
Intel - 10M50DAF484C8G Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	3125
Number of Logic Elements/Cells	50000
Total RAM Bits	1677312
Number of I/O	360
Number of Gates	-
Voltage - Supply	1.15V ~ 1.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/intel/10m50daf484c8g

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Operating Conditions

Intel MAX 10 devices are rated according to a set of defined parameters. To maintain the highest possible performance and reliability of the Intel MAX 10 devices, you must consider the operating requirements described in this section.

Absolute Maximum Ratings

This section defines the maximum operating conditions for Intel MAX 10 devices. The values are based on experiments conducted with the devices and theoretical modeling of breakdown and damage mechanisms. The functional operation of the device is not implied for these conditions.

Caution: Conditions outside the range listed in the absolute maximum ratings tables may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

Single Supply Devices Absolute Maximum Ratings

Table 2. Absolute Maximum Ratings for Intel MAX 10 Single Supply Devices

Symbol	Parameter	Min	Мах	Unit
V _{CC_ONE}	Supply voltage for core and periphery through on-die voltage regulator	-0.5	3.9	V
V _{CCIO}	Supply voltage for input and output buffers	-0.5	3.9	V
V _{CCA}	Supply voltage for phase-locked loop (PLL) regulator and analog-to- digital converter (ADC) block (analog)	-0.5	3.9	V

Dual Supply Devices Absolute Maximum Ratings

Table 3. Absolute Maximum Ratings for Intel MAX 10 Dual Supply Devices

Symbol	Parameter	Min	Мах	Unit
V _{CC}	Supply voltage for core and periphery	-0.5	1.63	V
V _{CCIO}	Supply voltage for input and output buffers	-0.5	3.9	V
V _{CCA}	Supply voltage for PLL regulator (analog)	-0.5	3.41	V
	•			continued

Table 11. ADC_VREF Pin Leakage Current for Intel MAX 10 Devices

Symbol	Parameter	Condition	Min	Мах	Unit
I _{adc_vref}	ADC_VREF pin leakage current	Single supply mode	_	10	μA
		Dual supply mode	—	20	μA

Bus Hold Parameters

Bus hold retains the last valid logic state after the source driving it either enters the high impedance state or is removed. Each I/O pin has an option to enable bus hold in user mode. Bus hold is always disabled in configuration mode.

Table 12. Bus Hold Parameters for Intel MAX 10 Devices

Parameter	Condition	V _{CCI0} (V)									Unit			
		1.	1.2		1.5		1.8 2.		2.5		3.0		3.3	
		Min	Мах	Min	Мах	Min	Мах	Min	Max	Min	Мах	Min	Мах]
Bus-hold low, sustaining current	V _{IN} > V _{IL} (maximum)	8	_	12	_	30	_	50	-	70	-	70	-	μA
Bus-hold high, sustaining current	V _{IN} < V _{IH} (minimum)	-8	_	-12	_	-30	_	-50	-	-70	_	-70	-	μA
Bus-hold low, overdrive current	$0 V < V_{IN} < V_{CCIO}$	_	125	-	175	—	200	_	300	—	500	—	500	μA
Bus-hold high, overdrive current	0 V < V _{IN} < V _{CCIO}	_	-125	-	-175	_	-200	_	-300	_	-500	_	-500	μA
Bus-hold trip point	_	0.3	0.9	0.375	1.125	0.68	1.07	0.7	1.7	0.8	2	0.8	2	V

Series OCT without Calibration Specifications

Table 13. Series OCT without Calibration Specifications for Intel MAX 10 Devices

This table shows the variation of on-chip termination (OCT) without calibration across process, voltage, and temperature (PVT).

Description	V _{CCIO} (V)	Resistance	Tolerance	Unit
		-C7, -I6, -I7, -A6, -A7	-C8	
Series OCT without calibration	3.00	±35	±30	%
	2.50	±35	±30	%
	1.80	±40	±35	%
	1.50	±40	±40	%
	1.35	±40	±50	%
	1.20	±45	±60	%

Series OCT with Calibration at Device Power-Up Specifications

Table 14. Series OCT with Calibration at Device Power-Up Specifications for Intel MAX 10 Devices

OCT calibration is automatically performed at device power-up for OCT enabled I/Os.

