

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	3125
Number of Logic Elements/Cells	50000
Total RAM Bits	1677312
Number of I/O	500
Number of Gates	-
Voltage - Supply	1.15V ~ 1.25V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	672-BGA
Supplier Device Package	672-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/intel/10m50daf672i7g

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

M10-DATASHEET | 2018.06.29

Symbol	Parameter	Min	Max	Unit
V _{CCD_PLL}	Supply voltage for PLL regulator (digital)	-0.5	1.63	V
V _{CCA_ADC}	Supply voltage for ADC analog block	-0.5	3.41	V
V _{CCINT}	Supply voltage for ADC digital block	-0.5	1.63	V

Absolute Maximum Ratings

Table 4. Absolute Maximum Ratings for Intel MAX 10 Devices

Symbol	Parameter	Min	Max	Unit
V _I	DC input voltage	-0.5	4.12	V
I _{OUT}	DC output current per pin	-25	25	mA
T _{STG}	Storage temperature	-65	150	°C
T _J	Operating junction temperature	-40	125	°C

Maximum Allowed Overshoot During Transitions over a 11.4-Year Time Frame

During transitions, input signals may overshoot to the voltage listed in the following table and undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.

The maximum allowed overshoot duration is specified as a percentage of high time over the lifetime of the device. A DC signal is equivalent to 100% duty cycle.

For example, a signal that overshoots to 4.17 V can only be at 4.17 V for \sim 11.7% over the lifetime of the device; for a device lifetime of 11.4 years, this amounts to 1.33 years.

Table 5. Maximum Allowed Overshoot During Transitions over a 11.4-Year Time Frame for Intel MAX 10 Devices

Condition (V)	Overshoot Duration as % of High Time	Unit
4.12	100.0	%
4.17	11.7	%
4.22	7.1	%
4.27	4.3	%
		continued

Condition (V)	Overshoot Duration as % of High Time	Unit
4.32	2.6	%
4.37	1.6	%
4.42	1.0	%
4.47	0.6	%
4.52	0.3	%
4.57	0.2	%

Recommended Operating Conditions

This section lists the functional operation limits for the AC and DC parameters for Intel MAX 10 devices. The tables list the steady-state voltage values expected from Intel MAX 10 devices. Power supply ramps must all be strictly monotonic, without plateaus.

Single Supply Devices Power Supplies Recommended Operating Conditions

Table 6. Power Supplies Recommended Operating Conditions for Intel MAX 10 Single Supply Devices

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{CC_ONE} ⁽¹⁾	Supply voltage for core and periphery through on- die voltage regulator	_	2.85/3.135	3.0/3.3	3.15/3.465	V
V _{CCIO} ⁽²⁾	Supply voltage for input and output buffers	3.3 V	3.135	3.3	3.465	V
		3.0 V	2.85	3	3.15	V
		2.5 V	2.375	2.5	2.625	V
		1.8 V	1.71	1.8	1.89	V
		1.5 V	1.425	1.5	1.575	V
					•	continued

 $^{^{(1)}}$ V_{CCA} must be connected to $V_{CC\ ONE}$ through a filter.

 $^{^{(2)}}$ V_{CCIO} for all I/O banks must be powered up during user mode because V_{CCIO} I/O banks are used for the ADC and I/O functionalities.

ADC_VREF Pin Leakage Current for Intel MAX 10 Devices Table 11.

Symbol	Parameter	Condition	Min	Max	Unit
I _{adc_vref}	ADC_VREF pin leakage current	Single supply mode	_	10	μΑ
		Dual supply mode	_	20	μΑ

Bus Hold Parameters

Bus hold retains the last valid logic state after the source driving it either enters the high impedance state or is removed. Each I/O pin has an option to enable bus hold in user mode. Bus hold is always disabled in configuration mode.

Bus Hold Parameters for Intel MAX 10 Devices Table 12.

Parameter	Condition		V _{CCIO} (V)								Unit			
		1.	.2	1.	1.5		1.8 2.		2.5 3		.0 3		.3	
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Bus-hold low, sustaining current	V _{IN} > V _{IL} (maximum)	8	_	12	_	30	_	50	_	70	_	70	_	μΑ
Bus-hold high, sustaining current	V _{IN} < V _{IH} (minimum)	-8	_	-12	_	-30	_	-50	_	-70	_	-70	_	μΑ
Bus-hold low, overdrive current	0 V < V _{IN} <	_	125	_	175	_	200	_	300	_	500	_	500	μΑ
Bus-hold high, overdrive current	0 V < V _{IN} < V _{CCIO}	_	-125	_	-175	_	-200	_	-300	_	-500	_	-500	μA
Bus-hold trip point	_	0.3	0.9	0.375	1.125	0.68	1.07	0.7	1.7	0.8	2	0.8	2	V

Intel® MAX® 10 FPGA Device Datasheet

M10-DATASHEET | 2018.06.29

- Subscript x refers to both V and T.
- ΔR_V is variation of resistance with voltage.
- ΔR_T is variation of resistance with temperature.
- dR/dT is the change percentage of resistance with temperature after calibration at device power-up.
- dR/dV is the change percentage of resistance with voltage after calibration at device power-up.
- V₁ is the initial voltage.
- V₂ is final voltage.

