 10M02 device.

 $<sup>^{(34)}</sup>$  Clock source is derived from 1/16 of the frequency of the internal oscillator.



| I                   | Parameter                      | Symbol         | Condition                                           | Min                              | Тур | Max | Unit      |
|---------------------|--------------------------------|----------------|-----------------------------------------------------|----------------------------------|-----|-----|-----------|
|                     |                                |                | Internal V <sub>REF</sub> , no missing<br>code      | -1                               | _   | 1.7 | LSB       |
|                     | Integral non linearity         | INL            | _                                                   | -2                               | _   | 2   | LSB       |
| AC Accuracy         | Total harmonic distortion      | THD            | $F_{IN}$ = 50 kHz, $F_{S}$ = 1 MHz,<br>PLL          | -70 <sup>(44)(45)</sup><br>(46)  | -   | -   | dB        |
|                     | Signal-to-noise ratio          |                | $F_{IN} = 50 \text{ kHz}, F_S = 1 \text{ MHz}, PLL$ | 62 (47)(48)(46)                  | _   | _   | dB        |
|                     | Signal-to-noise and distortion | SINAD          | $F_{IN}$ = 50 kHz, $F_{S}$ = 1 MHz,<br>PLL          | 61.5 <sup>(49)</sup><br>(50)(46) | _   | -   | dB        |
| On-Chip Temperature | Temperature sampling rate      | T <sub>S</sub> | _                                                   | -                                | -   | 50  | kSPS      |
| Absolute accuracy   |                                | _              | -40 to 125°C,<br>with 64 samples averaging<br>(51)  | _                                | _   | ±5  | °C        |
|                     |                                |                |                                                     |                                  |     |     | continued |

- $^{(44)}$  Total harmonic distortion is -65 dB for dual function pin.
- <sup>(45)</sup> THD with prescalar enabled is 6dB less than the specification.
- <sup>(46)</sup> When using internal  $V_{REF}$ , THD = 66 dB, SNR = 58 dB and SINAD = 57.5 dB for dedicated ADC input channels.
- <sup>(47)</sup> Signal-to-noise ratio is 54 dB for dual function pin.
- $^{(48)}$  SNR with prescalar enabled is 6dB less than the specification.
- <sup>(49)</sup> Signal-to-noise and distortion is 53 dB for dual function pin.
- <sup>(50)</sup> SINAD with prescalar enabled is 6dB less than the specification.
- <sup>(51)</sup> For the Intel Quartus Prime software version 15.0 and later, Modular ADC Core and Modular Dual ADC Core IP cores handle the 64 samples averaging. For the Intel Quartus Prime software versions prior to 14.1, you need to implement your own averaging calculation.



## True RSDS and Emulated RSDS\_E\_3R Transmitter Timing Specifications

#### Single Supply Devices True RSDS and Emulated RSDS\_E\_3R Transmitter Timing Specifications

## Table 37. True RSDS and Emulated RSDS\_E\_3R Transmitter Timing Specifications for Intel MAX 10 Single Supply Devices

True RSDS transmitter is only supported at bottom I/O banks. Emulated RSDS transmitter is supported at the output pin of all I/O banks.