Description	V _{CCIO} (V)	Calibration Accuracy	Unit
Series OCT with calibration at device power-up	3.00	±12	%
	2.50	±12	%
	1.80	±12	%
	1.50	±12	%
	1.35	±12	%
	1.20	±12	%

OCT Variation after Calibration at Device Power-Up

The OCT resistance may vary with the variation of temperature and voltage after calibration at device power-up.

Use the following table and equation to determine the final OCT resistance considering the variations after calibration at device power-up.

- Subscript x refers to both V and T.
- ΔR_V is variation of resistance with voltage.
- ΔR_T is variation of resistance with temperature.
- dR/dT is the change percentage of resistance with temperature after calibration at device power-up.
- dR/dV is the change percentage of resistance with voltage after calibration at device power-up.
- V₁ is the initial voltage.
- V₂ is final voltage.

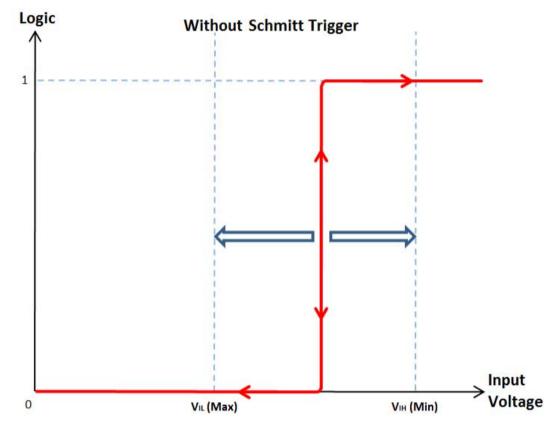
The following figure shows the example to calculate the change of 50 Ω I/O impedance from 25°C at 3.0 V to 85°C at 3.15 V.

Figure 2. Example for OCT Resistance Calculation after Calibration at Device Power-Up

 $\Delta R_V = (3.15 - 3) \times 1000 \times -0.027 = -4.05$ $\Delta R_T = (85 - 25) \times 0.25 = 15$

Because ΔR_V is negative,

 $MF_V = 1/(4.05/100 + 1) = 0.961$


Because ΔR_T is positive,

 $MF_T = 15/100 + 1 = 1.15$ $MF = 0.961 \times 1.15 = 1.105$

 $R_{final} = 50 \times 1.105 = 55.25\Omega$

Figure 3. LVTTL/LVCMOS Input Standard Voltage Diagram

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{VCO} ⁽²⁹⁾	PLL internal voltage-controlled oscillator (VCO) operating range	-	600	_	1300	MHz
f _{INDUTY}	Input clock duty cycle	-	40	_	60	%
t _{INJITTER_CCJ} (30)	Input clock cycle-to-cycle jitter	$F_{INPFD} \ge 100 \text{ MHz}$	_	_	0.15	UI
		$F_{INPFD} < 100 \text{ MHz}$	_	_	±750	ps
f _{OUT_EXT} ⁽²⁸⁾	PLL output frequency for external clock output	-	_	-	472.5	MHz
f _{OUT}	PLL output frequency to global clock	-6 speed grade	_	_	472.5	MHz
		-7 speed grade	_	_	450	MHz
		-8 speed grade	_	-	402.5	MHz
toutduty	Duty cycle for external clock output	Duty cycle set to 50%	45	50	55	%
t _{LOCK}	Time required to lock from end of device configuration	-	_	_	1	ms
t _{DLOCK}	Time required to lock dynamically	After switchover, reconfiguring any non-post-scale counters or delays, or when areset is deasserted	_	_	1	ms
t _{OUTJITTER_PERIOD_IO}	Regular I/O period jitter	$F_{OUT} \ge 100 \text{ MHz}$	_	-	650	ps
(31)		F _{OUT} < 100 MHz	_	_	75	mUI
t _{OUTJITTER_CCJ_IO} ⁽³¹⁾	Regular I/O cycle-to-cycle jitter	F _{OUT} ≥ 100 MHz	_	_	650	ps
		F _{OUT} < 100 MHz	_	_	75	mUI
				1		continued

⁽²⁹⁾ The VCO frequency reported by the Intel Quartus Prime software in the PLL summary section of the compilation report takes into consideration the VCO post-scale counter κ value. Therefore, if the counter κ has a value of 2, the frequency reported can be lower than the f_{VCO} specification.

