
Intel - 10M50DAF672C7G Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Betans	
Product Status	Active
Number of LABs/CLBs	3125
Number of Logic Elements/Cells	50000
Total RAM Bits	1677312
Number of I/O	500
Number of Gates	-
Voltage - Supply	1.15V ~ 1.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	672-BGA
Supplier Device Package	672-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/intel/10m50daf672c7g

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Intel[®] MAX[®] 10 FPGA Device Datasheet

This datasheet describes the electrical characteristics, switching characteristics, configuration specifications, and timing for Intel $MAX^{(R)}$ 10 devices.

Table 1. Intel MAX 10 Device Grades and Speed Grades Supported

Device Grade	Speed Grade Supported
Commercial	 -C7 -C8 (slowest)
Industrial	 -I6 (fastest) -I7
Automotive	 -A6 -A7

Note: The –I6 and –A6 speed grades of the Intel MAX 10 FPGA devices are not available by default in the Intel Quartus[®] Prime software. Contact your local Intel sales representatives for support.

Related Information

Device Ordering Information, Intel MAX 10 FPGA Device Overview Provides more information about the densities and packages of devices in the Intel MAX 10.

Electrical Characteristics

The following sections describe the operating conditions and power consumption of Intel MAX 10 devices.

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered

*Other names and brands may be claimed as the property of others.

Operating Conditions

Intel MAX 10 devices are rated according to a set of defined parameters. To maintain the highest possible performance and reliability of the Intel MAX 10 devices, you must consider the operating requirements described in this section.

Absolute Maximum Ratings

This section defines the maximum operating conditions for Intel MAX 10 devices. The values are based on experiments conducted with the devices and theoretical modeling of breakdown and damage mechanisms. The functional operation of the device is not implied for these conditions.

Caution: Conditions outside the range listed in the absolute maximum ratings tables may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

Single Supply Devices Absolute Maximum Ratings

Table 2. Absolute Maximum Ratings for Intel MAX 10 Single Supply Devices

Symbol	Parameter	Min	Мах	Unit
V _{CC_ONE}	Supply voltage for core and periphery through on-die voltage regulator	-0.5	3.9	V
V _{CCIO}	Supply voltage for input and output buffers	-0.5	3.9	V
V _{CCA}	Supply voltage for phase-locked loop (PLL) regulator and analog-to- digital converter (ADC) block (analog)	-0.5	3.9	V

Dual Supply Devices Absolute Maximum Ratings

Table 3. Absolute Maximum Ratings for Intel MAX 10 Dual Supply Devices

Symbol	Parameter	Min	Мах	Unit
V _{CC}	Supply voltage for core and periphery	-0.5	1.63	V
V _{CCIO}	Supply voltage for input and output buffers		3.9	V
V _{CCA} Supply voltage for PLL regulator (analog)		-0.5	3.41	V
continued.				

Condition (V)	Overshoot Duration as % of High Time	Unit
4.32	2.6	%
4.37	1.6	%
4.42	1.0	%
4.47	0.6	%
4.52	0.3	%
4.57	0.2	%

Recommended Operating Conditions

This section lists the functional operation limits for the AC and DC parameters for Intel MAX 10 devices. The tables list the steady-state voltage values expected from Intel MAX 10 devices. Power supply ramps must all be strictly monotonic, without plateaus.

Single Supply Devices Power Supplies Recommended Operating Conditions

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{CC_ONE} ⁽¹⁾	Supply voltage for core and periphery through on- die voltage regulator	_	2.85/3.135	3.0/3.3	3.15/3.465	V
V _{CCIO} ⁽²⁾	Supply voltage for input and output buffers	3.3 V	3.135	3.3	3.465	V
		3.0 V	2.85	3	3.15	V
		2.5 V	2.375	2.5	2.625	V
		1.8 V	1.71	1.8	1.89	V
		1.5 V	1.425	1.5	1.575	V
			•			continued

 $^{^{(1)}\,}$ V_{CCA} must be connected to V_{CC}\,_{ONE} through a filter.

⁽²⁾ V_{CCIO} for all I/O banks must be powered up during user mode because V_{CCIO} I/O banks are used for the ADC and I/O functionalities.

Table 15. OCT Variation after Calibration at Device Power-Up for Intel MAX 10 Devices

This table lists the change percentage of the OCT resistance with voltage and temperature.

