

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	3125
Number of Logic Elements/Cells	50000
Total RAM Bits	1677312
Number of I/O	360
Number of Gates	-
Voltage - Supply	1.15V ~ 1.25V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/intel/10m50dcf484i7g

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Condition (V)	Overshoot Duration as % of High Time	Unit
4.32	2.6	%
4.37	1.6	%
4.42	1.0	%
4.47	0.6	%
4.52	0.3	%
4.57	0.2	%

Recommended Operating Conditions

This section lists the functional operation limits for the AC and DC parameters for Intel MAX 10 devices. The tables list the steady-state voltage values expected from Intel MAX 10 devices. Power supply ramps must all be strictly monotonic, without plateaus.

Single Supply Devices Power Supplies Recommended Operating Conditions

Table 6. Power Supplies Recommended Operating Conditions for Intel MAX 10 Single Supply Devices

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{CC_ONE} ⁽¹⁾	Supply voltage for core and periphery through on- die voltage regulator	_	2.85/3.135	3.0/3.3	3.15/3.465	V
V _{CCIO} ⁽²⁾	Supply voltage for input and output buffers	3.3 V	3.135	3.3	3.465	V
		3.0 V	2.85	3	3.15	V
		2.5 V	2.375	2.5	2.625	V
		1.8 V	1.71	1.8	1.89	V
		1.5 V	1.425	1.5	1.575	V
					•	continued

 $^{^{(1)}}$ V_{CCA} must be connected to $V_{CC\ ONE}$ through a filter.

 $^{^{(2)}}$ V_{CCIO} for all I/O banks must be powered up during user mode because V_{CCIO} I/O banks are used for the ADC and I/O functionalities.

M10-DATASHEET | 2018.06.29

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		1.35 V	1.2825	1.35	1.4175	V
		1.2 V	1.14	1.2	1.26	V
V _{CCA} (1)	Supply voltage for PLL regulator and ADC block (analog)	_	2.85/3.135	3.0/3.3	3.15/3.465	V

Dual Supply Devices Power Supplies Recommended Operating Conditions

Table 7. Power Supplies Recommended Operating Conditions for Intel MAX 10 Dual Supply Devices

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{CC}	Supply voltage for core and periphery	_	1.15	1.2	1.25	V
V _{CCIO} (3)	Supply voltage for input and output buffers	3.3 V	3.135	3.3	3.465	V
		3.0 V	2.85	3	3.15	V
		2.5 V	2.375	2.5	2.625	V
		1.8 V	1.71	1.8	1.89	V
		1.5 V	1.425	1.5	1.575	V
		1.35 V	1.2825	1.35	1.4175	V
		1.2 V	1.14	1.2	1.26	V
V _{CCA} ⁽⁴⁾	Supply voltage for PLL regulator (analog)	_	2.375	2.5	2.625	V
V _{CCD_PLL} ⁽⁵⁾	Supply voltage for PLL regulator (digital)	_	1.15	1.2	1.25	V
V _{CCA_ADC}	Supply voltage for ADC analog block	_	2.375	2.5	2.625	V
V _{CCINT}	Supply voltage for ADC digital block	_	1.15	1.2	1.25	V

 $^{^{(3)}}$ V_{CCIO} for all I/O banks must be powered up during user mode because V_{CCIO} I/O banks are used for the ADC and I/O functionalities.

 $^{^{(4)}}$ All V_{CCA} pins must be powered to 2.5 V (even when PLLs are not used), and must be powered up and powered down at the same time.

 $^{^{(5)}}$ V_{CCD_PLL} must always be connected to V_{CC} through a decoupling capacitor and ferrite bead.

ADC_VREF Pin Leakage Current for Intel MAX 10 Devices Table 11.

Symbol	Parameter	Condition	Min	Max	Unit
I _{adc_vref}	ADC_VREF pin leakage current	Single supply mode	_	10	μА
		Dual supply mode	_	20	μΑ

Bus Hold Parameters

Bus hold retains the last valid logic state after the source driving it either enters the high impedance state or is removed. Each I/O pin has an option to enable bus hold in user mode. Bus hold is always disabled in configuration mode.

Bus Hold Parameters for Intel MAX 10 Devices Table 12.

