
Intel - 10M50DAF256C7G Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	3125
Number of Logic Elements/Cells	50000
Total RAM Bits	1677312
Number of I/O	178
Number of Gates	-
Voltage - Supply	1.15V ~ 1.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/intel/10m50daf256c7g

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Intel[®] MAX[®] 10 FPGA Device Datasheet

This datasheet describes the electrical characteristics, switching characteristics, configuration specifications, and timing for Intel $MAX^{(R)}$ 10 devices.

Table 1. Intel MAX 10 Device Grades and Speed Grades Supported

Device Grade	Speed Grade Supported
Commercial	 -C7 -C8 (slowest)
Industrial	 -I6 (fastest) -I7
Automotive	 -A6 -A7

Note: The –I6 and –A6 speed grades of the Intel MAX 10 FPGA devices are not available by default in the Intel Quartus[®] Prime software. Contact your local Intel sales representatives for support.

Related Information

Device Ordering Information, Intel MAX 10 FPGA Device Overview Provides more information about the densities and packages of devices in the Intel MAX 10.

Electrical Characteristics

The following sections describe the operating conditions and power consumption of Intel MAX 10 devices.

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered

*Other names and brands may be claimed as the property of others.

Operating Conditions

Intel MAX 10 devices are rated according to a set of defined parameters. To maintain the highest possible performance and reliability of the Intel MAX 10 devices, you must consider the operating requirements described in this section.

Absolute Maximum Ratings

This section defines the maximum operating conditions for Intel MAX 10 devices. The values are based on experiments conducted with the devices and theoretical modeling of breakdown and damage mechanisms. The functional operation of the device is not implied for these conditions.

Caution: Conditions outside the range listed in the absolute maximum ratings tables may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

Single Supply Devices Absolute Maximum Ratings

Table 2. Absolute Maximum Ratings for Intel MAX 10 Single Supply Devices

Symbol	Parameter	Min	Мах	Unit
V _{CC_ONE}	Supply voltage for core and periphery through on-die voltage regulator	-0.5	3.9	V
V _{CCIO}	Supply voltage for input and output buffers	-0.5	3.9	V
V _{CCA}	Supply voltage for phase-locked loop (PLL) regulator and analog-to- digital converter (ADC) block (analog)	-0.5	3.9	V

Dual Supply Devices Absolute Maximum Ratings

Table 3. Absolute Maximum Ratings for Intel MAX 10 Dual Supply Devices

Symbol	Parameter	Min	Мах	Unit				
V _{CC}	Supply voltage for core and periphery	-0.5	1.63	V				
V _{CCIO}	Supply voltage for input and output buffers	-0.5	3.9	V				
V _{CCA}	Supply voltage for PLL regulator (analog)	-0.5	3.41	V				
	continue							

Symbol	Parameter	Min	Мах	Unit
V _{CCD_PLL}	Supply voltage for PLL regulator (digital)	-0.5	1.63	V
V _{CCA_ADC}	Supply voltage for ADC analog block	-0.5	3.41	V
V _{CCINT}	Supply voltage for ADC digital block	-0.5	1.63	V

Absolute Maximum Ratings

Table 4. Absolute Maximum Ratings for Intel MAX 10 Devices

Symbol	Parameter	Min	Мах	Unit
VI	DC input voltage	-0.5	4.12	V
I _{OUT}	DC output current per pin	-25	25	mA
T _{STG}	Storage temperature	-65	150	°C
Тյ	Operating junction temperature	-40	125	°C

Maximum Allowed Overshoot During Transitions over a 11.4-Year Time Frame

During transitions, input signals may overshoot to the voltage listed in the following table and undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.

The maximum allowed overshoot duration is specified as a percentage of high time over the lifetime of the device. A DC signal is equivalent to 100% duty cycle.

For example, a signal that overshoots to 4.17 V can only be at 4.17 V for $\sim 11.7\%$ over the lifetime of the device; for a device lifetime of 11.4 years, this amounts to 1.33 years.