The following figure shows the example to calculate the change of 50 Ω I/O impedance from 25°C at 3.0 V to 85°C at 3.15 V.

Figure 2. Example for OCT Resistance Calculation after Calibration at Device Power-Up

$$\Delta R_V = (3.15 - 3) \times 1000 \times -0.027 = -4.05$$

$$\Delta R_T = (85 - 25) \times 0.25 = 15$$

Because ΔR_V is negative,

$$MF_V = 1/(4.05/100 + 1) = 0.961$$

Because ΔR_T is positive,

$$MF_T = 15/100 + 1 = 1.15$$

$$MF = 0.961 \times 1.15 = 1.105$$

$$R_{final} = 50 \times 1.105 = 55.25\Omega$$

Single-Ended I/O Standards Specifications

Table 20. Single-Ended I/O Standards Specifications for Intel MAX 10 Devices

To meet the I_{OL} and I_{OH} specifications, you must set the current strength settings accordingly. For example, to meet the 3.3-V LVTTL specification (4 mA), you should set the current strength settings to 4 mA. Setting at lower current strength may not meet the I_{OL} and I_{OH} specifications in the datasheet.

I/O Standard		V _{CCIO} (V)		V _{IL}	(V)	V _{IH}	(V)	V _{OL} (V)	V _{OH} (V)	I _{OL} (mA)	I _{OH} (mA)
	Min	Тур	Max	Min	Max	Min	Max	Max	Min		
3.3 V LVTTL	3.135	3.3	3.465	-0.3	0.8	1.7	3.6	0.45	2.4	4	-4
3.3 V LVCMOS	3.135	3.3	3.465	-0.3	0.8	1.7	3.6	0.2	V _{CCIO} - 0.2	2	-2
3.0 V LVTTL	2.85	3	3.15	-0.3	0.8	1.7	V _{CCIO} + 0.3	0.45	2.4	4	-4
3.0 V LVCMOS	2.85	3	3.15	-0.3	0.8	1.7	V _{CCIO} + 0.3	0.2	V _{CCIO} - 0.2	0.1	-0.1
2.5 V LVTTL and LVCMOS	2.375	2.5	2.625	-0.3	0.7	1.7	V _{CCIO} + 0.3	0.4	2	1	-1
1.8 V LVTTL and LVCMOS	1.71	1.8	1.89	-0.3	0.35 × V _{CCIO}	0.65 × V _{CCIO}	2.25	0.45	V _{CCIO} - 0.45	2	-2
1.5 V LVCMOS	1.425	1.5	1.575	-0.3	0.35 × V _{CCIO}	0.65 × V _{CCIO}	V _{CCIO} + 0.3	0.25 × V _{CCIO}	0.75 × V _{CCIO}	2	-2
1.2 V LVCMOS	1.14	1.2	1.26	-0.3	0.35 × V _{CCIO}	0.65 × V _{CCIO}	V _{CCIO} + 0.3	0.25 × V _{CCIO}	0.75 × V _{CCIO}	2	-2
3.3 V Schmitt Trigger	3.135	3.3	3.465	-0.3	0.8	1.7	V _{CCIO} + 0.3	_	_	_	_
2.5 V Schmitt Trigger	2.375	2.5	2.625	-0.3	0.7	1.7	V _{CCIO} + 0.3	_	_	_	_
1.8 V Schmitt Trigger	1.71	1.8	1.89	-0.3	0.35 × V _{CCIO}	0.65 × V _{CCIO}	V _{CCIO} + 0.3	_	_	_	_
1.5 V Schmitt Trigger	1.425	1.5	1.575	-0.3	0.35 × V _{CCIO}	0.65 × V _{CCIO}	V _{CCIO} + 0.3	_	_	_	_
3.0 V PCI	2.85	3	3.15	_	0.3 × V _{CCIO}	0.5 × V _{CCIO}	V _{CCIO} + 0.3	0.1 × V _{CCIO}	0.9 × V _{CCIO}	1.5	-0.5

Single-Ended SSTL, HSTL, and HSUL I/O Standards Signal Specifications

Table 22. Single-Ended SSTL, HSTL, and HSUL I/O Standards Signal Specifications for Intel MAX 10 Devices

To meet the I_{OL} and I_{OH} specifications, you must set the current strength settings accordingly. For example, to meet the SSTL-15 Class I specification (8 mA), you should set the current strength settings to 8 mA. Setting at lower current strength may not meet the I_{OL} and I_{OH} specifications in the datasheet.