| Symbol             | Parameter                                 | Mode | -16, | -A6, -C7, -I7 -A7 |     | - <b>C</b> 8 |     | Unit |     |     |     |        |
|--------------------|-------------------------------------------|------|------|-------------------|-----|--------------|-----|------|-----|-----|-----|--------|
|                    |                                           |      | Min  | Тур               | Max | Min          | Тур | Max  | Min | Тур | Max |        |
| f <sub>HSCLK</sub> | Input clock frequency                     | ×10  | 5    | _                 | 50  | 5            | _   | 50   | 5   | _   | 50  | MHz    |
|                    | performance pin)                          | ×8   | 5    | -                 | 50  | 5            | -   | 50   | 5   | _   | 50  | MHz    |
|                    |                                           | ×7   | 5    | _                 | 50  | 5            | _   | 50   | 5   | _   | 50  | MHz    |
|                    |                                           | ×4   | 5    | —                 | 50  | 5            |     | 50   | 5   | -   | 50  | MHz    |
|                    |                                           | ×2   | 5    | —                 | 50  | 5            | -   | 50   | 5   | _   | 50  | MHz    |
|                    |                                           | ×1   | 5    | —                 | 100 | 5            | -   | 100  | 5   | _   | 100 | MHz    |
| HSIODR             | Data rate (high-speed                     | ×10  | 100  | —                 | 100 | 100          |     | 100  | 100 | _   | 100 | Mbps   |
|                    | 1/O performance pin)                      | ×8   | 80   | _                 | 100 | 80           | _   | 100  | 80  | _   | 100 | Mbps   |
|                    |                                           | ×7   | 70   | —                 | 100 | 70           |     | 100  | 70  | -   | 100 | Mbps   |
|                    |                                           | ×4   | 40   | —                 | 100 | 40           | -   | 100  | 40  | _   | 100 | Mbps   |
|                    |                                           | ×2   | 20   | —                 | 100 | 20           | -   | 100  | 20  | _   | 100 | Mbps   |
|                    |                                           | ×1   | 10   | —                 | 100 | 10           |     | 100  | 10  | _   | 100 | Mbps   |
| f <sub>HSCLK</sub> | Input clock frequency                     | ×10  | 5    | _                 | 50  | 5            | _   | 50   | 5   | _   | 50  | MHz    |
|                    | performance pin)                          | ×8   | 5    | —                 | 50  | 5            | -   | 50   | 5   | _   | 50  | MHz    |
|                    |                                           | ×7   | 5    | —                 | 50  | 5            |     | 50   | 5   | -   | 50  | MHz    |
|                    |                                           | ×4   | 5    | —                 | 50  | 5            | -   | 50   | 5   | _   | 50  | MHz    |
|                    |                                           | ×2   | 5    | —                 | 50  | 5            |     | 50   | 5   |     | 50  | MHz    |
|                    |                                           | ×1   | 5    | —                 | 100 | 5            | Ι   | 100  | 5   | -   | 100 | MHz    |
| HSIODR             | Data rate (low-speed I/O performance pin) | ×10  | 100  | _                 | 100 | 100          | _   | 100  | 100 | _   | 100 | Mbps   |
|                    |                                           |      |      |                   |     |              |     |      |     |     | con | tinued |



## Emulated RSDS\_E\_1R Transmitter Timing Specifications

## Table 39. Emulated RSDS\_E\_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices

Emulated **RSDS\_E\_1R** transmitter is supported at the output pin of all I/O banks.

| Symbol             | Parameter             | Mode | -16, | -A6, -C7, | -17 |     | -A7 |     |     | - <b>C8</b> |     | Unit   |
|--------------------|-----------------------|------|------|-----------|-----|-----|-----|-----|-----|-------------|-----|--------|
|                    |                       |      | Min  | Тур       | Max | Min | Тур | Max | Min | Тур         | Max |        |
| f <sub>HSCLK</sub> | Input clock frequency | ×10  | 5    | —         | 85  | 5   | —   | 85  | 5   | -           | 85  | MHz    |
|                    | performance pin)      | ×8   | 5    | —         | 85  | 5   | _   | 85  | 5   | -           | 85  | MHz    |
|                    |                       | ×7   | 5    | —         | 85  | 5   | —   | 85  | 5   | -           | 85  | MHz    |
|                    |                       | ×4   | 5    | _         | 85  | 5   | _   | 85  | 5   |             | 85  | MHz    |
|                    |                       | ×2   | 5    | —         | 85  | 5   | _   | 85  | 5   |             | 85  | MHz    |
|                    |                       | ×1   | 5    | _         | 170 | 5   | _   | 170 | 5   |             | 170 | MHz    |
| HSIODR             | Data rate (high-speed | ×10  | 100  | —         | 170 | 100 | _   | 170 | 100 | _           | 170 | Mbps   |
|                    | 1/O performance pin)  | ×8   | 80   | —         | 170 | 80  | —   | 170 | 80  |             | 170 | Mbps   |
|                    |                       | ×7   | 70   | _         | 170 | 70  | _   | 170 | 70  |             | 170 | Mbps   |
|                    |                       | ×4   | 40   | —         | 170 | 40  | _   | 170 | 40  |             | 170 | Mbps   |
|                    |                       | ×2   | 20   | —         | 170 | 20  | —   | 170 | 20  |             | 170 | Mbps   |
|                    |                       | ×1   | 10   | —         | 170 | 10  | _   | 170 | 10  | _           | 170 | Mbps   |
| f <sub>HSCLK</sub> | Input clock frequency | ×10  | 5    | —         | 85  | 5   | —   | 85  | 5   |             | 85  | MHz    |
|                    | performance pin)      | ×8   | 5    | —         | 85  | 5   | _   | 85  | 5   | -           | 85  | MHz    |
|                    |                       | ×7   | 5    | —         | 85  | 5   | —   | 85  | 5   |             | 85  | MHz    |
|                    |                       | ×4   | 5    | —         | 85  | 5   | —   | 85  | 5   |             | 85  | MHz    |
|                    |                       | ×2   | 5    | —         | 85  | 5   | _   | 85  | 5   | -           | 85  | MHz    |
|                    |                       | ×1   | 5    | —         | 170 | 5   | —   | 170 | 5   | -           | 170 | MHz    |
| HSIODR             | Data rate (low-speed  | ×10  | 100  | -         | 170 | 100 | _   | 170 | 100 | —           | 170 | Mbps   |
|                    | 1/O performance pin)  | ×8   | 80   | —         | 170 | 80  | _   | 170 | 80  | —           | 170 | Mbps   |
|                    |                       | ×7   | 70   | —         | 170 | 70  | _   | 170 | 70  | —           | 170 | Mbps   |
|                    |                       |      |      |           |     |     |     |     |     |             | con | tinued |