Table 5. Maximum Allowed Overshoot During Transitions over a 11.4-Year Time Frame for Intel MAX 10 Devices

Condition (V)	Overshoot Duration as % of High Time	Unit
4.12	100.0	%
4.17	11.7	%
4.22	7.1	%
4.27	4.3	%
	-	continued

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		1.35 V	1.2825	1.35	1.4175	V
		1.2 V	1.14	1.2	1.26	V
V _{CCA} ⁽¹⁾	Supply voltage for PLL regulator and ADC block (analog)	_	2.85/3.135	3.0/3.3	3.15/3.465	V

Dual Supply Devices Power Supplies Recommended Operating Conditions

Table 7. Power Supplies Recommended Operating Conditions for Intel MAX 10 Dual Supply Devices

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
V _{CC}	Supply voltage for core and periphery	-	1.15	1.2	1.25	V
V _{CCIO} ⁽³⁾	Supply voltage for input and output buffers	3.3 V	3.135	3.3	3.465	V
		3.0 V	2.85	3	3.15	V
		2.5 V	2.375	2.5	2.625	V
		1.8 V	1.71	1.8	1.89	V
		1.5 V	1.425	1.5	1.575	V
		1.35 V	1.2825	1.35	1.4175	V
		1.2 V	1.14	1.2	1.26	V
V _{CCA} ⁽⁴⁾	Supply voltage for PLL regulator (analog)	_	2.375	2.5	2.625	V
V _{CCD_PLL} ⁽⁵⁾	Supply voltage for PLL regulator (digital)	_	1.15	1.2	1.25	V
V _{CCA_ADC}	Supply voltage for ADC analog block	_	2.375	2.5	2.625	V
V _{CCINT}	Supply voltage for ADC digital block	_	1.15	1.2	1.25	V

⁽³⁾ V_{CCIO} for all I/O banks must be powered up during user mode because V_{CCIO} I/O banks are used for the ADC and I/O functionalities.

 $^{^{(4)}}$ All V_{CCA} pins must be powered to 2.5 V (even when PLLs are not used), and must be powered up and powered down at the same time.

 $^{^{(5)}}$ V_{CCD PLL} must always be connected to V_{CC} through a decoupling capacitor and ferrite bead.

Series OCT without Calibration Specifications

Table 13. Series OCT without Calibration Specifications for Intel MAX 10 Devices

This table shows the variation of on-chip termination (OCT) without calibration across process, voltage, and temperature (PVT).

Description	V _{CCIO} (V)	Resistance	Tolerance	Unit
		-C7, -I6, -I7, -A6, -A7	-C8	
Series OCT without calibration	3.00	±35	±30	%
	2.50	±35	±30	%
	1.80	±40	±35	%
	1.50	±40	±40	%
	1.35	±40	±50	%
	1.20	±45	±60	%

Series OCT with Calibration at Device Power-Up Specifications

Table 14. Series OCT with Calibration at Device Power-Up Specifications for Intel MAX 10 Devices

OCT calibration is automatically performed at device power-up for OCT enabled I/Os.

Description	V _{CCIO} (V)	Calibration Accuracy	Unit
Series OCT with calibration at device power-up	3.00	±12	%
	2.50	±12	%
	1.80	±12	%
	1.50	±12	%
	1.35	±12	%
	1.20	±12	%

OCT Variation after Calibration at Device Power-Up

The OCT resistance may vary with the variation of temperature and voltage after calibration at device power-up.

Use the following table and equation to determine the final OCT resistance considering the variations after calibration at device power-up.

Single-Ended I/O Standards Specifications

Table 20. Single-Ended I/O Standards Specifications for Intel MAX 10 Devices

To meet the I_{OL} and I_{OH} specifications, you must set the current strength settings accordingly. For example, to meet the 3.3-V LVTTL specification (4 mA), you should set the current strength settings to 4 mA. Setting at lower current strength may not meet the I_{OL} and I_{OH} specifications in the datasheet.