I/O Standard	V _{IL(DC)} (V)		V _{IH(DC)} (V)		V _{IL(A}	V _{IL(AC)} (V)		V _{IH(AC)} (V)		V _{OH} (V)	I _{OL} (mA)	I _{OH} (mA)
	Min	Max	Min	Max	Min	Max	Min	Max	Max	Min		
SSTL-2 Class I	-	V _{REF} - 0.18	V _{REF} + 0.18	_	_	V _{REF} - 0.31	V _{REF} + 0.31	_	V _{TT} - 0.57	V _{TT} + 0.57	8.1	-8.1
SSTL-2 Class II	_	V _{REF} - 0.18	V _{REF} + 0.18	_	_	V _{REF} - 0.31	V _{REF} + 0.31	_	V _{TT} - 0.76	V _{TT} + 0.76	16.4	-16.4
SSTL-18 Class I	_	V _{REF} - 0.125	V _{REF} + 0.125	_	_	V _{REF} - 0.25	V _{REF} + 0.25	_	V _{TT} - 0.475	V _{TT} + 0.475	6.7	-6.7
SSTL-18 Class II	_	V _{REF} - 0.125	V _{REF} + 0.125	_	_	V _{REF} - 0.25	V _{REF} + 0.25	_	0.28	V _{CCIO} - 0.28	13.4	-13.4
SSTL-15 Class I	_	V _{REF} - 0.1	V _{REF} + 0.1	_	_	V _{REF} - 0.175	V _{REF} + 0.175	_	0.2 × V _{CCIO}	0.8 × V _{CCIO}	8	-8
SSTL-15 Class II	_	V _{REF} - 0.1	V _{REF} + 0.1	_	_	V _{REF} - 0.175	V _{REF} + 0.175	_	0.2 × V _{CCIO}	0.8 × V _{CCIO}	16	-16
SSTL-135	_	V _{REF} - 0.09	V _{REF} + 0.09	_	_	V _{REF} - 0.16	V _{REF} + 0.16	_	0.2 × V _{CCIO}	0.8 × V _{CCIO}	_	_
HSTL-18 Class I	_	V _{REF} - 0.1	V _{REF} + 0.1	_	_	V _{REF} - 0.2	V _{REF} + 0.2	_	0.4	V _{CCIO} - 0.4	8	-8
HSTL-18 Class II	_	V _{REF} - 0.1	V _{REF} + 0.1	_	_	V _{REF} - 0.2	V _{REF} + 0.2	_	0.4	V _{CCIO} - 0.4	16	-16
HSTL-15 Class I	_	V _{REF} - 0.1	V _{REF} + 0.1	_	_	V _{REF} - 0.2	V _{REF} + 0.2	_	0.4	V _{CCIO} - 0.4	8	-8
HSTL-15 Class II	_	V _{REF} - 0.1	V _{REF} + 0.1	_	_	V _{REF} - 0.2	V _{REF} + 0.2	_	0.4	V _{CCIO} - 0.4	16	-16

Intel® MAX® 10 FPGA Device Datasheet

M10-DATASHEET | 2018.06.29

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{VCO} ⁽²⁹⁾	PLL internal voltage-controlled oscillator (VCO) operating range	_	600	_	1300	MHz
f _{INDUTY}	Input clock duty cycle	_	40	_	60	%
t _{INJITTER_CCJ} (30) Input clock cycle-to-cycle jitter		F _{INPFD} ≥ 100 MHz	_	_	0.15	UI
		F _{INPFD} < 100 MHz	_	_	±750	ps
f _{OUT_EXT} (28)	PLL output frequency for external clock output	-	_	_	472.5	MHz
f _{OUT}	PLL output frequency to global clock	-6 speed grade	_	_	472.5	MHz
		-7 speed grade	_	_	450	MHz
		-8 speed grade	_	_	402.5	MHz
t _{OUTDUTY}	Duty cycle for external clock output	Duty cycle set to 50%	45	50	55	%
t _{LOCK}	Time required to lock from end of device configuration	_	_	_	1	ms
t _{DLOCK}	Time required to lock dynamically	After switchover, reconfiguring any non-post-scale counters or delays, or when areset is deasserted	_	_	1	ms
t _{OUTJITTER_PERIOD_IO}	Regular I/O period jitter	F _{OUT} ≥ 100 MHz	_	_	650	ps
(31)		F _{OUT} < 100 MHz	_	_	75	mUI
t _{OUTJITTER_CCJ_IO} (31)	Regular I/O cycle-to-cycle jitter	F _{OUT} ≥ 100 MHz	_	_	650	ps
		F _{OUT} < 100 MHz	_	_	75	mUI
					'	continued