Description	Nominal Voltage	dR/dT (%/°C)	dR/dV (%/mV)
OCT variation after calibration at device power-up	3.00	0.25	-0.027
	2.50	0.245	-0.04
	1.80	0.242	-0.079
	1.50	0.235	-0.125
	1.35	0.229	-0.16
	1.20	0.197	-0.208

Figure 1. Equation for OCT Resistance after Calibration at Device Power-Up

 $\Delta R_V = (V_2 - V_1) \times 1000 \times dR/dV$ $\Delta R_T = (T_2 - T_1) \times dR/dT$ For $\Delta R_X < 0$; $MF_X = 1/(|\Delta R_X|/100 + 1)$ For $\Delta R_X > 0$; $MF_X = \Delta R_X/100 + 1$ $MF = MF_V \times MF_T$ $R_{final} = R_{initial} \times MF$

The definitions for equation are as follows:

- T₁ is the initial temperature.
- T₂ is the final temperature.
- MF is multiplication factor.
- R_{initial} is initial resistance.
- R_{final} is final resistance.

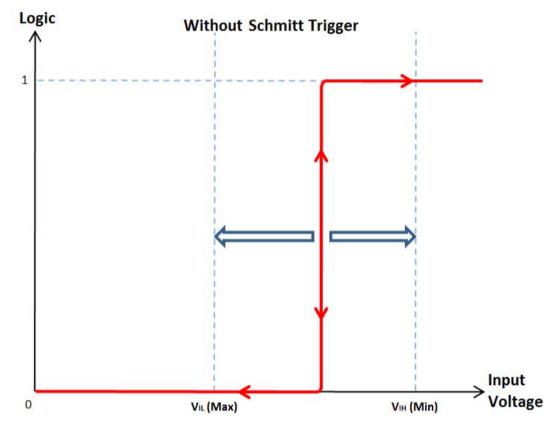
Pin Capacitance

Table 16. Pin Capacitance for Intel MAX 10 Devices

Symbol	Parameter	Maximum	Unit
C _{IOB}	Input capacitance on bottom I/O pins	8	pF
C _{IOLRT}	Input capacitance on left/right/top I/O pins	7	pF
C _{LVDSB}	Input capacitance on bottom I/O pins with dedicated LVDS output ⁽⁹⁾	8	pF
C _{ADCL}	Input capacitance on left I/O pins with ADC input ⁽¹⁰⁾	9	pF
C _{VREFLRT}	Input capacitance on left/right/top dual purpose V_{REF} pin when used as V_{REF} or user I/O pin $^{(11)}$	48	pF
C _{VREFB}	Input capacitance on bottom dual purpose V_{REF} pin when used as V_{REF} or user I/O pin	50	pF
C _{CLKB}	Input capacitance on bottom dual purpose clock input pins (12)	7	pF
C _{CLKLRT}	Input capacitance on left/right/top dual purpose clock input pins (12)	6	pF

Internal Weak Pull-Up Resistor

All I/O pins, except configuration, test, and JTAG pins, have an option to enable weak pull-up.


- ⁽¹¹⁾ When V_{REF} pin is used as regular input or output, F_{max} performance is reduced due to higher pin capacitance. Using the V_{REF} pin capacitance specification from device datasheet, perform SI analysis on your board setup to determine the F_{max} of your system.
- ⁽¹²⁾ 10M40 and 10M50 devices have dual purpose clock input pins at top/bottom I/O banks.

⁽⁹⁾ Dedicated LVDS output buffer is only available at bottom I/O banks.

⁽¹⁰⁾ ADC pins are only available at left I/O banks.

Figure 3. LVTTL/LVCMOS Input Standard Voltage Diagram

Core Performance Specifications

Clock Tree Specifications

Table 26. Clock Tree Specifications for Intel MAX 10 Devices

Device	Performance					Unit
	-16	-A6, -C7	-17	-A7	-C8	
10M02	450	416	416	382	402	MHz
10M04	450	416	416	382	402	MHz
10M08	450	416	416	382	402	MHz
10M16	450	416	416	382	402	MHz
10M25	450	416	416	382	402	MHz
10M40	450	416	416	382	402	MHz
10M50	450	416	416	382	402	MHz

PLL Specifications

Table 27. PLL Specifications for Intel MAX 10 Devices

 $V_{\text{CCD_PLL}}$ should always be connected to V_{CCINT} through decoupling capacitor and ferrite bead.