#### Intel<sup>®</sup> MAX<sup>®</sup> 10 FPGA Device Datasheet





| Symbol                                | Parameter                                                                                                                             | Mode                                  | -16, | , <b>-A6, -C7</b> , | -17 |     | -A7 |     |     | -C8 |     | Unit |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------|---------------------|-----|-----|-----|-----|-----|-----|-----|------|
|                                       |                                                                                                                                       |                                       | Min  | Тур                 | Max | Min | Тур | Max | Min | Тур | Max |      |
|                                       |                                                                                                                                       | ×4                                    | 40   | -                   | 170 | 40  | _   | 170 | 40  | _   | 170 | Mbps |
|                                       |                                                                                                                                       | ×2                                    | 20   | _                   | 170 | 20  | -   | 170 | 20  | _   | 170 | Mbps |
|                                       |                                                                                                                                       | ×1                                    | 10   | -                   | 170 | 10  | _   | 170 | 10  | _   | 170 | Mbps |
| t <sub>DUTY</sub>                     | Duty cycle on<br>transmitter output<br>clock                                                                                          | -                                     | 45   | _                   | 55  | 45  | -   | 55  | 45  | -   | 55  | %    |
| TCCS <sup>(59)</sup>                  | Transmitter channel-<br>to-channel skew                                                                                               | -                                     | _    | -                   | 300 | -   | -   | 300 | -   | -   | 300 | ps   |
| t <sub>x Jitter</sub> <sup>(60)</sup> | Output jitter (high-<br>speed I/O<br>performance pin)                                                                                 | -                                     | _    | _                   | 425 | -   | -   | 425 | -   | -   | 425 | ps   |
|                                       | Output jitter (low-<br>speed I/O<br>performance pin)                                                                                  | _                                     | -    | -                   | 470 | -   | -   | 470 | -   | -   | 470 | ps   |
| t <sub>RISE</sub>                     | Rise time                                                                                                                             | 20 – 80%, C <sub>LOAD</sub><br>= 5 pF | _    | 500                 | -   | -   | 500 | -   | -   | 500 | -   | ps   |
| t <sub>FALL</sub>                     | Fall time                                                                                                                             | 20 - 80%, C <sub>LOAD</sub><br>= 5 pF | _    | 500                 | _   | -   | 500 | -   | -   | 500 | -   | ps   |
| t <sub>LOCK</sub>                     | Time required for the<br>PLL to lock, after<br>CONF_DONE signal<br>goes high, indicating<br>the completion of<br>device configuration | -                                     | _    | _                   | 1   | _   | _   | 1   | _   | _   | 1   | ms   |

 $<sup>^{(59)}</sup>$  TCCS specifications apply to I/O banks from the same side only.