⁽³⁰⁾ A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source, which is less than 200 ps.

⁽³¹⁾ Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.9999999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied.

Internal Oscillator Specifications

Table 32. Internal Oscillator Frequencies for Intel MAX 10 Devices

You can access to the internal oscillator frequencies in this table. The duty cycle of internal oscillator is approximately 45%–55%.

Device		Frequency		Unit
	Minimum	Typical	Maximum	
10M02	55	82	116	MHz
10M04				
10M08				
10M16				
10M25				
10M40	35	52	77	MHz
10M50				

UFM Performance Specifications

Table 33. UFM Performance Specifications for Intel MAX 10 Devices

Block	Mode	Interface	Device	Frequ	iency	Unit
				Minimum	Maximum	
UFM	Avalon [®] -MM slave	Parallel (33)	10M02 ⁽³⁴⁾	3.43	7.25	MHz
			10M04, 10M08, 10M16, 10M25, 10M40, 10M50	5	116	MHz
		Serial ⁽³⁴⁾	10M02, 10M04, 10M08, 10M16, 10M25	3.43	7.25	MHz
			10M40, 10M50	2.18	4.81	MHz

⁽³³⁾ Clock source is derived from user, except for 10M02 device.

 $^{^{(34)}}$ Clock source is derived from 1/16 of the frequency of the internal oscillator.

	Parameter	Symbol	Condition	Min	Тур	Мах	Unit
	Integral non linearity	INL	-	-2	-	2	LSB
AC Accuracy	Total harmonic distortion	THD	$F_{IN} = 50 \text{ kHz}, F_S = 1 \text{ MHz}, PLL$	-65 ⁽³⁷⁾	-	-	dB
	Signal-to-noise ratio	SNR	$F_{IN} = 50 \text{ kHz}, F_S = 1 \text{ MHz}, PLL$	54 ⁽³⁸⁾	-	-	dB
	Signal-to-noise and distortion	SINAD	$F_{IN} = 50 \text{ kHz}, F_S = 1 \text{ MHz}, PLL$	53 ⁽³⁹⁾	_	-	dB
On-Chip Temperature	Temperature sampling rate	T _S	-	_	-	50	kSPS
Sensor	Absolute accuracy	-	-40 to 125°C, with 64 samples averaging (40)	_	_	±10	°C
Conversion Rate (41)	Conversion time	-	Single measurement	_	-	1	Cycle
			Continuous measurement	_	-	1	Cycle
			Temperature measurement	_	_	1	Cycle

Related Information

SPICE Models for Intel FPGAs

⁽⁴¹⁾ For more detailed description, refer to the Timing section in the *Intel MAX 10 Analog-to-Digital Converter User Guide*.

 $^{^{(37)}}$ THD with prescalar enabled is 6dB less than the specification.

 $^{^{(38)}}$ SNR with prescalar enabled is 6dB less than the specification.

⁽³⁹⁾ SINAD with prescalar enabled is 6dB less than the specification.

⁽⁴⁰⁾ For the Intel Quartus Prime software version 15.0 and later, Modular ADC Core Intel FPGA IP and Modular Dual ADC Core Intel FPGA IP cores handle the 64 samples averaging. For the Intel Quartus Prime software versions prior to 14.1, you need to implement your own averaging calculation.

True PPDS and Emulated PPDS_E_3R Transmitter Timing Specifications

Table 36. True PPDS and Emulated PPDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices

True PPDS transmitter is only supported at bottom I/O banks. Emulated PPDS transmitter is supported at the output pin of all I/O banks.