I/O Standard		V _{CCI0} (V)		VIL	(V)	VIH	(V)	V _{OL} (V)	V _{OH} (V)	I _{OL} (mA)	I _{OH} (mA)
	Min	Тур	Max	Min	Max	Min	Max	Max	Min		
3.3 V LVTTL	3.135	3.3	3.465	-0.3	0.8	1.7	3.6	0.45	2.4	4	-4
3.3 V LVCMOS	3.135	3.3	3.465	-0.3	0.8	1.7	3.6	0.2	V _{CCIO} - 0.2	2	-2
3.0 V LVTTL	2.85	3	3.15	-0.3	0.8	1.7	V _{CCIO} + 0.3	0.45	2.4	4	-4
3.0 V LVCMOS	2.85	3	3.15	-0.3	0.8	1.7	V _{CCIO} + 0.3	0.2	V _{CCIO} - 0.2	0.1	-0.1
2.5 V LVTTL and LVCMOS	2.375	2.5	2.625	-0.3	0.7	1.7	V _{CCIO} + 0.3	0.4	2	1	-1
1.8 V LVTTL and LVCMOS	1.71	1.8	1.89	-0.3	0.35 × V _{CCIO}	0.65 × V _{CCIO}	2.25	0.45	V _{CCIO} – 0.45	2	-2
1.5 V LVCMOS	1.425	1.5	1.575	-0.3	0.35 × V _{CCIO}	0.65 × V _{CCIO}	V _{CCI0} + 0.3	0.25 × V _{CCIO}	0.75 × V _{CCIO}	2	-2
1.2 V LVCMOS	1.14	1.2	1.26	-0.3	0.35 × V _{CCIO}	0.65 × V _{CCIO}	V _{CCIO} + 0.3	0.25 × V _{CCIO}	0.75 × V _{CCIO}	2	-2
3.3 V Schmitt Trigger	3.135	3.3	3.465	-0.3	0.8	1.7	V _{CCIO} + 0.3	_	-	_	-
2.5 V Schmitt Trigger	2.375	2.5	2.625	-0.3	0.7	1.7	V _{CCIO} + 0.3	_	-	_	-
1.8 V Schmitt Trigger	1.71	1.8	1.89	-0.3	0.35 × V _{CCIO}	0.65 × V _{CCIO}	V _{CCI0} + 0.3	_	-	_	-
1.5 V Schmitt Trigger	1.425	1.5	1.575	-0.3	0.35 × V _{CCIO}	0.65 × V _{CCIO}	V _{CCIO} + 0.3	_	-	_	_
3.0 V PCI	2.85	3	3.15	_	0.3 × V _{CCIO}	0.5 × V _{CCIO}	V _{CCIO} + 0.3	$0.1 \times V_{CCIO}$	0.9 × V _{CCIO}	1.5	-0.5

Single-Ended SSTL, HSTL, and HSUL I/O Reference Voltage Specifications

I/O Standard		V _{CCIO} (V)			V _{REF} (V)			V _{TT} (V) ⁽¹⁴⁾	
-	Min	Тур	Max	Min	Тур	Max	Min	Тур	Мах
SSTL-2 Class I, II	2.375	2.5	2.625	1.19	1.25	1.31	V _{REF} - 0.04	V _{REF}	V _{REF} + 0.04
SSTL-18 Class I, II	1.7	1.8	1.9	0.833	0.9	0.969	V _{REF} - 0.04	V _{REF}	V _{REF} + 0.04
SSTL-15 Class I, II	1.425	1.5	1.575	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$
SSTL-135 Class I, II	1.283	1.35	1.45	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCI}$
HSTL-18 Class I, II	1.71	1.8	1.89	0.85	0.9	0.95	0.85	0.9	0.95
HSTL-15 Class I, II	1.425	1.5	1.575	0.71	0.75	0.79	0.71	0.75	0.79
HSTL-12 Class I, II	1.14	1.2	1.26	$0.48 \times V_{CCIO}$ (15)	$0.5 \times V_{CCIO}$ ⁽¹⁵⁾	$0.52 \times V_{CCIO}$ (15)	_	$0.5 \times V_{CCIO}$	_
				$0.47 \times V_{CCIO}$ (16)	$0.5 \times V_{CCIO}$ ⁽¹⁶⁾	$0.53 \times V_{CCIO}$			
HSUL-12	1.14	1.2	1.3	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	_	_	_

Table 21. Single-Ended SSTL, HSTL, and HSUL I/O Reference Voltage Specifications for Intel MAX 10 Devices

 $^{(14)}$ V_{TT} of transmitting device must track V_{REF} of the receiving device.

- ⁽¹⁵⁾ Value shown refers to DC input reference voltage, $V_{REF(DC)}$.
- ⁽¹⁶⁾ Value shown refers to AC input reference voltage, $V_{REF(AC)}$.

I/O Standard		V _{CCIO} (V)		V_{ID} (mV)		V _{ICM} (V) ⁽¹⁸⁾		V _{OD}	(mV) ⁽¹⁹)(20)	V	os (V) (19	9)
	Min	Тур	Max	Min	Max	Min Condition		Max	Min	Тур	Max	Min	Тур	Max
HiSpi	2.375	2.5	2.625	100	—	0.05	$D_{MAX} \leq 500 \text{ Mbps}$	1.8	_	-	—	—	—	—
						0.55	$500 \text{ Mbps } \leq \text{D}_{MAX} \leq 700 \text{ Mbps}$	1.8						
						1.05	D _{MAX} > 700 Mbps	1.55						

Related Information

Intel MAX 10 LVDS SERDES I/O Standards Support, Intel MAX 10 High-Speed LVDS I/O User Guide Provides the list of I/O standards supported in single supply and dual supply devices.