Parameter	Condition		V _{CCIO} (V)								Unit			
		1.	.2	1.	.5	1.	8	2	.5	3.	.0	3.	.3	
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Bus-hold low, sustaining current	V _{IN} > V _{IL} (maximum)	8	_	12	_	30	_	50	_	70	_	70	_	μΑ
Bus-hold high, sustaining current	V _{IN} < V _{IH} (minimum)	-8	_	-12	_	-30	_	-50	_	-70	_	-70	_	μΑ
Bus-hold low, overdrive current	0 V < V _{IN} <	_	125	_	175	_	200	_	300	_	500	_	500	μΑ
Bus-hold high, overdrive current	0 V < V _{IN} < V _{CCIO}	_	-125	_	-175	_	-200	_	-300	_	-500	_	-500	μA
Bus-hold trip point	_	0.3	0.9	0.375	1.125	0.68	1.07	0.7	1.7	0.8	2	0.8	2	V

Pin Capacitance

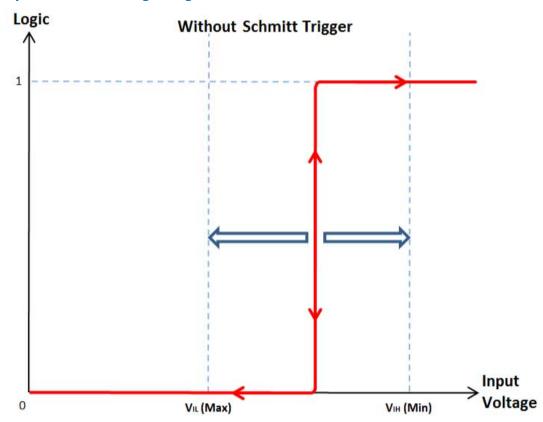
Table 16. Pin Capacitance for Intel MAX 10 Devices

Symbol	Parameter	Maximum	Unit
C _{IOB}	Input capacitance on bottom I/O pins	8	pF
C _{IOLRT}	Input capacitance on left/right/top I/O pins	7	pF
C _{LVDSB}	Input capacitance on bottom I/O pins with dedicated LVDS output ⁽⁹⁾	8	pF
C _{ADCL}	Input capacitance on left I/O pins with ADC input (10)	9	pF
C _{VREFLRT}	Input capacitance on left/right/top dual purpose $\rm V_{REF}$ pin when used as $\rm V_{REF}$ or user I/O pin $^{(11)}$	48	pF
C _{VREFB}	Input capacitance on bottom dual purpose V_{REF} pin when used as V_{REF} or user I/O pin	50	pF
C _{CLKB}	Input capacitance on bottom dual purpose clock input pins (12)	7	pF
C _{CLKLRT}	Input capacitance on left/right/top dual purpose clock input pins (12)	6	pF

Internal Weak Pull-Up Resistor

All I/O pins, except configuration, test, and JTAG pins, have an option to enable weak pull-up.

⁽⁹⁾ Dedicated LVDS output buffer is only available at bottom I/O banks.


⁽¹⁰⁾ ADC pins are only available at left I/O banks.

When V_{REF} pin is used as regular input or output, F_{max} performance is reduced due to higher pin capacitance. Using the V_{REF} pin capacitance specification from device datasheet, perform SI analysis on your board setup to determine the F_{max} of your system.

^{(12) 10}M40 and 10M50 devices have dual purpose clock input pins at top/bottom I/O banks.

Figure 3. LVTTL/LVCMOS Input Standard Voltage Diagram

Single-Ended SSTL, HSTL, and HSUL I/O Reference Voltage Specifications

Table 21. Single-Ended SSTL, HSTL, and HSUL I/O Reference Voltage Specifications for Intel MAX 10 Devices