Symbol	Parameter	Mode	-16,	-A6, -C7	, -17		-A7			- C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max]
f _{HSCLK}	Input clock frequency	×10	5	-	155	5	_	155	5	-	155	MHz
(high-speed 1/O performance pin)	(high-speed I/O performance pin)	×8	5	-	155	5	_	155	5	_	155	MHz
		×7	5	-	155	5	-	155	5	-	155	MHz
		×4	5	-	155	5	-	155	5	-	155	MHz
		×2	5	-	155	5	-	155	5	-	155	MHz
		×1	5	-	310	5	-	310	5	-	310	MHz
	Data rate (high-speed	×10	100	-	310	100	-	310	100	-	310	Mbps
	I/O performance pin)	×8	80	-	310	80	-	310	80	-	310	Mbps
		×7	70	-	310	70	-	310	70	-	310	Mbps
		×4	40	-	310	40	-	310	40	-	310	Mbps
		×2	20	-	310	20	-	310	20	-	310	Mbps
		×1	10	_	310	10	_	310	10	_	310	Mbps
f _{HSCLK}	Input clock frequency (low-speed I/O	×10	5	-	150	5	_	150	5	-	150	MHz
	performance pin)	×8	5	-	150	5	-	150	5	-	150	MHz
		×7	5	_	150	5	_	150	5	-	150	MHz
		×4	5	_	150	5	_	150	5	_	150	MHz
		×2	5	-	150	5	_	150	5	-	150	MHz
		×1	5	_	300	5	_	300	5	_	300	MHz
HSIODR	Data rate (low-speed I/O performance pin)	×10	100	_	300	100	_	300	100	_	300	Mbps
		×8	80	_	300	80	_	300	80	_	300	Mbps
		×7	70	_	300	70	_	300	70	-	300	Mbps
											cor	ntinued

Intel[®] MAX[®] 10 FPGA Device Datasheet

Symbol	Parameter	Mode	-16,	-A6, -C7,	-17		-A7			-C8		Unit
			Min	Тур	Мах	Min	Тур	Мах	Min	Тур	Мах	
		×4	40	-	170	40	-	170	40	-	170	Mbps
		×2	20	-	170	20	-	170	20	-	170	Mbps
		×1	10	-	170	10	_	170	10	-	170	Mbps
t _{DUTY}	Duty cycle on transmitter output clock	-	45	-	55	45	-	55	45	-	55	%
TCCS ⁽⁵⁹⁾	Transmitter channel- to-channel skew	_	_	-	300	_	-	300	-	-	300	ps
t _{x Jitter} ⁽⁶⁰⁾	Output jitter (high- speed I/O performance pin)	-	_	-	425	_	-	425	_	-	425	ps
	Output jitter (low- speed I/O performance pin)	-	-	-	470	-	-	470	-	-	470	ps
t _{RISE}	Rise time	20 – 80%, C _{LOAD} = 5 pF	_	500	-	_	500	_	-	500	_	ps
t _{FALL}	Fall time	20 – 80%, C _{LOAD} = 5 pF	_	500	-	_	500	-	-	500	_	ps
t _{lock}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	_	_	_	1	_	_	1	_	_	1	ms

 $^{^{(59)}}$ TCCS specifications apply to I/O banks from the same side only.

 $^{^{\}rm (60)}$ TX jitter is the jitter induced from core noise and I/O switching noise.

Intel[®] MAX[®] 10 FPGA Device Datasheet

M10-DATASHEET | 2018.06.29

Symbol	Parameter	Mode	-16,	-A6, -C7,	-17		-A7			- C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Ì
		×7	70	_	300	70	-	300	70	-	300	Mbps
		×4	40	_	300	40	-	300	40	-	300	Mbps
		×2	20	—	300	20	—	300	20	-	300	Mbps
		×1	10	_	300	10	-	300	10	-	300	Mbps
t _{DUTY}	Duty cycle on transmitter output clock	_	45	_	55	45	_	55	45	_	55	%
TCCS ⁽⁶¹⁾	Transmitter channel- to-channel skew	_	_	_	300	-	_	300	-	-	300	ps
t _{x Jitter} ⁽⁶²⁾	Output jitter (high- speed I/O performance pin)	_	_	_	425	_	_	425	-	_	425	ps
	Output jitter (low- speed I/O performance pin)	-	_	-	470	-	-	470	-	-	470	ps
t _{RISE}	Rise time	20 - 80%, C _{LOAD} = 5 pF	_	500	-	-	500	-	-	500	_	ps
t _{FALL}	Fall time	20 - 80%, C _{LOAD} = 5 pF	_	500	-	-	500	-	-	500	_	ps
t _{lock}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	_	_	_	1	_	_	1	_	_	1	ms

 $^{^{\}rm (61)}$ TCCS specifications apply to I/O banks from the same side only.