Switching Characteristics

This section provides the performance characteristics of Intel MAX 10 core and periphery blocks.

- (22) No fixed V_{IN}, V_{OD}, and V_{OS} specifications for Bus LVDS (BLVDS). They are dependent on the system topology.
- ⁽²³⁾ Mini-LVDS, RSDS, and Point-to-Point Differential Signaling (PPDS) standards are only supported at the output pins for Intel MAX 10 devices.
- ⁽²⁴⁾ Supported with requirement of an external level shift
- ⁽²⁵⁾ Sub-LVDS input buffer is using 2.5 V differential buffer.
- ⁽²⁶⁾ Differential output depends on the values of the external termination resistors.
- ⁽²⁷⁾ Differential output offset voltage depends on the values of the external termination resistors.

⁽²⁰⁾ Low V_{OD} setting is only supported for RSDS standard.

ADC Performance Specifications

Single Supply Devices ADC Performance Specifications

Table 34. ADC Performance Specifications for Intel MAX 10 Single Supply Devices

	Parameter	Symbol	Condition	Min	Тур	Мах	Unit
ADC resolution		_	_	_	_	12	bits
ADC supply voltage		V _{CC_ONE}	_	2.85	3.0/3.3	3.465	V
External reference vo	ltage	V _{REF}	-	V _{CC_ONE} - 0.5	_	V _{CC_ONE}	V
Sampling rate		Fs	Accumulative sampling rate	_	_	1	MSPS
Operating junction te	mperature range	Tj	-	-40	25	125	°C
Analog input voltage		V _{IN}	Prescalar disabled	0	_	V _{REF}	V
			Prescalar enabled (35)	0	_	3.6	V
Input resistance		R _{IN}	_	_	(36)	-	_
Input capacitance		C _{IN}	-	_	(36)	-	_
DC Accuracy	Offset error and drift	E _{offset}	Prescalar disabled	-0.2	_	0.2	%FS
			Prescalar enabled	-0.5	_	0.5	%FS
	Gain error and drift	Egain	Prescalar disabled	-0.5	_	0.5	%FS
			Prescalar enabled	-0.75	_	0.75	%FS
	Differential non linearity	DNL	External V _{REF} , no missing code	-0.9	_	0.9	LSB
			Internal V _{REF} , no missing code	-1	_	1.7	LSB
							continued

⁽³⁵⁾ Prescalar function divides the analog input voltage by half. The analog input handles up to 3.6 V for the Intel MAX 10 single supply devices.

⁽³⁶⁾ Download the SPICE models for simulation.

Dual Supply Devices ADC Performance Specifications

Table 35. ADC Performance Specifications for Intel MAX 10 Dual Supply Devices

	Parameter	Symbol	Condition	Min	Тур	Мах	Unit
ADC resolution		_	_	_	_	12	bits
Analog supply voltage	2	V _{CCA_ADC}	-	2.375	2.5	2.625	V
Digital supply voltage	2	V _{CCINT}	-	1.15	1.2	1.25	V
External reference vo	ltage	V _{REF}	-	V _{CCA_ADC} - 0.5	_	V _{CCA_ADC}	V
Sampling rate		Fs	Accumulative sampling rate	_	_	1	MSPS
Operating junction te	mperature range	Tj	_	-40	25	125	°C
Analog input voltage		V _{IN}	Prescalar disabled	0	_	V _{REF}	v
			Prescalar enabled ⁽⁴²⁾	0	_	3	V
Analog supply current	t (DC)	I _{ACC_ADC}	Average current	_	275	450	μA
Digital supply current	: (DC)	I _{CCINT}	Average current	_	65	150	μA
Input resistance		R _{IN}	_	_	(43)	-	-
Input capacitance		C _{IN}	_	_	(43)	-	-
DC Accuracy	Offset error and drift	E _{offset}	Prescalar disabled	-0.2	_	0.2	%FS
			Prescalar enabled	-0.5	_	0.5	%FS
	Gain error and drift	Egain	Prescalar disabled	-0.5	_	0.5	%FS
			Prescalar enabled	-0.75	_	0.75	%FS
	Differential non linearity	DNL	External V _{REF} , no missing code	-0.9	_	0.9	LSB
	1	1				1	continued.

⁽⁴²⁾ Prescalar function divides the analog input voltage by half. The analog input handles up to 3 V input for the Intel MAX 10 dual supply devices.

⁽⁴³⁾ Download the SPICE models for simulation.