I/O Standard		V _{CCIO} (V)			V _{REF} (V)		V _{TT} (V) ⁽¹⁴⁾			
	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
SSTL-2 Class I, II	2.375	2.5	2.625	1.19	1.25	1.31	V _{REF} - 0.04	V _{REF}	V _{REF} + 0.04	
SSTL-18 Class I, II	1.7	1.8	1.9	0.833	0.9	0.969	V _{REF} - 0.04	V _{REF}	V _{REF} + 0.04	
SSTL-15 Class I, II	1.425	1.5	1.575	0.49 × V _{CCIO}	0.5 × V _{CCIO}	0.51 × V _{CCIO}	0.49 × V _{CCIO}	0.5 × V _{CCIO}	0.51 × V _{CCIO}	
SSTL-135 Class I, II	1.283	1.35	1.45	0.49 × V _{CCIO}	0.5 × V _{CCIO}	0.51 × V _{CCIO}	0.49 × V _{CCIO}	0.5 × V _{CCIO}	0.51 × V _{CCIO}	
HSTL-18 Class I, II	1.71	1.8	1.89	0.85	0.9	0.95	0.85	0.9	0.95	
HSTL-15 Class I, II	1.425	1.5	1.575	0.71	0.75	0.79	0.71	0.75	0.79	
HSTL-12 Class I, II	1.14	1.2	1.26	0.48 × V _{CCIO}	0.5 × V _{CCIO} (15)	0.52 × V _{CCIO}	_	0.5 × V _{CCIO}	_	
				0.47 × V _{CCIO}	0.5 × V _{CCIO} (16)	0.53 × V _{CCIO}				
HSUL-12	1.14	1.2	1.3	0.49 × V _{CCIO}	0.5 × V _{CCIO}	0.51 × V _{CCIO}	_	_	_	

 $^{^{(14)}}$ V $_{TT}$ of transmitting device must track V $_{REF}$ of the receiving device.

 $^{^{(15)}}$ Value shown refers to DC input reference voltage, $V_{REF(DC)}$.

 $^{^{(16)}}$ Value shown refers to AC input reference voltage, $V_{REF(AC)}$.

Single-Ended SSTL, HSTL, and HSUL I/O Standards Signal Specifications

Table 22. Single-Ended SSTL, HSTL, and HSUL I/O Standards Signal Specifications for Intel MAX 10 Devices

To meet the I_{OL} and I_{OH} specifications, you must set the current strength settings accordingly. For example, to meet the SSTL-15 Class I specification (8 mA), you should set the current strength settings to 8 mA. Setting at lower current strength may not meet the I_{OL} and I_{OH} specifications in the datasheet.

I/O Standard	V _{IL(D}	(V)	V _{IH(DC}	(V)	V _{IL(A}	c) (V)	V _{IH(AC}	c) (V)	V _{OL} (V)	V _{OH} (V)	I _{OL} (mA)	I _{OH} (mA)
	Min	Max	Min	Max	Min	Max	Min	Max	Max	Min		
SSTL-2 Class I	-	V _{REF} - 0.18	V _{REF} + 0.18	_	_	V _{REF} - 0.31	V _{REF} + 0.31	_	V _{TT} - 0.57	V _{TT} + 0.57	8.1	-8.1
SSTL-2 Class II	_	V _{REF} - 0.18	V _{REF} + 0.18	_	_	V _{REF} - 0.31	V _{REF} + 0.31	_	V _{TT} - 0.76	V _{TT} + 0.76	16.4	-16.4
SSTL-18 Class I	_	V _{REF} - 0.125	V _{REF} + 0.125	_	_	V _{REF} - 0.25	V _{REF} + 0.25	_	V _{TT} - 0.475	V _{TT} + 0.475	6.7	-6.7
SSTL-18 Class II	_	V _{REF} - 0.125	V _{REF} + 0.125	_	_	V _{REF} - 0.25	V _{REF} + 0.25	_	0.28	V _{CCIO} - 0.28	13.4	-13.4
SSTL-15 Class I	_	V _{REF} - 0.1	V _{REF} + 0.1	_	_	V _{REF} - 0.175	V _{REF} + 0.175	_	0.2 × V _{CCIO}	0.8 × V _{CCIO}	8	-8
SSTL-15 Class II	_	V _{REF} - 0.1	V _{REF} + 0.1	_	_	V _{REF} - 0.175	V _{REF} + 0.175	_	0.2 × V _{CCIO}	0.8 × V _{CCIO}	16	-16
SSTL-135	_	V _{REF} - 0.09	V _{REF} + 0.09	_	_	V _{REF} - 0.16	V _{REF} + 0.16	_	0.2 × V _{CCIO}	0.8 × V _{CCIO}	_	_
HSTL-18 Class I	_	V _{REF} - 0.1	V _{REF} + 0.1	_	_	V _{REF} - 0.2	V _{REF} + 0.2	_	0.4	V _{CCIO} - 0.4	8	-8
HSTL-18 Class II	_	V _{REF} - 0.1	V _{REF} + 0.1	_	_	V _{REF} - 0.2	V _{REF} + 0.2	_	0.4	V _{CCIO} - 0.4	16	-16
HSTL-15 Class I	_	V _{REF} - 0.1	V _{REF} + 0.1	_	_	V _{REF} - 0.2	V _{REF} + 0.2	_	0.4	V _{CCIO} - 0.4	8	-8
HSTL-15 Class II	_	V _{REF} - 0.1	V _{REF} + 0.1	_	_	V _{REF} - 0.2	V _{REF} + 0.2	_	0.4	V _{CCIO} - 0.4	16	-16