 $^{^{\}rm (62)}$ TX jitter is the jitter induced from core noise and I/O switching noise.

Symbol	Parameter	Mode		-C7, -I7			-A7			-C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
		×8	80	-	200	80	-	200	80	-	200	Mbps
		×7	70	-	200	70	-	200	70	-	200	Mbps
		×4	40	-	200	40	_	200	40	-	200	Mbps
		×2	20	-	200	20	-	200	20	-	200	Mbps
		×1	10	-	200	10	_	200	10	-	200	Mbps
t _{duty}	Duty cycle on transmitter output clock	_	45	-	55	45	-	55	45	-	55	%
TCCS ⁽⁶⁷⁾	Transmitter channel- to-channel skew	_	_	-	300	_	-	300	_	-	300	ps
t _{x Jitter} (68)	Output jitter	_	_	-	1,000	_	-	1,000	-	-	1,000	ps
t _{RISE}	Rise time	20 - 80%, C _{LOAD} = 5 pF	_	500	-	_	500	-	_	500	-	ps
t _{FALL}	Fall time	20 - 80%, C _{LOAD} = 5 pF	_	500	-	_	500	-	_	500	-	ps
t _{lock}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	_	_	_	1	_	_	1	_	_	1	ms

 $^{(67)}$ TCCS specifications apply to I/O banks from the same side only.

⁽⁶⁸⁾ TX jitter is the jitter induced from core noise and I/O switching noise.

Symbol	Parameter	Mode	- C7	, –17	-/	47	-0	C8	Unit
			Min	Мах	Min	Мах	Min	Мах	
		×8	80	200	80	200	80	200	Mbps
		×7	70	200	70	200	70	200	Mbps
		×4	40	200	40	200	40	200	Mbps
		×2	20	200	20	200	20	200	Mbps
		×1	10	200	10	200	10	200	Mbps
SW	Sampling window (high- speed I/O performance pin)	_	-	910	-	910	-	910	ps
	Sampling window (low- speed I/O performance pin)	_	-	1,110	_	1,110	_	1,110	ps
t _{x Jitter} ⁽⁷¹⁾	Input jitter	_	-	1,000	-	1,000	-	1,000	ps
t _{lock}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	_	_	1	_	1	_	1	ms

Dual Supply Devices LVDS, TMDS, HiSpi, SLVS, and Sub-LVDS Receiver Timing Specifications

Table 46. LVDS, TMDS, HiSpi, SLVS, and Sub-LVDS Receiver Timing Specifications for Intel MAX 10 Dual Supply Devices LVDS, TMDS, HiSpi, SLVS, and Sub-LVDS receivers are supported at all banks.

Symbol	Parameter	Mode	-16, -A6, -C7, -17		-A7		-C8		Unit
			Min	Max	Min	Max	Min	Мах	
f _{HSCLK}	Input clock frequency (high-	×10	5	350	5	320	5	320	MHz
	speed I/O performance pin)	×8	5	360	5	320	5	320	MHz
		×7	5	350	5	320	5	320	MHz
		×4	5	360	5	320	5	320	MHz
	•								continued

⁽⁷¹⁾ TX jitter is the jitter induced from core noise and I/O switching noise.