The VCO frequency reported by the Intel Quartus Prime software in the PLL summary section of the compilation report takes into consideration the VCO post-scale counter κ value. Therefore, if the counter κ has a value of 2, the frequency reported can be lower than the f_{VCO} specification.

⁽³⁰⁾ A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source, which is less than 200 ps.

 $^{^{(31)}}$ Peak-to-peak jitter with a probability level of 10^{-12} (14 sigma, 99.9999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied.

F	Parameter	Symbol	Condition	Min	Тур	Max	Unit
	Integral non linearity	INL	_	-2	-	2	LSB
AC Accuracy	Total harmonic distortion	THD	$F_{IN} = 50 \text{ kHz}, F_S = 1 \text{ MHz},$ PLL	-65 ⁽³⁷⁾	_	_	dB
	Signal-to-noise ratio	SNR	$F_{IN} = 50 \text{ kHz}, F_S = 1 \text{ MHz},$ PLL	54 ⁽³⁸⁾	_	_	dB
	Signal-to-noise and distortion	SINAD	$F_{IN} = 50 \text{ kHz}, F_S = 1 \text{ MHz},$ PLL	53 ⁽³⁹⁾	_	_	dB
On-Chip Temperature	Temperature sampling rate	T _S	_	_	_	50	kSPS
Sensor	Absolute accuracy	_	-40 to 125°C, with 64 samples averaging	_	_	±10	°C
Conversion Rate (41)	Conversion time	_	Single measurement	_	-	1	Cycle
			Continuous measurement	_	_	1	Cycle
			Temperature measurement	-	-	1	Cycle

Related Information

SPICE Models for Intel FPGAs

 $^{^{\}left(37\right) }$ THD with prescalar enabled is 6dB less than the specification.

 $^{^{(38)}}$ SNR with prescalar enabled is 6dB less than the specification.

⁽³⁹⁾ SINAD with prescalar enabled is 6dB less than the specification.

⁽⁴⁰⁾ For the Intel Quartus Prime software version 15.0 and later, Modular ADC Core Intel FPGA IP and Modular Dual ADC Core Intel FPGA IP cores handle the 64 samples averaging. For the Intel Quartus Prime software versions prior to 14.1, you need to implement your own averaging calculation.

⁽⁴¹⁾ For more detailed description, refer to the Timing section in the *Intel MAX 10 Analog-to-Digital Converter User Guide*.

Emulated RSDS_E_1R Transmitter Timing Specifications

Table 39. Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices

Emulated **RSDS_E_1R** transmitter is supported at the output pin of all I/O banks.

Symbol	Parameter	Mode	-16,	-A6, -C7,	-17		-A7			-C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
f _{HSCLK}	Input clock frequency	×10	5	_	85	5	_	85	5	_	85	MHz
	(high-speed I/O performance pin)	×8	5	_	85	5	_	85	5	_	85	MHz
		×7	5	_	85	5	_	85	5	_	85	MHz
		×4	5	_	85	5	_	85	5	_	85	MHz
		×2	5	_	85	5	_	85	5	_	85	MHz
		×1	5	_	170	5	_	170	5	_	170	MHz
HSIODR	Data rate (high-speed	×10	100	_	170	100	_	170	100	_	170	Mbps
	I/O performance pin)	×8	80	_	170	80	_	170	80	_	170	Mbps
		×7	70	_	170	70	_	170	70	_	170	Mbps
	×4	40	_	170	40	_	170	40	_	170	Mbps	
		×2	20	_	170	20	_	170	20	_	170	Mbps
		×1	10	_	170	10	_	170	10	_	170	Mbps
f _{HSCLK}	Input clock frequency	×10	5	_	85	5	_	85	5	_	85	MHz
	(low-speed I/O performance pin)	×8	5	_	85	5	_	85	5	_	85	MHz
		×7	5	_	85	5	_	85	5	_	85	MHz
		×4	5	_	85	5	_	85	5	_	85	MHz
		×2	5	_	85	5	_	85	5	_	85	MHz
		×1	5	_	170	5	_	170	5	_	170	MHz
HSIODR	Data rate (low-speed	×10	100	_	170	100	_	170	100	_	170	Mbps
	I/O performance pin)	×8	80	_	170	80	_	170	80	_	170	Mbps
		×7	70	_	170	70	_	170	70	_	170	Mbps
	,				1		!	'	!		con	tinued

True LVDS Transmitter Timing

Single Supply Devices True LVDS Transmitter Timing Specifications

True LVDS Transmitter Timing Specifications for Intel MAX 10 Single Supply Devices Table 41.