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{IN} ⁽²⁸⁾	Input clock frequency	_	5	-	472.5	MHz
f _{INPFD}	Phase frequency detector (PFD) input frequency	—	5	-	325	MHz
c c						continued

⁽²⁸⁾ This parameter is limited in the Intel Quartus Prime software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.

Internal Oscillator Specifications

Table 32. Internal Oscillator Frequencies for Intel MAX 10 Devices

You can access to the internal oscillator frequencies in this table. The duty cycle of internal oscillator is approximately 45%–55%.

Device		Unit		
	Minimum	Typical	Maximum	
10M02	55	82	116	MHz
10M04				
10M08				
10M16				
10M25				
10M40	35	52	77	MHz
10M50				

UFM Performance Specifications

Table 33. UFM Performance Specifications for Intel MAX 10 Devices

Block	Mode	Interface	Device	Frequ	iency	Unit
				Minimum	Maximum	
UFM	Avalon [®] -MM slave	Parallel (33)	10M02 ⁽³⁴⁾	3.43	7.25	MHz
			10M04, 10M08, 10M16, 10M25, 10M40, 10M50	5	116	MHz
		Serial ⁽³⁴⁾	10M02, 10M04, 10M08, 10M16, 10M25	3.43	7.25	MHz
			10M40, 10M50	2.18	4.81	MHz

⁽³³⁾ Clock source is derived from user, except for 10M02 device.

 $^{^{(34)}}$ Clock source is derived from 1/16 of the frequency of the internal oscillator.

	Parameter	Symbol	Condition	Min	Тур	Мах	Unit
	Integral non linearity	INL	-	-2	-	2	LSB
AC Accuracy	Total harmonic distortion	THD	$F_{IN} = 50 \text{ kHz}, F_S = 1 \text{ MHz}, PLL$	-65 ⁽³⁷⁾	-	-	dB
	Signal-to-noise ratio	SNR	$F_{IN} = 50 \text{ kHz}, F_S = 1 \text{ MHz}, PLL$	54 ⁽³⁸⁾	-	-	dB
	Signal-to-noise and distortion	SINAD	$F_{IN} = 50 \text{ kHz}, F_S = 1 \text{ MHz}, PLL$	53 ⁽³⁹⁾	_	-	dB
On-Chip Temperature	Temperature sampling rate	T _S	-	_	-	50	kSPS
Sensor	Absolute accuracy	-	-40 to 125°C, with 64 samples averaging (40)	_	_	±10	°C
Conversion Rate (41)	Conversion time	-	Single measurement	_	-	1	Cycle
			Continuous measurement	_	-	1	Cycle
			Temperature measurement	_	_	1	Cycle

Related Information

SPICE Models for Intel FPGAs

⁽⁴¹⁾ For more detailed description, refer to the Timing section in the *Intel MAX 10 Analog-to-Digital Converter User Guide*.

 $^{^{(37)}}$ THD with prescalar enabled is 6dB less than the specification.

 $^{^{(38)}}$ SNR with prescalar enabled is 6dB less than the specification.

⁽³⁹⁾ SINAD with prescalar enabled is 6dB less than the specification.

⁽⁴⁰⁾ For the Intel Quartus Prime software version 15.0 and later, Modular ADC Core Intel FPGA IP and Modular Dual ADC Core Intel FPGA IP cores handle the 64 samples averaging. For the Intel Quartus Prime software versions prior to 14.1, you need to implement your own averaging calculation.

Dual Supply Devices ADC Performance Specifications

Table 35. ADC Performance Specifications for Intel MAX 10 Dual Supply Devices

	Parameter	Symbol	Condition	Min	Тур	Мах	Unit
ADC resolution		_	_	_	_	12	bits
Analog supply voltage	2	V _{CCA_ADC}	-	2.375	2.5	2.625	V
Digital supply voltage	2	V _{CCINT}	-	1.15	1.2	1.25	V
External reference vo	ltage	V _{REF}	-	V _{CCA_ADC} - 0.5	_	V _{CCA_ADC}	V
Sampling rate		Fs	Accumulative sampling rate	_	_	1	MSPS
Operating junction te	mperature range	Tj	_	-40	25	125	°C
Analog input voltage		V _{IN}	Prescalar disabled	0	_	V _{REF}	V
			Prescalar enabled ⁽⁴²⁾	0	_	3	V
Analog supply current	t (DC)	I _{ACC_ADC}	Average current	_	275	450	μA
Digital supply current	: (DC)	I _{CCINT}	Average current	_	65	150	μA
Input resistance		R _{IN}	_	_	(43)	-	-
Input capacitance		C _{IN}	_	_	(43)	-	-
DC Accuracy	Offset error and drift	E _{offset}	Prescalar disabled	-0.2	_	0.2	%FS
			Prescalar enabled	-0.5	_	0.5	%FS
	Gain error and drift	Egain	Prescalar disabled	-0.5	_	0.5	%FS
			Prescalar enabled	-0.75	_	0.75	%FS
	Differential non linearity	DNL	External V _{REF} , no missing code	-0.9	_	0.9	LSB
	1	1				1	continued.