Intel[®] MAX[®] 10 FPGA Device Datasheet

M10-DATASHEET | 2018.06.29

Symbol	Parameter	Mode	-I6, -A6	, -C7, -I7		47	-0	8	Unit
			Min	Max	Min	Мах	Min	Max	1
		×2	5	360	5	320	5	320	MHz
		×1	5	360	5	320	5	320	MHz
HSIODR	Data rate (high-speed I/O	×10	100	700	100	640	100	640	Mbps
	performance pin)	×8	80	720	80	640	80	640	Mbps
		×7	70	700	70	640	70	640	Mbps
		×4	40	720	40	640	40	640	Mbps
		×2	20	720	20	640	20	640	Mbps
		×1	10	360	10	320	10	320	Mbps
f _{HSCLK}	Input clock frequency (low- speed I/O performance pin)	×10	5	150	5	150	5	150	MHz
		×8	5	150	5	150	5	150	MHz
		×7	5	150	5	150	5	150	MHz
		×4	5	150	5	150	5	150	MHz
		×2	5	150	5	150	5	150	MHz
		×1	5	300	5	300	5	300	MHz
HSIODR	Data rate (low-speed I/O	×10	100	300	100	300	100	300	Mbps
	performance pin)	×8	80	300	80	300	80	300	Mbps
		×7	70	300	70	300	70	300	Mbps
		×4	40	300	40	300	40	300	Mbps
		×2	20	300	20	300	20	300	Mbps
		×1	10	300	10	300	10	300	Mbps
SW	Sampling window (high- speed I/O performance pin)	-	-	510	-	510	_	510	ps
	· · ·				·	<u> </u>	I	(continued

Symbol	Parameter	Mode	-I6, -A6, -C7, -I7		-A7		-C8		Unit
			Min	Max	Min	Max	Min	Max	
	Sampling window (low- speed I/O performance pin)	_	-	910	-	910	_	910	ps
t _{x Jitter} ⁽⁷²⁾	Input jitter	_	-	500	_	500	_	500	ps
t _{LOCK}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	_	_	1	_	1	_	1	ms

Memory Standards Supported by the Soft Memory Controller

Table 47. Memory Standards Supported by the Soft Memory Controller for Intel MAX 10 Devices

Contact your local sales representatives for access to the -I6 or -A6 speed grade devices in the Intel Quartus Prime software.

External Memory Interface Standard	Rate Support	Speed Grade	Voltage (V)	Max Frequency (MHz)
DDR3 SDRAM	Half	-I6	1.5	303
DDR3L SDRAM	Half	-I6	1.35	303
DDR2 SDRAM	Half	-I6	1.8	200
		-I7 and -C7		167
LPDDR2 ⁽⁷³⁾	Half	-I6	1.2	200 ⁽⁷⁴⁾

Related Information

External Memory Interface Spec Estimator

Provides the specific details of the memory standards supported.

⁽⁷²⁾ TX jitter is the jitter induced from core noise and I/O switching noise.

⁽⁷³⁾ Intel MAX 10 devices support only single-die LPDDR2.

⁽⁷⁴⁾ To achieve the specified performance, constrain the memory device I/O and core power supply variation to within ±3%. By default, the frequency is 167 MHz.

JTAG Timing Parameters

Table 49. JTAG Timing Parameters for Intel MAX 10 Devices

The values are based on $C_L = 10 \text{ pF of TDO}$.

The affected Boundary Scan Test (BST) instructions are SAMPLE/PRELOAD, EXTEST, INTEST, and CHECK_STATUS.

Symbol	Parameter	Non-BST and non-	-CONFIG_IO Operation	BST and C	ONFIG_IO Operation	Unit
		Minimum	Maximum	Minimum	Maximum	
t _{JCP}	TCK clock period	40	-	50	-	ns
t _{JCH}	TCK clock high time	20	-	25	-	ns
t _{JCL}	TCK clock low time	20	-	25	-	ns
t _{JPSU_TDI}	JTAG port setup time	2	-	2	-	ns
t _{JPSU_TMS}	JTAG port setup time	3	-	3	-	ns
t _{JPH}	JTAG port hold time	10	-	10	-	ns
t _{JPCO}	JTAG port clock to output	_	 15 (for V_{CCIO} = 3.3, 3.0, and 2.5 V) 17 (for V_{CCIO} = 1.8 and 1.5 V) 	_	• 18 (for $V_{CCIO} = 3.3, 3.0,$ and 2.5 V) • 20 (for $V_{CCIO} = 1.8$ and 1.5 V)	ns
t _{JPZX}	JTAG port high impedance to valid output	-	 15 (for V_{CCIO} = 3.3, 3.0, and 2.5 V) 17 (for V_{CCIO} = 1.8 and 1.5 V) 	_	 15 (for V_{CCIO} = 3.3, 3.0, and 2.5 V) 17 (for V_{CCIO} = 1.8 and 1.5 V) 	ns
t _{JPXZ}	JTAG port valid output to high impedance	-	 15 (for V_{CCIO} = 3.3, 3.0, and 2.5 V) 17 (for V_{CCIO} = 1.8 and 1.5 V) 	_	 15 (for V_{CCIO} = 3.3, 3.0, and 2.5 V) 17 (for V_{CCIO} = 1.8 and 1.5 V) 	ns