 $<sup>^{\</sup>rm (60)}$  TX jitter is the jitter induced from core noise and I/O switching noise.

#### Intel<sup>®</sup> MAX<sup>®</sup> 10 FPGA Device Datasheet

M10-DATASHEET | 2018.06.29



| Symbol                                | Parameter                                                                                                                             | Mode                                  | -16, | -A6, -C7, | -17 |     | -A7 |     |     | - <b>C</b> 8 |     | Unit |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------|-----------|-----|-----|-----|-----|-----|--------------|-----|------|
|                                       |                                                                                                                                       |                                       | Min  | Тур       | Max | Min | Тур | Max | Min | Тур          | Max |      |
|                                       |                                                                                                                                       | ×7                                    | 70   | -         | 300 | 70  | -   | 300 | 70  | -            | 300 | Mbps |
|                                       |                                                                                                                                       | ×4                                    | 40   | -         | 300 | 40  | -   | 300 | 40  | _            | 300 | Mbps |
|                                       |                                                                                                                                       | ×2                                    | 20   | -         | 300 | 20  | -   | 300 | 20  | -            | 300 | Mbps |
|                                       |                                                                                                                                       | ×1                                    | 10   | -         | 300 | 10  | -   | 300 | 10  | -            | 300 | Mbps |
| t <sub>DUTY</sub>                     | Duty cycle on<br>transmitter output<br>clock                                                                                          | _                                     | 45   | -         | 55  | 45  | -   | 55  | 45  | -            | 55  | %    |
| TCCS <sup>(61)</sup>                  | Transmitter channel-<br>to-channel skew                                                                                               | -                                     | -    | -         | 300 | -   | -   | 300 | -   | -            | 300 | ps   |
| t <sub>x Jitter</sub> <sup>(62)</sup> | Output jitter (high-<br>speed I/O<br>performance pin)                                                                                 | _                                     | -    | -         | 425 | -   | -   | 425 | -   | -            | 425 | ps   |
|                                       | Output jitter (low-<br>speed I/O<br>performance pin)                                                                                  | -                                     | -    | -         | 470 | -   | -   | 470 | -   | _            | 470 | ps   |
| t <sub>RISE</sub>                     | Rise time                                                                                                                             | 20 - 80%, C <sub>LOAD</sub><br>= 5 pF | -    | 500       | -   | -   | 500 | -   | -   | 500          | -   | ps   |
| t <sub>FALL</sub>                     | Fall time                                                                                                                             | 20 - 80%, C <sub>LOAD</sub><br>= 5 pF | -    | 500       | _   | -   | 500 | -   | -   | 500          | -   | ps   |
| t <sub>LOCK</sub>                     | Time required for the<br>PLL to lock, after<br>CONF_DONE signal<br>goes high, indicating<br>the completion of<br>device configuration | -                                     | _    | _         | 1   | _   | _   | 1   | _   | _            | 1   | ms   |

 $<sup>^{\</sup>rm (61)}$  TCCS specifications apply to I/O banks from the same side only.

 $<sup>^{\</sup>rm (62)}$  TX jitter is the jitter induced from core noise and I/O switching noise.



## **True LVDS Transmitter Timing**

## Single Supply Devices True LVDS Transmitter Timing Specifications

#### Table 41. True LVDS Transmitter Timing Specifications for Intel MAX 10 Single Supply Devices

True **LVDS** transmitter is only supported at the bottom I/O banks.