Intel[®] MAX[®] 10 FPGA Device Datasheet

Symbol	Parameter	Mode	-16,	-A6, -C7,	-17		-A7			-C8		Unit
			Min	Тур	Мах	Min	Тур	Мах	Min	Тур	Мах	
		×4	40	-	170	40	-	170	40	-	170	Mbps
		×2	20	-	170	20	-	170	20	-	170	Mbps
		×1	10	-	170	10	_	170	10	-	170	Mbps
t _{DUTY}	Duty cycle on transmitter output clock	-	45	-	55	45	-	55	45	-	55	%
TCCS ⁽⁵⁹⁾	Transmitter channel- to-channel skew	_	_	-	300	-	-	300	-	-	300	ps
t _{x Jitter} ⁽⁶⁰⁾	Output jitter (high- speed I/O performance pin)	-	_	-	425	_	-	425	_	-	425	ps
	Output jitter (low- speed I/O performance pin)	-	-	-	470	-	-	470	-	-	470	ps
t _{RISE}	Rise time	20 – 80%, C _{LOAD} = 5 pF	_	500	-	_	500	_	-	500	_	ps
t _{FALL}	Fall time	20 – 80%, C _{LOAD} = 5 pF	_	500	-	-	500	-	-	500	_	ps
t _{lock}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	_	_	_	1	_	_	1	_	_	1	ms

 $^{^{(59)}}$ TCCS specifications apply to I/O banks from the same side only.

 $^{^{\}rm (60)}$ TX jitter is the jitter induced from core noise and I/O switching noise.

True Mini-LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications

Table 40. True Mini-LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices

True **mini-LVDS** transmitter is only supported at the bottom I/O banks. Emulated **mini-LVDS_E_3R** transmitter is supported at the output pin of all I/O banks.

Symbol	Parameter	Mode	-16,	-A6, -C7	, -17		-A7			-C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	-
f _{HSCLK}	Input clock frequency	×10	5	_	155	5	-	155	5	-	155	MHz
	(high-speed I/O performance pin)	×8	5	-	155	5	-	155	5	-	155	MHz
		×7	5	_	155	5	_	155	5	-	155	MHz
		×4	5	-	155	5	-	155	5	-	155	MHz
		×2	5	-	155	5	-	155	5	-	155	MHz
		×1	5	-	310	5	-	310	5	-	310	MHz
HSIODR	Data rate (high-speed	×10	100	-	310	100	-	310	100	-	310	Mbps
	I/O performance pin)	×8	80	_	310	80	_	310	80	-	310	Mbps
		×7	70	-	310	70	-	310	70	-	310	Mbps
		×4	40	-	310	40	-	310	40	-	310	Mbps
		×2	20	-	310	20	-	310	20	-	310	Mbps
		×1	10	-	310	10	-	310	10	-	310	Mbps
f _{HSCLK}	Input clock frequency	×10	5	-	150	5	-	150	5	-	150	MHz
	(low-speed I/O performance pin)	×8	5	-	150	5	-	150	5	-	150	MHz
		×7	5	-	150	5	-	150	5	-	150	MHz
		×4	5	-	150	5	-	150	5	-	150	MHz
		×2	5	-	150	5	-	150	5	-	150	MHz
		×1	5	-	300	5	-	300	5	-	300	MHz
HSIODR	Data rate (low-speed	×10	100	-	300	100	-	300	100	-	300	Mbps
	I/O performance pin)	×8	80	-	300	80	-	300	80	-	300	Mbps
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	•				•		•	cor	tinued

Dual Supply Devices Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications

Table 44. Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices

Symbol	Parameter	Mode	-16,	-A6, -C7,	-17		-A7			-C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max]
f _{HSCLK}	Input clock frequency	×10	5	-	300	5	-	275	5	-	275	MHz
	(high-speed I/O performance pin)	×8	5	-	300	5	-	275	5	-	275	MHz
		×7	5	-	300	5	-	275	5	_	275	MHz
		×4	5	-	300	5	-	275	5	-	275	MHz
		×2	5	-	300	5	-	275	5	-	275	MHz
		×1	5	-	300	5	-	275	5	_	275	MHz
HSIODR	Data rate (high-speed	×10	100	-	600	100	-	550	100	_	550	Mbps
	I/O performance pin)	×8	80	-	600	80	-	550	80	_	550	Mbps
		×7	70	-	600	70	-	550	70	-	550	Mbps
		×4	40	-	600	40	-	550	40	-	550	Mbps
		×2	20	-	600	20	-	550	20	-	550	Mbps
		×1	10	-	300	10	-	275	10	-	275	Mbps
f _{HSCLK}	Input clock frequency	×10	5	-	150	5	-	150	5	_	150	MHz
	(low-speed I/O performance pin)	×8	5	-	150	5	-	150	5	-	150	MHz
		×7	5	-	150	5	-	150	5	-	150	MHz
		×4	5	-	150	5	-	150	5	_	150	MHz
		×2	5	-	150	5	-	150	5	_	150	MHz
		×1	5	-	300	5	-	300	5	_	300	MHz
HSIODR	Data rate (low-speed	×10	100	-	300	100	-	300	100	_	300	Mbps
	I/O performance pin)	×8	80	-	300	80	-	300	80	_	300	Mbps
								•	· · · · · · · · · · · · · · · · · · ·		cor	ntinued