True **LVDS** transmitter is only supported at the bottom I/O banks.

Symbol	Parameter	Mode		-C7, -I7			-A7			-C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
f _{HSCLK}	Input clock frequency	×10	5	_	145	5	_	100	5	_	100	MHz
		×8	5	_	145	5	_	100	5	_	100	MHz
		×7	5	_	145	5	_	100	5	_	100	MHz
		×4	5	_	145	5	_	100	5	_	100	MHz
		×2	5	_	145	5	_	100	5	_	100	MHz
		×1	5	_	290	5	_	200	5	_	200	MHz
HSIODR	Data rate	×10	100	_	290	100	_	200	100	_	200	Mbps
		×8	80	_	290	80	_	200	80	_	200	Mbps
		×7	70	_	290	70	_	200	70	_	200	Mbps
		×4	40	_	290	40	_	200	40	_	200	Mbps
		×2	20	_	290	20	_	200	20	_	200	Mbps
		×1	10	_	290	10	_	200	10	_	200	Mbps
t _{DUTY}	Duty cycle on transmitter output clock	_	45	_	55	45	_	55	45	_	55	%
TCCS ⁽⁶³⁾	Transmitter channel- to-channel skew	_	_	_	300	_	_	300	_	_	300	ps
t _{x Jitter} (64)	Output jitter	_	_	_	1,000	_	_	1,000	_	_	1,000	ps
			•	•	•	•	•			•	con	tinued

⁽⁶³⁾ TCCS specifications apply to I/O banks from the same side only.

⁽⁶⁴⁾ TX jitter is the jitter induced from core noise and I/O switching noise.

Symbol	Parameter	Mode		-16		-A	6, -C7, -	17		-A7			-C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
		×1	10	_	360	10	_	350	10	_	320	10	_	320	Mbps
t _{DUTY}	Duty cycle on transmitter output clock	_	45	_	55	45	_	55	45	_	55	45	_	55	%
TCCS ⁽⁶⁵⁾	Transmitter channel-to- channel skew	_	_	_	300	_	_	300	_	_	300	_	_	300	ps
t _x _{Jitter} (66)	Output jitter	_	_	_	380	_	_	380	_	_	380	_	_	380	ps
t _{RISE}	Rise time	20 - 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	_	500	_	ps
t _{FALL}	Fall time	20 - 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	_	500	_	ps
t _{LOCK}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	_	_	_	1	_	_	1	_	_	1	_	_	1	ms

 $^{^{(65)}}$ TCCS specifications apply to I/O banks from the same side only.

⁽⁶⁶⁾ TX jitter is the jitter induced from core noise and I/O switching noise.

Symbol	Parameter	Mode		-C7, -I7			-A7			-C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
		×8	80	_	200	80	_	200	80	_	200	Mbps
		×7	70	_	200	70	_	200	70	_	200	Mbps
		×4	40	_	200	40	_	200	40	_	200	Mbps
		×2	20	_	200	20	_	200	20	_	200	Mbps
		×1	10	_	200	10	_	200	10	_	200	Mbps
t _{DUTY}	Duty cycle on transmitter output clock	_	45	_	55	45	_	55	45	_	55	%
TCCS ⁽⁶⁷⁾	Transmitter channel- to-channel skew	_	_	_	300	_	_	300	_	_	300	ps
t _{x Jitter} (68)	Output jitter	_	_	_	1,000	_	_	1,000	_	_	1,000	ps
t _{RISE}	Rise time	20 - 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	ps
t _{FALL}	Fall time	20 - 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	ps
t _{LOCK}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	_	_	_	1	_	_	1	-	_	1	ms

 $^{^{(67)}}$ TCCS specifications apply to I/O banks from the same side only.

⁽⁶⁸⁾ TX jitter is the jitter induced from core noise and I/O switching noise.

LVDS, TMDS, HiSpi, SLVS, and Sub-LVDS Receiver Timing Specifications

Single Supply Devices LVDS Receiver Timing Specifications

Table 45. LVDS Receiver Timing Specifications for Intel MAX 10 Single Supply Devices

LVDS receivers are supported at all banks.