| Symbol                                | Parameter                                    | Mode |     | -C7, -I7 |       |     | -A7 |       |     | - <b>C8</b> |       | Unit   |
|---------------------------------------|----------------------------------------------|------|-----|----------|-------|-----|-----|-------|-----|-------------|-------|--------|
|                                       |                                              |      | Min | Тур      | Max   | Min | Тур | Мах   | Min | Тур         | Max   |        |
| f <sub>HSCLK</sub>                    | Input clock frequency                        | ×10  | 5   | -        | 145   | 5   | -   | 100   | 5   | _           | 100   | MHz    |
|                                       |                                              | ×8   | 5   | -        | 145   | 5   | -   | 100   | 5   | _           | 100   | MHz    |
|                                       |                                              | ×7   | 5   | _        | 145   | 5   | -   | 100   | 5   | _           | 100   | MHz    |
|                                       |                                              | ×4   | 5   | -        | 145   | 5   | -   | 100   | 5   | _           | 100   | MHz    |
|                                       |                                              | ×2   | 5   | _        | 145   | 5   | -   | 100   | 5   | _           | 100   | MHz    |
|                                       |                                              | ×1   | 5   | -        | 290   | 5   | -   | 200   | 5   | _           | 200   | MHz    |
| HSIODR                                | Data rate                                    | ×10  | 100 | -        | 290   | 100 | -   | 200   | 100 | _           | 200   | Mbps   |
|                                       |                                              | ×8   | 80  | _        | 290   | 80  | -   | 200   | 80  | _           | 200   | Mbps   |
|                                       |                                              | ×7   | 70  | _        | 290   | 70  | -   | 200   | 70  | _           | 200   | Mbps   |
|                                       |                                              | ×4   | 40  | _        | 290   | 40  | -   | 200   | 40  | _           | 200   | Mbps   |
|                                       |                                              | ×2   | 20  | _        | 290   | 20  | -   | 200   | 20  | _           | 200   | Mbps   |
|                                       |                                              | ×1   | 10  | —        | 290   | 10  | -   | 200   | 10  | _           | 200   | Mbps   |
| t <sub>DUTY</sub>                     | Duty cycle on<br>transmitter output<br>clock | _    | 45  | -        | 55    | 45  | _   | 55    | 45  | _           | 55    | %      |
| TCCS <sup>(63)</sup>                  | Transmitter channel-<br>to-channel skew      | _    | _   | _        | 300   | _   | -   | 300   | _   | _           | 300   | ps     |
| t <sub>x Jitter</sub> <sup>(64)</sup> | Output jitter                                | -    | -   | -        | 1,000 | _   | -   | 1,000 | _   | _           | 1,000 | ps     |
|                                       |                                              |      |     |          |       |     |     |       |     |             | con   | tinued |

<sup>(63)</sup> TCCS specifications apply to I/O banks from the same side only.

<sup>(64)</sup> TX jitter is the jitter induced from core noise and I/O switching noise.



#### Intel<sup>®</sup> MAX<sup>®</sup> 10 FPGA Device Datasheet M10-DATASHEET | 2018.06.29

| Symbol                     | Parameter                                                                                                                             | Mode                                  | -16, | -A6, -C7, | , -17 |     | -A7 |     |     | -C8 |     | Unit |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------|-----------|-------|-----|-----|-----|-----|-----|-----|------|
|                            |                                                                                                                                       |                                       | Min  | Тур       | Max   | Min | Тур | Max | Min | Тур | Max |      |
|                            |                                                                                                                                       | ×7                                    | 70   | -         | 300   | 70  | -   | 300 | 70  | -   | 300 | Mbps |
|                            |                                                                                                                                       | ×4                                    | 40   | -         | 300   | 40  | -   | 300 | 40  | -   | 300 | Mbps |
|                            |                                                                                                                                       | ×2                                    | 20   | -         | 300   | 20  | -   | 300 | 20  | -   | 300 | Mbps |
|                            |                                                                                                                                       | ×1                                    | 10   | -         | 300   | 10  | -   | 300 | 10  | -   | 300 | Mbps |
| t <sub>DUTY</sub>          | Duty cycle on<br>transmitter output<br>clock                                                                                          | _                                     | 45   | -         | 55    | 45  | -   | 55  | 45  | -   | 55  | %    |
| TCCS <sup>(69)</sup>       | Transmitter channel-<br>to-channel skew                                                                                               | -                                     | -    | -         | 300   | -   | -   | 300 | -   | -   | 300 | ps   |
| t <sub>x Jitter</sub> (70) | Output jitter (high-<br>speed I/O<br>performance pin)                                                                                 | -                                     | _    | -         | 425   | -   | -   | 425 | -   | -   | 425 | ps   |
|                            | Output jitter (low-<br>speed I/O<br>performance pin)                                                                                  | -                                     | -    | -         | 470   | -   | -   | 470 | -   | -   | 470 | ps   |
| t <sub>RISE</sub>          | Rise time                                                                                                                             | 20 - 80%, C <sub>LOAD</sub><br>= 5 pF | -    | 500       | -     | -   | 500 | -   | -   | 500 | -   | ps   |
| t <sub>FALL</sub>          | Fall time                                                                                                                             | 20 - 80%, C <sub>LOAD</sub><br>= 5 pF | -    | 500       | _     | -   | 500 | -   | -   | 500 | -   | ps   |
| t <sub>lock</sub>          | Time required for the<br>PLL to lock, after<br>CONF_DONE signal<br>goes high, indicating<br>the completion of<br>device configuration | _                                     | _    | _         | 1     | _   | _   | 1   | _   | _   | 1   | ms   |