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{VCO} ⁽²⁹⁾	PLL internal voltage-controlled oscillator (VCO) operating range	_	600	_	1300	MHz
f _{INDUTY}	Input clock duty cycle	_	40	_	60	%
t _{INJITTER_CCJ} (30)	Input clock cycle-to-cycle jitter	F _{INPFD} ≥ 100 MHz	_	_	0.15	UI
		F _{INPFD} < 100 MHz	_	_	±750	ps
f _{OUT_EXT} (28)	PLL output frequency for external clock output	-	_	_	472.5	MHz
f _{OUT}	PLL output frequency to global clock	-6 speed grade	_	_	472.5	MHz
		-7 speed grade	_	_	450	MHz
		-8 speed grade	_	_	402.5	MHz
t _{OUTDUTY}	Duty cycle for external clock output	Duty cycle set to 50%	45	50	55	%
t _{LOCK}	Time required to lock from end of device configuration	_	_	_	1	ms
t _{DLOCK}	Time required to lock dynamically	After switchover, reconfiguring any non-post-scale counters or delays, or when areset is deasserted	_	_	1	ms
t _{OUTJITTER_PERIOD_IO}	Regular I/O period jitter	F _{OUT} ≥ 100 MHz	_	_	650	ps
(31)		F _{OUT} < 100 MHz	_	_	75	mUI
t _{OUTJITTER_CCJ_IO} (31)	Regular I/O cycle-to-cycle jitter	F _{OUT} ≥ 100 MHz	_	_	650	ps
		F _{OUT} < 100 MHz	_	_	75	mUI
					'	continued

The VCO frequency reported by the Intel Quartus Prime software in the PLL summary section of the compilation report takes into consideration the VCO post-scale counter κ value. Therefore, if the counter κ has a value of 2, the frequency reported can be lower than the f_{VCO} specification.

⁽³⁰⁾ A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source, which is less than 200 ps.

 $^{^{(31)}}$ Peak-to-peak jitter with a probability level of 10^{-12} (14 sigma, 99.9999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied.

Internal Oscillator Specifications

Table 32. Internal Oscillator Frequencies for Intel MAX 10 Devices

You can access to the internal oscillator frequencies in this table. The duty cycle of internal oscillator is approximately 45%-55%.

Device		Frequency								
	Minimum	Typical	Maximum							
10M02	55	82	116	MHz						
10M04										
10M08										
10M16										
10M25										
10M40	35	52	77	MHz						
10M50										

UFM Performance Specifications

Table 33. UFM Performance Specifications for Intel MAX 10 Devices

Block	Mode	Interface	Device	Frequ	Unit	
				Minimum	Maximum	
UFM	Avalon®-MM slave	Parallel ⁽³³⁾	10M02 ⁽³⁴⁾	3.43	7.25	MHz
			10M04, 10M08, 10M16, 10M25, 10M40, 10M50	5	116	MHz
		Serial (34)	10M02, 10M04, 10M08, 10M16, 10M25	3.43	7.25	MHz
			10M40, 10M50	2.18	4.81	MHz

⁽³³⁾ Clock source is derived from user, except for 10M02 device.

⁽³⁴⁾ Clock source is derived from 1/16 of the frequency of the internal oscillator.

F	Parameter	Symbol	Condition	Min	Тур	Max	Unit
	Integral non linearity	INL	_	-2	-	2	LSB
AC Accuracy	Total harmonic distortion	THD	F_{IN} = 50 kHz, F_{S} = 1 MHz, PLL	-65 ⁽³⁷⁾	_	_	dB
	Signal-to-noise ratio	SNR	$F_{IN} = 50 \text{ kHz}, F_S = 1 \text{ MHz},$ PLL	54 ⁽³⁸⁾	_	_	dB
	Signal-to-noise and distortion	SINAD	$F_{IN} = 50 \text{ kHz}, F_S = 1 \text{ MHz},$ PLL	53 ⁽³⁹⁾	_	_	dB
On-Chip Temperature	Temperature sampling rate	T _S	_	_	_	50	kSPS
Sensor	Absolute accuracy	_	-40 to 125°C, with 64 samples averaging	_	_	±10	°C
Conversion Rate (41)	Conversion time	_	Single measurement	_	-	1	Cycle
			Continuous measurement	_	_	1	Cycle
			Temperature measurement	-	-	1	Cycle

Related Information

SPICE Models for Intel FPGAs

 $^{^{\}left(37\right) }$ THD with prescalar enabled is 6dB less than the specification.