Symbol	Parameter	Mode	-C7	, -17		A7	-0	C8	Unit
			Min	Max	Min	Max	Min	Max	
f _{HSCLK}	Input clock frequency (high-	×10	5	145	5	100	5	100	MHz
	speed I/O performance pin)	×8	5	145	5	100	5	100	MHz
		×7	5	145	5	100	5	100	MHz
		×4	5	145	5	100	5	100	MHz
		×2	5	145	5	100	5	100	MHz
		×1	5	290	5	200	5	200	MHz
HSIODR	Data rate (high-speed I/O	×10	100	290	100	200	100	200	Mbps
	performance pin)	×8	80	290	80	200	80	200	Mbps
		×7	70	290	70	200	70	200	Mbps
		×4	40	290	40	200	40	200	Mbps
		×2	20	290	20	200	20	200	Mbps
		×1	10	290	10	200	10	200	Mbps
f _{HSCLK}	Input clock frequency (low-	×10	5	100	5	100	5	100	MHz
	speed I/O performance pin)	×8	5	100	5	100	5	100	MHz
		×7	5	100	5	100	5	100	MHz
		×4	5	100	5	100	5	100	MHz
		×2	5	100	5	100	5	100	MHz
		×1	5	200	5	200	5	200	MHz
HSIODR	Data rate (low-speed I/O performance pin)	×10	100	200	100	200	100	200	Mbps
			<u>'</u>	'	1	'	·	<u> </u>	continued

Memory Output Clock Jitter Specifications

Intel MAX 10 devices support external memory interfaces up to 303 MHz. The external memory interfaces for Intel MAX 10 devices calibrate automatically.

The memory output clock jitter measurements are for 200 consecutive clock cycles.

The clock jitter specification applies to memory output clock pins generated using DDIO circuits clocked by a PLL output routed on a PHY clock network.

DDR3 and LPDDR2 SDRAM memory interfaces are only supported on the fast speed grade device.

Table 48. Memory Output Clock Jitter Specifications for Intel MAX 10 Devices

Parameter	Symbol	-6 Spee	d Grade	-7 Spee	Unit	
		Min	Max	Min	Max	
Clock period jitter	t _{JIT(per)}	-127	127	-215	215	ps
Cycle-to-cycle period jitter	t _{JIT(cc)}	_	242	_	360	ps

Related Information

Literature: External Memory Interfaces

Provides more information about external memory system performance specifications, board design guidelines, timing analysis, simulation, and debugging information.

Configuration Specifications

This section provides configuration specifications and timing for Intel MAX 10 devices.

JTAG Timing Parameters

Table 49. JTAG Timing Parameters for Intel MAX 10 Devices

The values are based on $C_L = 10$ pF of TDO.

The affected Boundary Scan Test (BST) instructions are SAMPLE/PRELOAD, EXTEST, INTEST, and CHECK_STATUS.

Symbol	Parameter	Non-BST and non	-CONFIG_IO Operation	BST and Co	ONFIG_IO Operation	Unit
		Minimum	Maximum	Minimum	Maximum	
t _{JCP}	TCK clock period	40	_	50	_	ns
t _{JCH}	TCK clock high time	20	_	25	_	ns
t _{JCL}	TCK clock low time	20	_	25	_	ns
t _{JPSU_TDI}	JTAG port setup time	2	_	2	_	ns
t _{JPSU_TMS}	JTAG port setup time	3	_	3	_	ns
t _{JPH}	JTAG port hold time	10	_	10	_	ns
t _{JPCO}	JTAG port clock to output	-	 15 (for V_{CCIO} = 3.3, 3.0, and 2.5 V) 17 (for V_{CCIO} = 1.8 and 1.5 V) 	_	• 18 (for V _{CCIO} = 3.3, 3.0, and 2.5 V) • 20 (for V _{CCIO} = 1.8 and 1.5 V)	ns
t _{JPZX}	JTAG port high impedance to valid output	-	 15 (for V_{CCIO} = 3.3, 3.0, and 2.5 V) 17 (for V_{CCIO} = 1.8 and 1.5 V) 	-	 15 (for V_{CCIO} = 3.3, 3.0, and 2.5 V) 17 (for V_{CCIO} = 1.8 and 1.5 V) 	ns
t_{JPXZ}	JTAG port valid output to high impedance	-	 15 (for V_{CCIO} = 3.3, 3.0, and 2.5 V) 17 (for V_{CCIO} = 1.8 and 1.5 V) 	-	 15 (for V_{CCIO} = 3.3, 3.0, and 2.5 V) 17 (for V_{CCIO} = 1.8 and 1.5 V) 	ns

Remote System Upgrade Circuitry Timing Specifications

Table 50. Remote System Upgrade Circuitry Timing Specifications for Intel MAX 10 Devices