Emulated LVDS_E_3R, SLVS, and Sub-LVDS transmitters are supported at the output pin of all I/O banks.

Intel[®] MAX[®] 10 FPGA Device Datasheet M10-DATASHEET | 2018.06.29

Symbol	Parameter	Mode	-16,	-A6, -C7,	-17		-A7			- C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
		×7	70	-	300	70	-	300	70	-	300	Mbps
		×4	40	-	300	40	-	300	40	-	300	Mbps
		×2	20	-	300	20	-	300	20	-	300	Mbps
		×1	10	-	300	10	-	300	10	-	300	Mbps
t _{DUTY}	Duty cycle on transmitter output clock	_	45	_	55	45	_	55	45	_	55	%
TCCS ⁽⁶⁹⁾	Transmitter channel- to-channel skew	_	_	-	300	-	-	300	-	_	300	ps
t _{x Jitter} (70)	Output jitter (high- speed I/O performance pin)	_	_	_	425	_	_	425	-	_	425	ps
	Output jitter (low- speed I/O performance pin)	-	_	_	470	-	_	470	-	_	470	ps
t _{RISE}	Rise time	20 – 80%, C _{LOAD} = 5 pF	_	500	-	-	500	-	-	500	_	ps
t _{FALL}	Fall time	20 - 80%, C _{LOAD} = 5 pF	_	500	-	-	500	-	-	500	_	ps
t _{lock}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	_	_	_	1	_	_	1	_	_	1	ms

⁽⁷⁰⁾ TX jitter is the jitter induced from core noise and I/O switching noise.

⁽⁶⁹⁾ TCCS specifications apply to I/O banks from the same side only.

LVDS, TMDS, HiSpi, SLVS, and Sub-LVDS Receiver Timing Specifications

Single Supply Devices LVDS Receiver Timing Specifications

Table 45. LVDS Receiver Timing Specifications for Intel MAX 10 Single Supply Devices

LVDS receivers are supported at all banks.

Symbol	Parameter	Mode	-C7	, -17		47	-0	C8	Unit
			Min	Max	Min	Max	Min	Мах	
f _{HSCLK}	Input clock frequency (high-	×10	5	145	5	100	5	100	MHz
	speed I/O performance pin)	×8	5	145	5	100	5	100	MHz
		×7	5	145	5	100	5	100	MHz
		×4	5	145	5	100	5	100	MHz
		×2	5	145	5	100	5	100	MHz
		×1	5	290	5	200	5	200	MHz
HSIODR	Data rate (high-speed I/O	×10	100	290	100	200	100	200	Mbps
	performance pin)	×8	80	290	80	200	80	200	Mbps
		×7	70	290	70	200	70	200	Mbps
		×4	40	290	40	200	40	200	Mbps
		×2	20	290	20	200	20	200	Mbps
		×1	10	290	10	200	10	200	Mbps
f _{HSCLK}	Input clock frequency (low-	×10	5	100	5	100	5	100	MHz
	speed I/O performance pin)	×8	5	100	5	100	5	100	MHz
		×7	5	100	5	100	5	100	MHz
		×4	5	100	5	100	5	100	MHz
		×2	5	100	5	100	5	100	MHz
		×1	5	200	5	200	5	200	MHz
HSIODR	Data rate (low-speed I/O performance pin)	×10	100	200	100	200	100	200	Mbps
	·		·	•	•	•	•		continued

Symbol	Parameter	Mode	- C7	, –17	-/	47	-0	C8	Unit
			Min	Мах	Min	Мах	Min	Мах	
		×8	80	200	80	200	80	200	Mbps
		×7	70	200	70	200	70	200	Mbps
		×4	40	200	40	200	40	200	Mbps
		×2	20	200	20	200	20	200	Mbps
		×1	10	200	10	200	10	200	Mbps
SW	Sampling window (high- speed I/O performance pin)	_	-	910	-	910	-	910	ps
	Sampling window (low- speed I/O performance pin)	_	-	1,110	_	1,110	_	1,110	ps
t _{x Jitter} ⁽⁷¹⁾	Input jitter	_	-	1,000	-	1,000	-	1,000	ps
t _{lock}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	_	_	1	_	1	_	1	ms