<sup>(70)</sup> TX jitter is the jitter induced from core noise and I/O switching noise.

<sup>&</sup>lt;sup>(69)</sup> TCCS specifications apply to I/O banks from the same side only.



## **Memory Output Clock Jitter Specifications**

Intel MAX 10 devices support external memory interfaces up to 303 MHz. The external memory interfaces for Intel MAX 10 devices calibrate automatically.

The memory output clock jitter measurements are for 200 consecutive clock cycles.

The clock jitter specification applies to memory output clock pins generated using DDIO circuits clocked by a PLL output routed on a PHY clock network.

DDR3 and LPDDR2 SDRAM memory interfaces are only supported on the fast speed grade device.

#### Table 48. Memory Output Clock Jitter Specifications for Intel MAX 10 Devices

| Parameter                    | Symbol                | -6 Spee | d Grade | -7 Spee | d Grade | Unit |
|------------------------------|-----------------------|---------|---------|---------|---------|------|
|                              |                       | Min     | Мах     | Min     | Max     |      |
| Clock period jitter          | t <sub>JIT(per)</sub> | -127    | 127     | -215    | 215     | ps   |
| Cycle-to-cycle period jitter | t <sub>JIT(cc)</sub>  | _       | 242     | _       | 360     | ps   |

#### **Related Information**

#### Literature: External Memory Interfaces

Provides more information about external memory system performance specifications, board design guidelines, timing analysis, simulation, and debugging information.

## **Configuration Specifications**

This section provides configuration specifications and timing for Intel MAX 10 devices.



#### Table 56.I/O Timing for Intel MAX 10 Devices

These I/O timing parameters are for the 3.3-V LVTTL I/O standard with the maximum drive strength and fast slew rate for 10M08DAF484 device.

| Symbol          | Parameter                                              | -C7, -I7 | -C8    | Unit |
|-----------------|--------------------------------------------------------|----------|--------|------|
| T <sub>su</sub> | Global clock setup time                                | -0.750   | -0.808 | ns   |
| T <sub>h</sub>  | Global clock hold time                                 | 1.180    | 1.215  | ns   |
| T <sub>co</sub> | Global clock to output delay                           | 5.131    | 5.575  | ns   |
| T <sub>pd</sub> | Best case pin-to-pin propagation delay through one LUT | 4.907    | 5.467  | ns   |

## **Programmable IOE Delay**

## **Programmable IOE Delay On Row Pins**

#### Table 57. IOE Programmable Delay on Row Pins for Intel MAX 10 Devices

The incremental values for the settings are generally linear. For exact values of each setting, refer to the **Assignment Name** column in the latest version of the Intel Quartus Prime software.

| <u> </u> |             |           |               |         |                |             |        |              |                 |                         |    |
|----------|-------------|-----------|---------------|---------|----------------|-------------|--------|--------------|-----------------|-------------------------|----|
| The      | minimum and | 1 maximum | offset timina | numhers | are in referen | re to setti | '0' na | as available | in the Intel (  | Quartus Prime softwar   | -0 |
|          | in and and  |           | onset tinning | numbers |                |             | ig o   | us available | in the mitter i | qualitas i mine solumai | с. |