⁽⁴²⁾ Prescalar function divides the analog input voltage by half. The analog input handles up to 3 V input for the Intel MAX 10 dual supply devices.

⁽⁴³⁾ Download the SPICE models for simulation.

	Parameter	Symbol	Condition	Min	Тур	Max	Unit
Conversion Rate (52)	Conversion time	-	Single measurement	_	_	1	Cycle
			Continuous measurement	_	_	1	Cycle
			Temperature measurement	_	_	1	Cycle

Related Information

SPICE Models for Intel FPGAs

Periphery Performance Specifications

This section describes the periphery performance, high-speed I/O, and external memory interface.

Actual achievable frequency depends on design and system specific factors. Ensure proper timing closure in your design and perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.

High-Speed I/O Specifications

For more information about the high-speed and low-speed I/O performance pins, refer to the respective device pin-out files.

Related Information

Documentation: Pin-Out Files for Intel FPGAs

⁽⁵²⁾ For more detailed description, refer to the Timing section in the *Intel MAX 10 Analog-to-Digital Converter User Guide*.

Intel[®] MAX[®] 10 FPGA Device Datasheet

Symbol	Parameter	Mode	-16,	-A6, -C7,	-17		-A7			-C8		Unit
			Min	Тур	Мах	Min	Тур	Мах	Min	Тур	Мах	
		×4	40	-	300	40	-	300	40	-	300	Mbps
		×2	20	-	300	20	-	300	20	-	300	Mbps
		×1	10	_	300	10	_	300	10	_	300	Mbps
t _{DUTY}	Duty cycle on transmitter output clock	_	45	_	55	45	-	55	45	-	55	%
TCCS ⁽⁵³⁾	Transmitter channel- to-channel skew	-	_	-	300	_	-	300	-	-	300	ps
t _{x Jitter} ⁽⁵⁴⁾	Output jitter (high- speed I/O performance pin)	-	_	-	425	_	-	425	_	-	425	ps
	Output jitter (low- speed I/O performance pin)	-	_	-	470	_	-	470	_	-	470	ps
t _{RISE}	Rise time	20 - 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	-	500	_	ps
t _{FALL}	Fall time	20 - 80%, C _{LOAD} = 5 pF	_	500	-	-	500	-	-	500	_	ps
t _{lock}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	_	_	_	1	_	_	1	_	_	1	ms

 $^{^{\}rm (53)}$ TCCS specifications apply to I/O banks from the same side only.

 $^{^{(54)}}$ TX jitter is the jitter induced from core noise and I/O switching noise.

Dual Supply Devices True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications

Table 38. True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices

True RSDS transmitter is only supported at bottom I/O banks. Emulated RSDS transmitter is supported at the output pin of all I/O banks.

Symbol	Parameter	Mode	-16,	-A6, -C7	, -17		-A7			-C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
f _{HSCLK}	Input clock frequency	×10	5	_	155	5	_	155	5	_	155	MHz
	(high-speed I/O performance pin)	×8	5	_	155	5	_	155	5	_	155	MHz
		×7	5	_	155	5	_	155	5	_	155	MHz
		×4	5	_	155	5	-	155	5	_	155	MHz
		×2	5	_	155	5	_	155	5	_	155	MHz
		×1	5	_	310	5	-	310	5	_	310	MHz
HSIODR	Data rate (high-speed	×10	100	_	310	100	-	310	100	-	310	Mbps
	I/O performance pin)	×8	80	_	310	80	-	310	80	_	310	Mbps
		×7	70	_	310	70	-	310	70	_	310	Mbps
		×4	40	_	310	40	_	310	40	_	310	Mbps
		×2	20	_	310	20	-	310	20	_	310	Mbps
		×1	10	_	310	10	-	310	10	-	310	Mbps
f _{HSCLK}	Input clock frequency	×10	5	_	150	5	_	150	5	_	150	MHz
	(low-speed I/O performance pin)	×8	5	_	150	5	-	150	5	_	150	MHz
		×7	5	_	150	5	_	150	5	_	150	MHz
		×4	5	_	150	5	_	150	5	_	150	MHz
		×2	5	_	150	5	_	150	5	_	150	MHz
		×1	5	_	300	5	_	300	5	_	300	MHz
HSIODR	Data rate (low-speed	×10	100	_	300	100	_	300	100	_	300	Mbps
	I/O performance pin)	×8	80	_	300	80	_	300	80	_	300	Mbps
		×7	70	_	300	70	_	300	70	_	300	Mbps
	•				•			·			con	tinued