Device	CFM Data	Size (bits)
	Without Memory Initialization	With Memory Initialization
10M25	4,140,000	4,780,000
10M40	7,840,000	9,670,000
10M50	7,840,000	9,670,000

Internal Configuration Time

The internal configuration time measurement is from the rising edge of nSTATUS signal to the rising edge of $CONF_DONE$ signal.

Table 53. Internal Configuration Time for Intel MAX 10 Devices (Uncompressed .rbf)

Device				Internal Configu	ration Time (ms)			
		Unenci	rypted			Encry	pted	
	Without Memor	y Initialization	With Memory Initialization		Without Memo	ry Initialization	With Memory Initialization	
	Min	Max	Min	Мах	Min	Max	Min	Max
10M02	0.3	1.7	_	_	1.7	5.4	_	_
10M04	0.6	2.7	1.0	3.4	5.0	15.0	6.8	19.6
10M08	0.6	2.7	1.0	3.4	5.0	15.0	6.8	19.6
10M16	1.1	3.7	1.4	4.5	9.3	25.3	11.7	31.5
10M25	1.0	3.7	1.3	4.4	14.0	38.1	16.9	45.7
10M40	2.6	6.9	3.2	9.8	41.5	112.1	51.7	139.6
10M50	2.6	6.9	3.2	9.8	41.5	112.1	51.7	139.6

Date	Version	Changes
		 Added -A6 speed grade in the following tables: Intel MAX 10 Device Grades and Speed Grades Supported Series OCT without Calibration Specifications for Intel MAX 10 Devices Clock Tree Specifications for Intel MAX 10 Devices Embedded Multiplier Specifications for Intel MAX 10 Devices Memory Block Performance Specifications for Intel MAX 10 Devices True PPDS and Emulated PPDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True Mini-LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices LVDS, TMDS, HiSpi, SLVS, and Sub-LVDS Receiver Timing Specifications for Intel MAX 10 Dual Supply Devices IOE Programmable Delay on Row Pins for Intel MAX 10 Devices UD Programmable Delay on Column Pins for Intel MAX 10 Devices Updated the dual supply mode performance in Embedded Multiplier Specifications for Intel MAX 10 Devices table. Updated the dual supply mode performance in Embedded Multiplier Specifications for Intel MAX 10 Devices table. Updated the dual supply mode performance in Memory Block Performance Specifications for Intel MAX 10 Devices table. Updated the dual supply mode performance in Memory Block Performance Specifications for Intel MAX 10 Devices table. U
June 2015	2015.06.12	 Updated the maximum values in Internal Weak Pull-Up Resistor for Intel MAX 10 Devices table. Removed Internal Weak Pull-Up Resistor equation. Updated the note for input resistance and input capacitance parameters in the ADC Performance Specifications table for both single supply and dual supply devices. Note: Download the SPICE models for simulation. Added a note to AC Accuracy - THD, SNR, and SINAD parameters in the ADC Performance Specifications for Intel MAX 10 Dual Supply Devices table. Note: When using internal V_{REF}, THD = 66 dB, SNR = 58 dB and SINAD = 57.5 dB for dedicated ADC input channels. Updated clock period jitter and cycle-to-cycle period jitter parameters in the Memory Output Clock Jitter Specifications for Intel MAX 10 Devices table.