| Parameter                                      | Paths Affected                | Number of | Minimum |        |       | Ma    | aximum Offs | et          |       |       | Unit |
|------------------------------------------------|-------------------------------|-----------|---------|--------|-------|-------|-------------|-------------|-------|-------|------|
|                                                |                               | Settings  | Offset  | Fast C | orner |       |             | Slow Corner |       |       |      |
|                                                |                               |           |         | -17    | -C8   | -A6   | -C7         | -C8         | -17   | -A7   |      |
| Input delay from<br>pin to internal<br>cells   | Pad to I/O<br>dataout to core | 7         | 0       | 0.815  | 0.873 | 1.831 | 1.811       | 1.874       | 1.871 | 1.922 | ns   |
| Input delay from<br>pin to input<br>register   | Pad to I/O input<br>register  | 8         | 0       | 0.924  | 0.992 | 2.081 | 2.055       | 2.125       | 2.127 | 2.185 | ns   |
| Delay from<br>output register to<br>output pin | I/O output<br>register to pad | 2         | 0       | 0.479  | 0.514 | 1.069 | 1.070       | 1.117       | 1.105 | 1.134 | ns   |



## **Programmable IOE Delay for Column Pins**

## Table 58. IOE Programmable Delay on Column Pins for Intel MAX 10 Devices

The incremental values for the settings are generally linear. For exact values of each setting, refer to the **Assignment Name** column in the latest version of the Intel Quartus Prime software.

| Parameter                                      | Paths Affected                | Number of | Minimum |        |        | Ma    |       | Unit        |       |       |    |
|------------------------------------------------|-------------------------------|-----------|---------|--------|--------|-------|-------|-------------|-------|-------|----|
|                                                |                               | Settings  | Unset   | Fast C | Corner |       |       | Slow Corner |       |       |    |
|                                                |                               |           |         | -17    | -C8    | -A6   | -C7   | -C8         | -17   | -A7   |    |
| Input delay from<br>pin to internal<br>cells   | Pad to I/O<br>dataout to core | 7         | 0       | 0.81   | 0.868  | 1.823 | 1.802 | 1.864       | 1.862 | 1.912 | ns |
| Input delay from<br>pin to input<br>register   | Pad to I/O input<br>register  | 8         | 0       | 0.914  | 0.981  | 2.06  | 2.032 | 2.101       | 2.102 | 2.161 | ns |
| Delay from<br>output register to<br>output pin | I/O output<br>register to pad | 2         | 0       | 0.435  | 0.466  | 0.971 | 0.97  | 1.013       | 1.001 | 1.028 | ns |

The minimum and maximum offset timing numbers are in reference to setting '0' as available in the Intel Quartus Prime software.



| Term                    | Definition                                                                                                                                                                                          |  |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| V <sub>OCM</sub>        | Output common mode voltage: The common mode of the differential signal at the transmitter.                                                                                                          |  |
| V <sub>OD</sub>         | Output differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission line at the transmitter. $V_{OD} = V_{OH} - V_{OL}$ . |  |
| V <sub>OH</sub>         | Voltage output high: The maximum positive voltage from an output which the device considers is accepted as the minimum positive high level.                                                         |  |
| V <sub>OL</sub>         | Voltage output low: The maximum positive voltage from an output which the device considers is accepted as the maximum positive low level.                                                           |  |
| V <sub>os</sub>         | Output offset voltage: $V_{OS} = (V_{OH} + V_{OL}) / 2$ .                                                                                                                                           |  |
| V <sub>OX (AC)</sub>    | AC differential Output cross point voltage: The voltage at which the differential output signals must cross.                                                                                        |  |
| V <sub>REF</sub>        | Reference voltage for SSTL, HSTL, and HSUL I/O Standards.                                                                                                                                           |  |
| V <sub>REF(AC)</sub>    | AC input reference voltage for SSTL, HSTL, and HSUL I/O Standards. $V_{REF(AC)} = V_{REF(DC)} + noise$ . The peak-to-peak AC noise on $V_{REF}$ should not exceed 2% of $V_{REF(DC)}$ .             |  |
| V <sub>REF(DC)</sub>    | DC input reference voltage for SSTL, HSTL, and HSUL I/O Standards.                                                                                                                                  |  |
| V <sub>SWING (AC)</sub> | AC differential input voltage: AC Input differential voltage required for switching.                                                                                                                |  |
| V <sub>SWING (DC)</sub> | DC differential input voltage: DC Input differential voltage required for switching.                                                                                                                |  |
| VTT                     | Termination voltage for SSTL, HSTL, and HSUL I/O Standards.                                                                                                                                         |  |
| V <sub>X (AC)</sub>     | AC differential Input cross point voltage: The voltage at which the differential input signals must cross.                                                                                          |  |