True Mini-LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications

Table 40. True Mini-LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices

True **mini-LVDS** transmitter is only supported at the bottom I/O banks. Emulated **mini-LVDS_E_3R** transmitter is supported at the output pin of all I/O banks.

Symbol	Parameter	Mode	-16,	-A6, -C7	, -17		-A7			-C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	-
f _{HSCLK}	Input clock frequency	×10	5	_	155	5	-	155	5	-	155	MHz
	(high-speed I/O performance pin)	×8	5	-	155	5	-	155	5	-	155	MHz
		×7	5	_	155	5	_	155	5	-	155	MHz
		×4	5	-	155	5	-	155	5	-	155	MHz
		×2	5	-	155	5	-	155	5	-	155	MHz
		×1	5	-	310	5	-	310	5	-	310	MHz
HSIODR	Data rate (high-speed	×10	100	-	310	100	-	310	100	-	310	Mbps
	I/O performance pin)	×8	80	_	310	80	_	310	80	-	310	Mbps
		×7	70	-	310	70	-	310	70	-	310	Mbps
		×4	40	-	310	40	-	310	40	-	310	Mbps
		×2	20	-	310	20	-	310	20	-	310	Mbps
		×1	10	-	310	10	-	310	10	-	310	Mbps
f _{HSCLK}	Input clock frequency	×10	5	-	150	5	-	150	5	-	150	MHz
	(low-speed I/O performance pin)	×8	5	-	150	5	-	150	5	-	150	MHz
		×7	5	-	150	5	-	150	5	-	150	MHz
		×4	5	-	150	5	-	150	5	-	150	MHz
		×2	5	-	150	5	-	150	5	-	150	MHz
		×1	5	-	300	5	-	300	5	-	300	MHz
HSIODR	Data rate (low-speed	×10	100	-	300	100	-	300	100	-	300	Mbps
	I/O performance pin)	×8	80	-	300	80	-	300	80	-	300	Mbps
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	•				•		•	cor	tinued

True LVDS Transmitter Timing

Single Supply Devices True LVDS Transmitter Timing Specifications

Table 41. True LVDS Transmitter Timing Specifications for Intel MAX 10 Single Supply Devices

True **LVDS** transmitter is only supported at the bottom I/O banks.

Symbol	Parameter	Mode		-C7, -I7			-A7			-C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	1
f _{HSCLK}	Input clock frequency	×10	5	_	145	5	_	100	5	_	100	MHz
		×8	5	_	145	5	-	100	5	-	100	MHz
		×7	5	_	145	5	-	100	5	-	100	MHz
		×4	5	_	145	5	-	100	5	_	100	MHz
		×2	5	-	145	5	-	100	5	_	100	MHz
		×1	5	_	290	5	-	200	5	_	200	MHz
HSIODR	Data rate	×10	100	_	290	100	-	200	100	-	200	Mbps
		×8	80	_	290	80	-	200	80	-	200	Mbps
		×7	70	_	290	70	-	200	70	-	200	Mbps
		×4	40	-	290	40	-	200	40	-	200	Mbps
		×2	20	_	290	20	-	200	20	-	200	Mbps
		×1	10	_	290	10	-	200	10	-	200	Mbps
t _{DUTY}	Duty cycle on transmitter output clock	_	45	-	55	45	_	55	45	_	55	%
TCCS ⁽⁶³⁾	Transmitter channel- to-channel skew	_	-	-	300	_	-	300	_	_	300	ps
t _{x Jitter} (64)	Output jitter	_	_	_	1,000	_	_	1,000	_	_	1,000	ps
							•	1			con	tinued

⁽⁶³⁾ TCCS specifications apply to I/O banks from the same side only.