Image: State of the second	Date	Version	Changes
table. This note is not valid: All V _{CCA} pins must be connected together for EQFP package.Corrected the maximum value for t _{OUTJITTER_CCJ_IO} (F _{OUT} ≥ 100 MHz) from 60 ps to 650 ps in PLL Specifications for Intel MAX 10 Devices table.December 20142014.12.15Added statements in the I/O Pin Leakage Current section: Input channel leakage of ADC I/O pins due to hot socket is up to maximum of 1.8 mA. The input channel leakage occurs when the ADC IP core is enabled or disabled. This is applicable to all Intel MAX 10 devices with ADC IP core, which are 10M04, 10M08, 10M16, 10M25, 10M40, and 10M50 devices. The ADC I/O pins are in Bank 1A.Added a statement in the I/O Standards Specifications section: You must perform timing closure analysis to determine the maximum achievable frequency for general purpose I/O standards.			 True PPDS and Emulated PPDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True Mini-LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Updated tx jitter specifications in the following tables: True PPDS and Emulated RDDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True RDDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Updated RS
 affect the data retention duration. Added statements in the I/O Pin Leakage Current section: Input channel leakage of ADC I/O pins due to hot socket is up to maximum of 1.8 mA. The input channel leakage occurs when the ADC IP core is enabled or disabled. This is applicable to all Intel MAX 10 devices with ADC IP core, which are 10M04, 10M08, 10M16, 10M25, 10M40, and 10M50 devices. The ADC I/O pins are in Bank 1A. Added a statement in the I/O Standards Specifications section: You must perform timing closure analysis to determine the maximum achievable frequency for general purpose I/O standards. 	January 2015	2015.01.23	table. This note is not valid: All V _{CCA} pins must be connected together for EQFP package. • Corrected the maximum value for $t_{OUT \text{JITTER}_CCJ_IO}$ (F _{OUT} ≥ 100 MHz) from 60 ps to 650 ps in PLL Specifications for Intel
	December 2014	2014.12.15	 affect the data retention duration. Added statements in the I/O Pin Leakage Current section: Input channel leakage of ADC I/O pins due to hot socket is up to maximum of 1.8 mA. The input channel leakage occurs when the ADC IP core is enabled or disabled. This is applicable to all Intel MAX 10 devices with ADC IP core, which are 10M04, 10M08, 10M16, 10M25, 10M40, and 10M50 devices. The ADC I/O pins are in Bank 1A. Added a statement in the I/O Standards Specifications section: You must perform timing closure analysis to determine the maximum achievable frequency for general purpose I/O standards.

Date	Version	Changes
		Updated SSTL-2 Class I and II I/O standard specifications for JEDEC compliance as follows:
		- VIL(AC) Max: Updated from V _{REF} $-$ 0.35 to V _{REF} $-$ 0.31
		- VIH(AC) Min: Updated from V _{REF} + 0.35 to V _{REF} + 0.31
		Added a note to BLVDS in Differential I/O Standards Specifications for Intel MAX 10 Devices table: BLVDS TX is not supported in single supply devices.
		Added a link to MAX 10 High-Speed LVDS I/O User Guide for the list of I/O standards supported in single supply and dual supply devices.
		Added a statement in PLL Specifications for Intel MAX 10 Single Supply Device table: For V36 package, the PLL specification is based on single supply devices.
		Added Internal Oscillator Specifications from Intel MAX 10 Clocking and PLL User Guide.
		Added UFM specifications for serial interface.
		Updated total harmonic distortion (THD) specifications as follows:
		 — Single supply devices: Updated from 65 dB to -65 dB
		 Dual supply devices: Updated from 70 dB to -70 dB (updated from 65 dB to -65 dB for dual function pin)
		• Added condition for On-Chip Temperature Sensor—Absolute accuracy parameter in ADC Performance Specifications for Intel MAX 10 Dual Supply Devices table. The condition is: with 64 samples averaging.
		• Updated the description in Periphery Performance Specifications to mention that proper timing closure is required in design.
		Updated HSIODR and f _{HSCLK} specifications for x10 and x7 modes in True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices.
		• Added specifications for low-speed I/O performance pin sampling window in LVDS Receiver Timing Specifications for Intel MAX 10 Single Supply Devices table: Max = 900 ps for -C7, -I7, -A7, and -C8 speed grades.
		 Added t_{RU_nCONFIG} and t_{RU_nRSTIMER} specifications for different devices in Remote System Upgrade Circuitry Timing Specifications for Intel MAX 10 Devices table.
		Removed the word "internal oscillator" in User Watchdog Timer Specifications for Intel MAX 10 Devices table to avoid confusion.
		Added IOE programmable delay specifications.
September 2014	2014.09.22	Initial release.