 $^{^{(38)}}$ SNR with prescalar enabled is 6dB less than the specification.

⁽³⁹⁾ SINAD with prescalar enabled is 6dB less than the specification.

⁽⁴⁰⁾ For the Intel Quartus Prime software version 15.0 and later, Modular ADC Core Intel FPGA IP and Modular Dual ADC Core Intel FPGA IP cores handle the 64 samples averaging. For the Intel Quartus Prime software versions prior to 14.1, you need to implement your own averaging calculation.

⁽⁴¹⁾ For more detailed description, refer to the Timing section in the *Intel MAX 10 Analog-to-Digital Converter User Guide*.

M10-DATASHEET | 2018.06.29

Parameter		Symbol	Symbol Condition		Тур	Max	Unit
Conversion Rate (52)	Conversion time	_	Single measurement	_	_	1	Cycle
			Continuous measurement	_	_	1	Cycle
			Temperature measurement	_	_	1	Cycle

Related Information

SPICE Models for Intel FPGAs

Periphery Performance Specifications

This section describes the periphery performance, high-speed I/O, and external memory interface.

Actual achievable frequency depends on design and system specific factors. Ensure proper timing closure in your design and perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.

High-Speed I/O Specifications

For more information about the high-speed and low-speed I/O performance pins, refer to the respective device pin-out files.

Related Information

Documentation: Pin-Out Files for Intel FPGAs

⁽⁵²⁾ For more detailed description, refer to the Timing section in the *Intel MAX 10 Analog-to-Digital Converter User Guide*.

Symbol	Parameter	Mode	-16,	-A6, -C7	, –17		-A7			-C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
		×4	40	_	170	40	_	170	40	_	170	Mbps
		×2	20	_	170	20	_	170	20	_	170	Mbps
		×1	10	_	170	10	_	170	10	_	170	Mbps
t _{DUTY}	Duty cycle on transmitter output clock	_	45	_	55	45	_	55	45	_	55	%
TCCS ⁽⁵⁹⁾	Transmitter channel- to-channel skew	_	_	_	300	_	_	300	_	_	300	ps
t _{x Jitter} (60)	Output jitter (high- speed I/O performance pin)	_	_	_	425	_	_	425	_	_	425	ps
	Output jitter (low- speed I/O performance pin)	_	_	_	470	_	_	470	_	_	470	ps
t _{RISE}	Rise time	20 – 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	ps
t _{FALL}	Fall time	20 - 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	ps
t _{LOCK}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	_	_	_	1	_	_	1	_	_	1	ms

 $^{^{(59)}}$ TCCS specifications apply to I/O banks from the same side only.

 $^{^{(60)}}$ TX jitter is the jitter induced from core noise and I/O switching noise.

Symbol	Parameter	Mode	-16,	-A6, -C7,	-17		-A7			-C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Ì
		×7	70	_	300	70	_	300	70	_	300	Mbps
		×4	40	_	300	40	_	300	40	_	300	Mbps
		×2	20	_	300	20	_	300	20	_	300	Mbps
		×1	10	_	300	10	_	300	10	_	300	Mbps
t _{DUTY}	Duty cycle on transmitter output clock	-	45	_	55	45	_	55	45	_	55	%
TCCS ⁽⁶¹⁾	Transmitter channel- to-channel skew	_	_	_	300	_	_	300	_	_	300	ps
t _{x Jitter} (62)	Output jitter (high- speed I/O performance pin)	-	_	_	425	_	_	425	_	_	425	ps
	Output jitter (low- speed I/O performance pin)	_	_	_	470	_	_	470	_	_	470	ps
t _{RISE}	Rise time	20 - 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	ps
t _{FALL}	Fall time	20 - 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	ps
t _{LOCK}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	_	_	_	1	_	_	1	_	_	1	ms

 $^{^{(61)}}$ TCCS specifications apply to I/O banks from the same side only.