Parameter	Device	Minimum	Maximum	Unit
t _{MAX_RU_CLK}	All	_	40	MHz
t _{RU_nCONFIG}	10M02, 10M04, 10M08, 10M16, 10M25	250	_	ns
	10M40, 10M50	350	_	ns
t _{RU_nRSTIMER}	10M02, 10M04, 10M08, 10M16, 10M25	300	_	ns
	10M40, 10M50	500	ı	ns

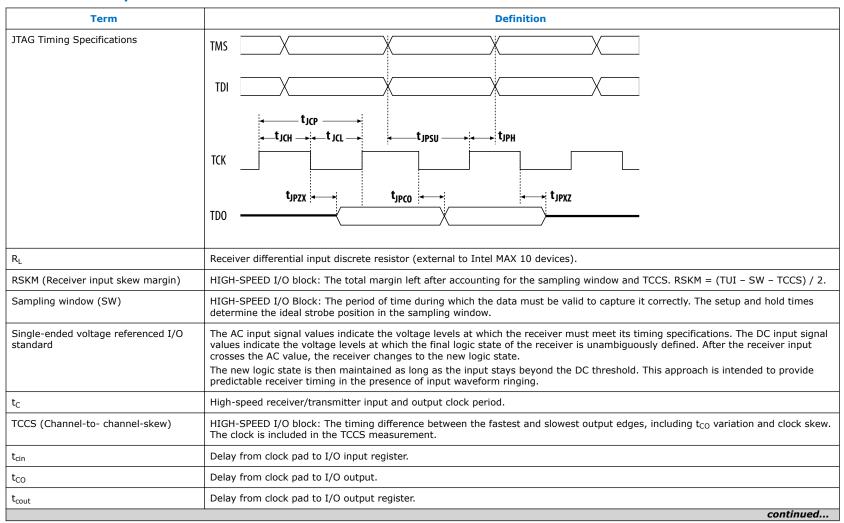
User Watchdog Internal Circuitry Timing Specifications

Table 51. User Watchdog Timer Specifications for Intel MAX 10 Devices

The specifications are subject to PVT changes.

Parameter	Device	Minimum	Typical	Maximum	Unit
User watchdog frequency	10M02, 10M04, 10M08, 10M16, 10M25	3.4	5.1	7.3	MHz
	10M40, 10M50	2.2	3.3	4.8	MHz

Uncompressed Raw Binary File (.rbf) Sizes


Table 52. Uncompressed .rbf Sizes for Intel MAX 10 Devices

Device	CFM Data	Size (bits)
	Without Memory Initialization	With Memory Initialization
10M02	554,000	_
10M04	1,540,000	1,880,000
10M08	1,540,000	1,880,000
10M16	2,800,000	3,430,000
		continued

Glossary

Table 59. Glossary

Changed the pin capacitance to maximum values Updated maximum TCCS specifications from 410 True PPDS and Emulated PPDS_E_3R Transmi True RSDS and Emulated RSDS_E_3R Transmi Emulated RSDS_E_1R Transmitter Timing Specifications of the LVDS and Emulated Mini-LVDS_E_3 True Mini-LVDS and Emulated Mini-LVDS_E_3 True LVDS Transmitter Timing Specifications of the LVDS Transmitter Timing Specifications of the Emulated LVDS_E_3R Transmitter Timing Specifications of the Emulated LVDS_E_3R, SLVS, and Sub-LVDS of the LVDS_E_3R, SLVS, and Sub-LVDS of the LVDS_E_3R, SLVS, and Sub-LVDS of the LVDS of the LVDS, TMDS, HiSpi, SLVS, and Sub-LVDS of the LVDS, TMDS, HiSpi, SLVS, and Sub-LVD of the LVDS of	Changes
Removed Internal Configuration Time information Added Internal Configuration Time tables for unconfiguration Time tables. Removed Preliminary tags for all tables.	devices in the Programming/Erasure Specifications table. It is to 300 ps in the following tables: Iter Timing Specifications for Intel MAX 10 Dual Supply Devices Iter Timing Specifications for Intel MAX 10 Dual Supply Devices Iter Timing Specifications for Intel MAX 10 Dual Supply Devices Iter Timing Specifications for Intel MAX 10 Dual Supply Devices Iter Timing Specifications for Intel MAX 10 Dual Supply Devices Intel MAX 10 Single Supply Devices Intel MAX 10 Dual Supply Devices Intel MAX 10 Dual Supply Devices Insmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Insmitter Timing Specifications for Intel MAX 10 Single Supply Ins for -A6, -C7, and -I7 speed grades in True LVDS Transmitter Timing Intel Stable.
Neverber 2015	in the Uncompressed .rbf Sizes for Intel MAX 10 Devices table. mpressed $.rbf$ files and compressed $.rbf$ files.
Added ADC_VREF Pin Leakage Current for Intel N	During Transitions over a 11.4-Year Time Frame topic. ΔX 10 Devices table. ΔY 10 parameter from " V_{IN} < V_{IL} (minimum)" to " V_{IN} < V_{IH}