Dual Supply Devices LVDS, TMDS, HiSpi, SLVS, and Sub-LVDS Receiver Timing Specifications

Table 46. LVDS, TMDS, HiSpi, SLVS, and Sub-LVDS Receiver Timing Specifications for Intel MAX 10 Dual Supply Devices LVDS, TMDS, HiSpi, SLVS, and Sub-LVDS receivers are supported at all banks.

Symbol	Parameter	Mode	-I6, -A6,	-C7, -I7	-1	7	-C8		Unit
			Min	Max	Min	Max	Min	Мах	
f _{HSCLK}	Input clock frequency (high-	×10	5	350	5	320	5	320	MHz
	speed I/O performance pin)	×8	5	360	5	320	5	320	MHz
		×7	5	350	5	320	5	320	MHz
		×4	5	360	5	320	5	320	MHz
	•								continued

⁽⁷¹⁾ TX jitter is the jitter induced from core noise and I/O switching noise.

Symbol	Parameter	Mode	-I6, -A6,	-C7, -I7	-/	17	-0	8	Unit
			Min	Max	Min	Max	Min	Max	
	Sampling window (low- speed I/O performance pin)	_	-	910	-	910	_	910	ps
t _{x Jitter} ⁽⁷²⁾	Input jitter	_	-	500	_	500	_	500	ps
t _{LOCK}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	_	_	1	_	1	_	1	ms

Memory Standards Supported by the Soft Memory Controller

Table 47. Memory Standards Supported by the Soft Memory Controller for Intel MAX 10 Devices

Contact your local sales representatives for access to the -I6 or -A6 speed grade devices in the Intel Quartus Prime software.

External Memory Interface Standard	Rate Support	Speed Grade	Voltage (V)	Max Frequency (MHz)
DDR3 SDRAM	Half	-I6	1.5	303
DDR3L SDRAM	Half	-I6	1.35	303
DDR2 SDRAM	Half	-I6	1.8	200
		-I7 and -C7		167
LPDDR2 ⁽⁷³⁾	Half	-I6	1.2	200 ⁽⁷⁴⁾

Related Information

External Memory Interface Spec Estimator

Provides the specific details of the memory standards supported.

⁽⁷²⁾ TX jitter is the jitter induced from core noise and I/O switching noise.

⁽⁷³⁾ Intel MAX 10 devices support only single-die LPDDR2.

⁽⁷⁴⁾ To achieve the specified performance, constrain the memory device I/O and core power supply variation to within ±3%. By default, the frequency is 167 MHz.

Term	Definition	
V _{OCM}	Output common mode voltage: The common mode of the differential signal at the transmitter.	
V _{OD}	Output differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission line at the transmitter. $V_{OD} = V_{OH} - V_{OL}$.	
V _{OH}	Voltage output high: The maximum positive voltage from an output which the device considers is accepted as the minimum positive high level.	
V _{OL}	Voltage output low: The maximum positive voltage from an output which the device considers is accepted as the maximum positive low level.	
V _{OS}	Output offset voltage: $V_{OS} = (V_{OH} + V_{OL}) / 2$.	
V _{OX (AC)}	AC differential Output cross point voltage: The voltage at which the differential output signals must cross.	
V _{REF}	Reference voltage for SSTL, HSTL, and HSUL I/O Standards.	
V _{REF(AC)}	AC input reference voltage for SSTL, HSTL, and HSUL I/O Standards. $V_{REF(AC)} = V_{REF(DC)} + noise$. The peak-to-peak AC noise on V_{REF} should not exceed 2% of $V_{REF(DC)}$.	
V _{REF(DC)}	DC input reference voltage for SSTL, HSTL, and HSUL I/O Standards.	
V _{SWING (AC)}	AC differential input voltage: AC Input differential voltage required for switching.	
V _{SWING (DC)}	DC differential input voltage: DC Input differential voltage required for switching.	
V _{TT}	Termination voltage for SSTL, HSTL, and HSUL I/O Standards.	
V _{X (AC)}	AC differential Input cross point voltage: The voltage at which the differential input signals must cross.	