 $^{^{(62)}}$ TX jitter is the jitter induced from core noise and I/O switching noise.

Dual Supply Devices Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications

Table 44. Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices

Emulated LVDS_E_3R, SLVS, and Sub-LVDS transmitters are supported at the output pin of all I/O banks.

Symbol	Parameter	Mode	-16,	-A6, -C7,	-17		-A7			-C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	1
f _{HSCLK}	Input clock frequency	×10	5	_	300	5	_	275	5	_	275	MHz
	(high-speed I/O performance pin)	×8	5	_	300	5	_	275	5	_	275	MHz
		×7	5	_	300	5	_	275	5	_	275	MHz
	×4	5	_	300	5	_	275	5	_	275	MHz	
	×2	5	_	300	5	_	275	5	_	275	MHz	
		×1	5	_	300	5	_	275	5	_	275	MHz
HSIODR Data rate (high-speed	×10	100	_	600	100	_	550	100	_	550	Mbps	
	I/O performance pin)	×8	80	_	600	80	_	550	80	_	550	Mbps
		×7	70	_	600	70	_	550	70	_	550	Mbps
		×4	40	_	600	40	_	550	40	_	550	Mbps
		×2	20	_	600	20	_	550	20	_	550	Mbps
		×1	10	_	300	10	_	275	10	_	275	Mbps
f _{HSCLK}	Input clock frequency	×10	5	_	150	5	_	150	5	_	150	MHz
	(low-speed I/O performance pin)	×8	5	_	150	5	_	150	5	_	150	MHz
		×7	5	_	150	5	_	150	5	_	150	MHz
		×4	5	_	150	5	_	150	5	_	150	MHz
	×2	5	_	150	5	_	150	5	_	150	MHz	
		×1	5	_	300	5	_	300	5	_	300	MHz
HSIODR	Data rate (low-speed	×10	100	_	300	100	_	300	100	_	300	Mbps
I/O performance pin)	×8	80	_	300	80	_	300	80	_	300	Mbps	
	•		•			•	•				cor	tinued

LVDS, TMDS, HiSpi, SLVS, and Sub-LVDS Receiver Timing Specifications

Single Supply Devices LVDS Receiver Timing Specifications

Table 45. LVDS Receiver Timing Specifications for Intel MAX 10 Single Supply Devices

LVDS receivers are supported at all banks.

Symbol	Parameter	Mode	-C7	, -17		A7	-0	C8	Unit
			Min	Max	Min	Max	Min	Max	
f _{HSCLK}	Input clock frequency (high-	×10	5	145	5	100	5	100	MHz
	speed I/O performance pin)	×8	5	145	5	100	5	100	MHz
		×7	5	145	5	100	5	100	MHz
		×4	5	145	5	100	5	100	MHz
		×2	5	145	5	100	5	100	MHz
		×1	5	290	5	200	5	200	MHz
HSIODR	Data rate (high-speed I/O	×10	100	290	100	200	100	200	Mbps
performance	performance pin)	×8	80	290	80	200	80	200	Mbps
		×7	70	290	70	200	70	200	Mbps
		×4	40	290	40	200	40	200	Mbps
		×2	20	290	20	200	20	200	Mbps
		×1	10	290	10	200	10	200	Mbps
f _{HSCLK}	Input clock frequency (low-	×10	5	100	5	100	5	100	MHz
	speed I/O performance pin)	×8	5	100	5	100	5	100	MHz
		×7	5	100	5	100	5	100	MHz
		×4	5	100	5	100	5	100	MHz
		×2	5	100	5	100	5	100	MHz
		×1	5	200	5	200	5	200	MHz
HSIODR	Data rate (low-speed I/O performance pin)	×10	100	200	100	200	100	200	Mbps
			<u>'</u>	'	1	'	·	<u> </u>	continued

Remote System Upgrade Circuitry Timing Specifications

Table 50. Remote System Upgrade Circuitry Timing Specifications for Intel MAX 10 Devices

Parameter	Device	Minimum	Maximum	Unit
t _{MAX_RU_CLK}	All	_	40	MHz
t _{RU_nCONFIG}	10M02, 10M04, 10M08, 10M16, 10M25	250	_	ns
	10M40, 10M50	350	_	ns
t _{RU_nRSTIMER}	10M02, 10M04, 10M08, 10M16, 10M25	300	_	ns
	10M40, 10M50	500	ı	ns

User Watchdog Internal Circuitry Timing Specifications

Table 51. User Watchdog Timer Specifications for Intel MAX 10 Devices

The specifications are subject to PVT changes.