Intel® MAX® 10 FPGA Device Datasheet

M10-DATASHEET | 2018.06.29

Date	Version	Changes
		Added -A6 speed grade in the following tables: — Intel MAX 10 Device Grades and Speed Grades Supported — Series OCT without Calibration Specifications for Intel MAX 10 Devices — Clock Tree Specifications for Intel MAX 10 Devices — Embedded Multiplier Specifications for Intel MAX 10 Devices — Memory Block Performance Specifications for Intel MAX 10 Devices — True PPDS and Emulated PPDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices — True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices — Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices — True Mini-LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices — True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices — True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices — Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices — LVDS, TMDS, HiSpi, SLVS, and Sub-LVDS Receiver Timing Specifications for Intel MAX 10 Dual Supply Devices — IOE Programmable Delay on Row Pins for Intel MAX 10 Devices — IOE Programmable Delay on Column Pins for Intel MAX 10 Devices — Updated the maximum value for input clock cycle-to-cycle jitter (t _{INJITTER_CCJ}) with F _{INPFD} < 100 MHz condition from 750 ps to ±750 ps in PLL Specifications for Intel MAX 10 Devices table. • Updated the dual supply mode performance in Embedded Multiplier Specifications for Intel MAX 10 Devices table. • Updated the dual supply mode performance in Embedded Multiplier Specifications for Intel MAX 10 Devices table. • Updated specifications in UFM Performance Specifications for Intel MAX 10 Devices table. • Updated specifications in UFM Performance Specifications for Intel MAX 10 Devices table. • Updated Specifications in UFM Performance Specifications for Intel MAX 10 Devices table. • Updated IOE programmable delay for r
June 2015	2015.06.12	 Updated the maximum values in Internal Weak Pull-Up Resistor for Intel MAX 10 Devices table. Removed Internal Weak Pull-Up Resistor equation. Updated the note for input resistance and input capacitance parameters in the ADC Performance Specifications table for both single supply and dual supply devices. Note: Download the SPICE models for simulation. Added a note to AC Accuracy - THD, SNR, and SINAD parameters in the ADC Performance Specifications for Intel MAX 10 Dual Supply Devices table. Note: When using internal V_{REF}, THD = 66 dB, SNR = 58 dB and SINAD = 57.5 dB for dedicated ADC input channels. Updated clock period jitter and cycle-to-cycle period jitter parameters in the Memory Output Clock Jitter Specifications for Intel MAX 10 Devices table.
		continued

Date	Version	Changes
		 Updated TCCS specifications in the following tables: True PPDS and Emulated PPDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True Mini-LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True LVDS Transmitter Timing Specifications for Intel MAX 10 Single Supply Devices Emulated LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Single Supply Devices Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Updated t_x Jitter specifications in the following tables: True PPDS and Emulated PPDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True Mini-LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated SW specifications in LVDS Receiver Timing Specifications for Intel MAX 10 Single Supply Devices table. Added a note to t_x litter for all LVDS tables. Note: TX jitter is the jitter induced from core noise and I/O switching noise.
January 2015	2015.01.23	 Removed a note to V_{CCA} in Power Supplies Recommended Operating Conditions for Intel MAX 10 Dual Supply Devices table. This note is not valid: All V_{CCA} pins must be connected together for EQFP package. Corrected the maximum value for t_{OUTJITTER_CCJ_IO} (F_{OUT} ≥ 100 MHz) from 60 ps to 650 ps in PLL Specifications for Intel MAX 10 Devices table.
December 2014	2014.12.15	 Restructured Programming/Erasure Specifications for Intel MAX 10 Devices table to add temperature specifications that affect the data retention duration. Added statements in the I/O Pin Leakage Current section: Input channel leakage of ADC I/O pins due to hot socket is up to maximum of 1.8 mA. The input channel leakage occurs when the ADC IP core is enabled or disabled. This is applicable to all Intel MAX 10 devices with ADC IP core, which are 10M04, 10M08, 10M16, 10M25, 10M40, and 10M50 devices. The ADC I/O pins are in Bank 1A. Added a statement in the I/O Standards Specifications section: You must perform timing closure analysis to determine the maximum achievable frequency for general purpose I/O standards.