⁽⁶⁴⁾ TX jitter is the jitter induced from core noise and I/O switching noise.

Intel[®] MAX[®] 10 FPGA Device Datasheet M10-DATASHEET | 2018.06.29

Symbol	Parameter	Mode		-C7, -I7			-A7			-C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max]
t _{RISE}	Rise time	20 - 80%, C _{LOAD} = 5 pF	_	500	-	-	500	_	-	500	_	ps
t _{FALL}	Fall time	20 - 80%, C _{LOAD} = 5 pF	_	500	-	-	500	_	-	500	_	ps
t _{LOCK}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	_	_	_	1	_	_	1	_	_	1	ms

Dual Supply Devices True LVDS Transmitter Timing Specifications

Table 42. True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices

Symbol	Parameter	Mode		-16		-A	6, -C7, -	·I7		-A7			-C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
f _{HSCLK}	Input clock	×10	5	-	360	5	_	340	5	-	310	5	-	300	MHz
	frequency	×8	5	-	360	5	_	360	5	-	320	5	-	320	MHz
		×7	5	-	360	5	_	340	5	-	310	5	-	300	MHz
		×4	5	-	360	5	_	350	5	-	320	5	-	320	MHz
		×2	5	-	360	5	_	350	5	-	320	5	-	320	MHz
		×1	5	-	360	5	_	350	5	-	320	5	-	320	MHz
HSIODR	Data rate	×10	100	_	720	100	_	680	100	-	620	100	-	600	Mbps
		×8	80	_	720	80	_	720	80	-	640	80	-	640	Mbps
		×7	70	-	720	70	_	680	70	-	620	70	-	600	Mbps
		×4	40	-	720	40	_	700	40	-	640	40	-	640	Mbps
		×2	20	-	720	20	_	700	20	-	640	20	-	640	Mbps
														cont	nued

True **LVDS** transmitter is only supported at the bottom I/O banks.

Symbol	Parameter	Mode	-I6, -A6, -C7, -I7		-A7		-C8		Unit
			Min	Max	Min	Max	Min	Max	
	Sampling window (low- speed I/O performance pin)	_	-	910	-	910	_	910	ps
t _{x Jitter} ⁽⁷²⁾	Input jitter	_	-	500	_	500	_	500	ps
t _{LOCK}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	_	_	1	_	1	_	1	ms

Memory Standards Supported by the Soft Memory Controller

Table 47. Memory Standards Supported by the Soft Memory Controller for Intel MAX 10 Devices

Contact your local sales representatives for access to the -I6 or -A6 speed grade devices in the Intel Quartus Prime software.

External Memory Interface Standard	Rate Support	Speed Grade	Voltage (V)	Max Frequency (MHz)
DDR3 SDRAM	Half	-I6	1.5	303
DDR3L SDRAM	Half	-I6	1.35	303
DDR2 SDRAM	Half	-I6	1.8	200
		-I7 and -C7		167
LPDDR2 ⁽⁷³⁾	Half	-I6	1.2	200 ⁽⁷⁴⁾

Related Information

External Memory Interface Spec Estimator

Provides the specific details of the memory standards supported.

⁽⁷²⁾ TX jitter is the jitter induced from core noise and I/O switching noise.

⁽⁷³⁾ Intel MAX 10 devices support only single-die LPDDR2.

⁽⁷⁴⁾ To achieve the specified performance, constrain the memory device I/O and core power supply variation to within ±3%. By default, the frequency is 167 MHz.

Remote System Upgrade Circuitry Timing Specifications

Table 50. Remote System Upgrade Circuitry Timing Specifications for Intel MAX 10 Devices

Parameter	Device	Minimum Maximum		Unit
t _{MAX_RU_CLK}	All	—	40	MHz
t _{RU_nCONFIG}	10M02, 10M04, 10M08, 10M16, 10M25	250	_	ns
	10M40, 10M50	350	—	ns
t _{ru_nrstimer}	10M02, 10M04, 10M08, 10M16, 10M25	300	_	ns
	10M40, 10M50	500	—	ns

User Watchdog Internal Circuitry Timing Specifications

Table 51. User Watchdog Timer Specifications for Intel MAX 10 Devices

The specifications are subject to PVT changes.