Parameter	Device	Minimum	Typical	Maximum	Unit
User watchdog frequency	10M02, 10M04, 10M08, 10M16, 10M25	3.4	5.1	7.3	MHz
	10M40, 10M50	2.2	3.3	4.8	MHz

Uncompressed Raw Binary File (.rbf) Sizes

Table 52. Uncompressed .rbf Sizes for Intel MAX 10 Devices

Device	CFM Data	Size (bits)
	Without Memory Initialization	With Memory Initialization
10M02	554,000	_
10M04	1,540,000	1,880,000
10M08	1,540,000	1,880,000
10M16	2,800,000	3,430,000
		continued

Table 54. Internal Configuration Time for Intel MAX 10 Devices (Compressed .rbf)

Compression ratio depends on design complexity. The minimum value is based on the best case (25% of original .rbf sizes) and the maximum value is based on the typical case (70% of original .rbf sizes).

Device		Internal Configu	ration Time (ms)				
		Unencrypted/Encrypted					
	Without Memo	ry Initialization	With Memory	Initialization			
	Min	Max	Min	Max			
10M02	0.3	5.2	_	_			
10M04	0.6	10.7	1.0	13.9			
10M08	0.6	10.7	1.0	13.9			
10M16	1.1	17.9	1.4	22.3			
10M25	1.1	26.9	1.4	32.2			
10M40	2.6	66.1	3.2	82.2			
10M50	2.6	66.1	3.2	82.2			

Internal Configuration Timing Parameter

Table 55. Internal Configuration Timing Parameter for Intel MAX 10 Devices

Symbol	Parameter	Device	Minimum	Maximum	Unit
t _{CD2UM}	CONF_DONE high to	10M02, 10M04, 10M08, 10M16, 10M25	182.8	385.5	μs
	user mode	10M40, 10M50	275.3	605.7	μs

I/O Timing

The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis.

The Intel Quartus Prime Timing Analyzer provides a more accurate and precise I/O timing data based on the specific device and design after you complete place-and-route.

Date	Version	Changes
		Added -A6 speed grade in the following tables: — Intel MAX 10 Device Grades and Speed Grades Supported — Series OCT without Calibration Specifications for Intel MAX 10 Devices — Clock Tree Specifications for Intel MAX 10 Devices — Embedded Multiplier Specifications for Intel MAX 10 Devices — Memory Block Performance Specifications for Intel MAX 10 Devices — True PPDS and Emulated PPDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices — True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices — Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices — True Mini-LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices — True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices — True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices — Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices — LVDS, TMDS, HiSpi, SLVS, and Sub-LVDS Receiver Timing Specifications for Intel MAX 10 Dual Supply Devices — IOE Programmable Delay on Row Pins for Intel MAX 10 Devices — IOE Programmable Delay on Column Pins for Intel MAX 10 Devices — Updated the maximum value for input clock cycle-to-cycle jitter (t _{INJITTER_CCJ}) with F _{INPFD} < 100 MHz condition from 750 ps to ±750 ps in PLL Specifications for Intel MAX 10 Devices table. • Updated the dual supply mode performance in Embedded Multiplier Specifications for Intel MAX 10 Devices table. • Updated the dual supply mode performance in Embedded Multiplier Specifications for Intel MAX 10 Devices table. • Updated specifications in UFM Performance Specifications for Intel MAX 10 Devices table. • Updated specifications in UFM Performance Specifications for Intel MAX 10 Devices table. • Updated Specifications in UFM Performance Specifications for Intel MAX 10 Devices table. • Updated IOE programmable delay for r
June 2015	2015.06.12	 Updated the maximum values in Internal Weak Pull-Up Resistor for Intel MAX 10 Devices table. Removed Internal Weak Pull-Up Resistor equation. Updated the note for input resistance and input capacitance parameters in the ADC Performance Specifications table for both single supply and dual supply devices. Note: Download the SPICE models for simulation. Added a note to AC Accuracy - THD, SNR, and SINAD parameters in the ADC Performance Specifications for Intel MAX 10 Dual Supply Devices table. Note: When using internal V_{REF}, THD = 66 dB, SNR = 58 dB and SINAD = 57.5 dB for dedicated ADC input channels. Updated clock period jitter and cycle-to-cycle period jitter parameters in the Memory Output Clock Jitter Specifications for Intel MAX 10 Devices table.
		continued