# **Document Revision History for the Intel MAX 10 FPGA Device Datasheet**

| Document<br>Version | Changes                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2018.06.29          | <ul> <li>Removed links on instant-on feature.</li> <li>Added JTAG timing specifications term in <i>Glossary</i>.</li> <li>Renamed the following IP cores as per Intel rebranding: <ul> <li>Renamed Altera Modular ADC IP core to Modular ADC core Intel FPGA IP core.</li> <li>Renamed Altera Modular Dual ADC IP core to Modular Dual ADC core Intel FPGA IP core.</li> </ul> </li> </ul> |



| Date           | Version    | Changes                                                                                                                                                                                                                                   |
|----------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |            | Updated SSTL-2 Class I and II I/O standard specifications for JEDEC compliance as follows:                                                                                                                                                |
|                |            | - VIL(AC) Max: Updated from V <sub>REF</sub> - 0.35 to V <sub>REF</sub> - 0.31                                                                                                                                                            |
|                |            | $-$ VIH(AC) Min: Opdated from $v_{REF} + 0.31$                                                                                                                                                                                            |
|                |            | <ul> <li>Added a note to BLVDS in Differential I/O Standards Specifications for Intel MAX 10 Devices table: BLVDS IX is not<br/>supported in single supply devices.</li> </ul>                                                            |
|                |            | <ul> <li>Added a link to MAX 10 High-Speed LVDS I/O User Guide for the list of I/O standards supported in single supply and dual<br/>supply devices.</li> </ul>                                                                           |
|                |            | <ul> <li>Added a statement in PLL Specifications for Intel MAX 10 Single Supply Device table: For V36 package, the PLL specification is based on single supply devices.</li> </ul>                                                        |
|                |            | Added Internal Oscillator Specifications from Intel MAX 10 Clocking and PLL User Guide.                                                                                                                                                   |
|                |            | Added UFM specifications for serial interface.                                                                                                                                                                                            |
|                |            | Updated total harmonic distortion (THD) specifications as follows:                                                                                                                                                                        |
|                |            | <ul> <li>— Single supply devices: Updated from 65 dB to -65 dB</li> </ul>                                                                                                                                                                 |
|                |            | - Dual supply devices: Updated from 70 dB to -70 dB (updated from 65 dB to -65 dB for dual function pin)                                                                                                                                  |
|                |            | • Added condition for On-Chip Temperature Sensor—Absolute accuracy parameter in ADC Performance Specifications for Intel MAX 10 Dual Supply Devices table. The condition is: with 64 samples averaging.                                   |
|                |            | Updated the description in Periphery Performance Specifications to mention that proper timing closure is required in design.                                                                                                              |
|                |            | <ul> <li>Updated HSIODR and f<sub>HSCLK</sub> specifications for x10 and x7 modes in True LVDS Transmitter Timing Specifications for Intel<br/>MAX 10 Dual Supply Devices.</li> </ul>                                                     |
|                |            | <ul> <li>Added specifications for low-speed I/O performance pin sampling window in LVDS Receiver Timing Specifications for Intel<br/>MAX 10 Single Supply Devices table: Max = 900 ps for -C7, -I7, -A7, and -C8 speed grades.</li> </ul> |
|                |            | <ul> <li>Added t<sub>RU_nCONFIG</sub> and t<sub>RU_nRSTIMER</sub> specifications for different devices in Remote System Upgrade Circuitry Timing<br/>Specifications for Intel MAX 10 Devices table.</li> </ul>                            |
|                |            | Removed the word "internal oscillator" in User Watchdog Timer Specifications for Intel MAX 10 Devices table to avoid confusion.                                                                                                           |
|                |            | Added IOE programmable delay specifications.                                                                                                                                                                                              |
| September 2014 | 2014.09.22 | Initial release.                                                                                                                                                                                                                          |