Parameter	Device	Minimum	Typical	Maximum	Unit
User watchdog frequency	10M02, 10M04, 10M08, 10M16, 10M25	3.4	5.1	7.3	MHz
	10M40, 10M50	2.2	3.3	4.8	MHz

Uncompressed Raw Binary File (.rbf) Sizes

Table 52. Uncompressed .rbf Sizes for Intel MAX 10 Devices

Device	CFM Data Size (bits)			
	Without Memory Initialization	With Memory Initialization		
10M02	554,000	_		
10M04	1,540,000	1,880,000		
10M08	1,540,000	1,880,000		
10M16	2,800,000	3,430,000		
	•	continued		

Table 56.I/O Timing for Intel MAX 10 Devices

These I/O timing parameters are for the 3.3-V LVTTL I/O standard with the maximum drive strength and fast slew rate for 10M08DAF484 device.

Symbol	Parameter	-C7, -I7	-C8	Unit
T _{su}	Global clock setup time	-0.750	-0.808	ns
T _h	Global clock hold time	1.180	1.215	ns
T _{co}	Global clock to output delay	5.131	5.575	ns
T _{pd}	Best case pin-to-pin propagation delay through one LUT	4.907	5.467	ns

Programmable IOE Delay

Programmable IOE Delay On Row Pins

Table 57. IOE Programmable Delay on Row Pins for Intel MAX 10 Devices

The incremental values for the settings are generally linear. For exact values of each setting, refer to the **Assignment Name** column in the latest version of the Intel Quartus Prime software.

The minimum and maximum offset timin	a numbers are in reference to settin	α `0' as available in the Intel (Juartus Prime software.
The minimum and maximum onset and			Zuurtus i mine sontmure.

Parameter	Paths Affected	Number of Minimum		Maximum Offset					Unit		
		Settings	Offset	Fast Corner		Slow Corner					
				-17	-C8	-A6	-C7	-C8	-17	-A7	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	0.815	0.873	1.831	1.811	1.874	1.871	1.922	ns
Input delay from pin to input register	Pad to I/O input register	8	0	0.924	0.992	2.081	2.055	2.125	2.127	2.185	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.479	0.514	1.069	1.070	1.117	1.105	1.134	ns

Date	Version	Changes
May 2015	2015.05.04	 Updated a note to V_{CCIO} for both single supply and dual supply power supplies recommended operating conditions tables. Note updated: V_{CCIO} for all I/O banks must be powered up during user mode because V_{CCIO} I/O banks are used for the ADC and I/O functionalities.
		Updated Example for OCT Resistance Calculation after Calibration at Device Power-Up.
		• Removed a note to BLVDS in Differential I/O Standards Specifications for Intel MAX 10 Devices table. BLVDS is now supported in Intel MAX 10 single supply devices. Note removed: BLVDS TX is not supported in single supply devices.
		Updated ADC Performance Specifications for both single supply and dual supply devices.
		- Changed the symbol for Operating junction temperature range parameter from T_{Δ} to T_{1} .
		 Edited sampling rate maximum value from 1000 kSPS to 1 MSPS.
		 Added a note to analog input voltage parameter.
		 Removed input frequency, f_{IN} specification.
		 Updated the condition for DNL specification: External V_{REF}, no missing code. Added DNL specification for condition: Internal V_{REF}, no missing code.
	- Added notes to AC accuracy specifications that the value with prescalar enabled is 6dB less than the specification.	
	- Added a note to On-Chip Temperature Sensor (absolute accuracy) parameter about the averaging calculation.	
		Updated ADC Performance Specifications for Intel MAX 10 Single Supply Devices table.
		- Added condition for On-Chip Temperature Sensor (absolute accuracy) parameter: with 64 samples averaging.
		Updated ADC Performance Specifications for Intel MAX 10 Dual Supply Devices table.
	- Updated Digital Supply Voltage minimum value from 1.14 V to 1.15 V and maximum value from 1.26 V to 1.25 V.	
		• Updated f _{HSCLK} and HSIODR specifications for –A7 speed grade in the following tables:
		- True PPDS and Emulated PPDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices
		- True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices
		- True Mini-LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Device
		 True LVDS Transmitter Timing Specifications for Intel MAX 10 Single Supply Devices
	 True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices 	
	 Emulated LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Single Supply Devices 	
		- Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices
		 LVDS Receiver Timing Specifications for Intel MAX 10 Single Supply Devices
		- LVDS, TMDS, HiSpi, SLVS, and Sub-LVDS Receiver Timing Specifications for Intel MAX 10 Dual Supply Devices
		continued