Date	Version	Changes
May 2015	2015.05.04	Updated a note to V _{CCIO} for both single supply and dual supply power supplies recommended operating conditions tables. Note updated: V _{CCIO} for all I/O banks must be powered up during user mode because V _{CCIO} I/O banks are used for the ADC and I/O functionalities.
		Updated Example for OCT Resistance Calculation after Calibration at Device Power-Up.
		Removed a note to BLVDS in Differential I/O Standards Specifications for Intel MAX 10 Devices table. BLVDS is now supported in Intel MAX 10 single supply devices. Note removed: BLVDS TX is not supported in single supply devices.
		Updated ADC Performance Specifications for both single supply and dual supply devices.
		— Changed the symbol for Operating junction temperature range parameter from T_{Δ} to T_1 .
		Edited sampling rate maximum value from 1000 kSPS to 1 MSPS.
		Added a note to analog input voltage parameter.
		— Removed input frequency, f_{IN} specification.
		 Updated the condition for DNL specification: External V_{REF}, no missing code. Added DNL specification for condition: Internal V_{REF}, no missing code.
		 Added notes to AC accuracy specifications that the value with prescalar enabled is 6dB less than the specification.
		 Added a note to On-Chip Temperature Sensor (absolute accuracy) parameter about the averaging calculation.
		Updated ADC Performance Specifications for Intel MAX 10 Single Supply Devices table.
		 Added condition for On-Chip Temperature Sensor (absolute accuracy) parameter: with 64 samples averaging.
		Updated ADC Performance Specifications for Intel MAX 10 Dual Supply Devices table.
		 Updated Digital Supply Voltage minimum value from 1.14 V to 1.15 V and maximum value from 1.26 V to 1.25 V. Updated fhSCIK and HSIODR specifications for -A7 speed grade in the following tables:
		True PPDS and Emulated PPDS E 3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices
		True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices
		True Mini-LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Device
		True LVDS Transmitter Timing Specifications for Intel MAX 10 Single Supply Devices
		True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices
		Emulated LVDS E 3R Transmitter Timing Specifications for Intel MAX 10 Single Supply Devices
		Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices
		 LVDS Receiver Timing Specifications for Intel MAX 10 Single Supply Devices
		 LVDS, TMDS, HiSpi, SLVS, and Sub-LVDS Receiver Timing Specifications for Intel MAX 10 Dual Supply Devices
		continued

Date	Version	Changes
		 Updated TCCS specifications in the following tables: True PPDS and Emulated PPDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True Mini-LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True LVDS Transmitter Timing Specifications for Intel MAX 10 Single Supply Devices Emulated LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Single Supply Devices Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Updated t_x Jitter specifications in the following tables: True PPDS and Emulated PPDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True Mini-LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices Emulated SW specifications in LVDS Receiver Timing Specifications for Intel MAX 10 Single Supply Devices table. Added a note to t_x litter for all LVDS tables. Note: TX jitter is the jitter induced from core noise and I/O switching noise.
January 2015	2015.01.23	 Removed a note to V_{CCA} in Power Supplies Recommended Operating Conditions for Intel MAX 10 Dual Supply Devices table. This note is not valid: All V_{CCA} pins must be connected together for EQFP package. Corrected the maximum value for t_{OUTJITTER_CCJ_IO} (F_{OUT} ≥ 100 MHz) from 60 ps to 650 ps in PLL Specifications for Intel MAX 10 Devices table.
December 2014	2014.12.15	 Restructured Programming/Erasure Specifications for Intel MAX 10 Devices table to add temperature specifications that affect the data retention duration. Added statements in the I/O Pin Leakage Current section: Input channel leakage of ADC I/O pins due to hot socket is up to maximum of 1.8 mA. The input channel leakage occurs when the ADC IP core is enabled or disabled. This is applicable to all Intel MAX 10 devices with ADC IP core, which are 10M04, 10M08, 10M16, 10M25, 10M40, and 10M50 devices. The ADC I/O pins are in Bank 1A. Added a statement in the I/O Standards Specifications section: You must perform timing closure analysis to determine the maximum achievable frequency for general purpose I/O standards.