Document Revision History for the Intel MAX 10 FPGA Device Datasheet

Document Version	Changes
2018.06.29	 Removed links on instant-on feature. Added JTAG timing specifications term in <i>Glossary</i>. Renamed the following IP cores as per Intel rebranding: Renamed Altera Modular ADC IP core to Modular ADC core Intel FPGA IP core. Renamed Altera Modular Dual ADC IP core to Modular Dual ADC core Intel FPGA IP core.

Intel[®] MAX[®] 10 FPGA Device Datasheet M10-DATASHEET | 2018.06.29

Date	Version	Changes
		 Added -A6 speed grade in the following tables: Intel MAX 10 Device Grades and Speed Grades Supported Series OCT without Calibration Specifications for Intel MAX 10 Devices Clock Tree Specifications for Intel MAX 10 Devices Embedded Multiplier Specifications for Intel MAX 10 Devices Memory Block Performance Specifications for Intel MAX 10 Devices True PPDS and Emulated PPDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True Mini-LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices LVDS, TMDS, HiSpi, SLVS, and Sub-LVDS Receiver Timing Specifications for Intel MAX 10 Dual Supply Devices IOE Programmable Delay on Row Pins for Intel MAX 10 Devices UD Programmable Delay on Column Pins for Intel MAX 10 Devices Updated the dual supply mode performance in Embedded Multiplier Specifications for Intel MAX 10 Devices table. Updated the dual supply mode performance in Embedded Multiplier Specifications for Intel MAX 10 Devices table. Updated the dual supply mode performance in Memory Block Performance Specifications for Intel MAX 10 Devices table. Updated the dual supply mode performance in Memory Block Performance Specifications for Intel MAX 10 Devices table. U
June 2015	2015.06.12	 Updated the maximum values in Internal Weak Pull-Up Resistor for Intel MAX 10 Devices table. Removed Internal Weak Pull-Up Resistor equation. Updated the note for input resistance and input capacitance parameters in the ADC Performance Specifications table for both single supply and dual supply devices. Note: Download the SPICE models for simulation. Added a note to AC Accuracy - THD, SNR, and SINAD parameters in the ADC Performance Specifications for Intel MAX 10 Dual Supply Devices table. Note: When using internal V_{REF}, THD = 66 dB, SNR = 58 dB and SINAD = 57.5 dB for dedicated ADC input channels. Updated clock period jitter and cycle-to-cycle period jitter parameters in the Memory Output Clock Jitter Specifications for Intel MAX 10 Devices table.

Date	Version	Changes
		Updated SSTL-2 Class I and II I/O standard specifications for JEDEC compliance as follows:
		- VIL(AC) Max: Updated from V _{REF} $-$ 0.35 to V _{REF} $-$ 0.31
		- VIH(AC) Min: Updated from V _{REF} + 0.35 to V _{REF} + 0.31
		 Added a note to BLVDS in Differential I/O Standards Specifications for Intel MAX 10 Devices table: BLVDS TX is not supported in single supply devices.
		Added a link to MAX 10 High-Speed LVDS I/O User Guide for the list of I/O standards supported in single supply and dual supply devices.
		 Added a statement in PLL Specifications for Intel MAX 10 Single Supply Device table: For V36 package, the PLL specification is based on single supply devices.
		Added Internal Oscillator Specifications from Intel MAX 10 Clocking and PLL User Guide.
		Added UFM specifications for serial interface.
		Updated total harmonic distortion (THD) specifications as follows:
		 — Single supply devices: Updated from 65 dB to -65 dB
		 Dual supply devices: Updated from 70 dB to -70 dB (updated from 65 dB to -65 dB for dual function pin)
		• Added condition for On-Chip Temperature Sensor—Absolute accuracy parameter in ADC Performance Specifications for Intel MAX 10 Dual Supply Devices table. The condition is: with 64 samples averaging.
		• Updated the description in Periphery Performance Specifications to mention that proper timing closure is required in design.
		 Updated HSIODR and f_{HSCLK} specifications for x10 and x7 modes in True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices.
		 Added specifications for low-speed I/O performance pin sampling window in LVDS Receiver Timing Specifications for Intel MAX 10 Single Supply Devices table: Max = 900 ps for -C7, -I7, -A7, and -C8 speed grades.
		 Added t_{RU_nCONFIG} and t_{RU_nRSTIMER} specifications for different devices in Remote System Upgrade Circuitry Timing Specifications for Intel MAX 10 Devices table.
		Removed the word "internal oscillator" in User Watchdog Timer Specifications for Intel MAX 10 Devices table to avoid confusion.
		Added IOE programmable delay specifications.
September 2014	2014.09.22	Initial release.