

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	3125
Number of Logic Elements/Cells	50000
Total RAM Bits	1677312
Number of I/O	500
Number of Gates	-
Voltage - Supply	1.15V ~ 1.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	672-BGA
Supplier Device Package	672-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/intel/10m50dcf672c8g

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ADC_VREF Pin Leakage Current for Intel MAX 10 Devices Table 11.

Symbol	Parameter	Condition	Min	Max	Unit
I _{adc_vref}	ADC_VREF pin leakage current	Single supply mode	_	10	μΑ
		Dual supply mode	_	20	μΑ

Bus Hold Parameters

Bus hold retains the last valid logic state after the source driving it either enters the high impedance state or is removed. Each I/O pin has an option to enable bus hold in user mode. Bus hold is always disabled in configuration mode.

Bus Hold Parameters for Intel MAX 10 Devices Table 12.

Parameter	Condition		V _{CCIO} (V)									Unit		
		1.	.2	1.5		1.8		2.5		3.0		3.3		
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Bus-hold low, sustaining current	V _{IN} > V _{IL} (maximum)	8	_	12	_	30	_	50	_	70	_	70	_	μΑ
Bus-hold high, sustaining current	V _{IN} < V _{IH} (minimum)	-8	_	-12	_	-30	_	-50	_	-70	_	-70	_	μΑ
Bus-hold low, overdrive current	0 V < V _{IN} <	_	125	_	175	_	200	_	300	_	500	_	500	μΑ
Bus-hold high, overdrive current	0 V < V _{IN} < V _{CCIO}	_	-125	_	-175	_	-200	_	-300	_	-500	_	-500	μA
Bus-hold trip point	_	0.3	0.9	0.375	1.125	0.68	1.07	0.7	1.7	0.8	2	0.8	2	V

Table 15. OCT Variation after Calibration at Device Power-Up for Intel MAX 10 Devices

This table lists the change percentage of the OCT resistance with voltage and temperature.

Description	Nominal Voltage	dR/dT (%/°C)	dR/dV (%/mV)
OCT variation after calibration at device power-up	3.00	0.25	-0.027
	2.50	0.245	-0.04
	1.80	0.242	-0.079
	1.50	0.235	-0.125
	1.35	0.229	-0.16
	1.20	0.197	-0.208

Figure 1. Equation for OCT Resistance after Calibration at Device Power-Up

$$\Delta R_V = (V_2 - V_1) \times 1000 \times dR/dV$$

$$\Delta R_T = (T_2 - T_1) \times dR/dT$$
For $\Delta R_X < 0$; $MF_X = 1/(|\Delta R_X|/100 + 1)$
For $\Delta R_X > 0$; $MF_X = \Delta R_X/100 + 1$

$$MF = MF_V \times MF_T$$

$$R_{final} = R_{initial} \times MF$$

The definitions for equation are as follows:

- T₁ is the initial temperature.
- T₂ is the final temperature.
- MF is multiplication factor.
- R_{initial} is initial resistance.
- R_{final} is final resistance.

Pin Capacitance

Table 16. Pin Capacitance for Intel MAX 10 Devices

Symbol	Parameter	Maximum	Unit
C _{IOB}	Input capacitance on bottom I/O pins	8	pF
C _{IOLRT}	Input capacitance on left/right/top I/O pins	7	pF
C _{LVDSB}	Input capacitance on bottom I/O pins with dedicated LVDS output ⁽⁹⁾	8	pF
C _{ADCL}	Input capacitance on left I/O pins with ADC input (10)	9	pF
C _{VREFLRT}	Input capacitance on left/right/top dual purpose $\rm V_{REF}$ pin when used as $\rm V_{REF}$ or user I/O pin $^{(11)}$	48	pF
C _{VREFB}	Input capacitance on bottom dual purpose V_{REF} pin when used as V_{REF} or user I/O pin	50	pF
C _{CLKB}	Input capacitance on bottom dual purpose clock input pins (12)	7	pF
C _{CLKLRT}	Input capacitance on left/right/top dual purpose clock input pins (12)	6	pF

Internal Weak Pull-Up Resistor

All I/O pins, except configuration, test, and JTAG pins, have an option to enable weak pull-up.

⁽⁹⁾ Dedicated LVDS output buffer is only available at bottom I/O banks.

⁽¹⁰⁾ ADC pins are only available at left I/O banks.

When V_{REF} pin is used as regular input or output, F_{max} performance is reduced due to higher pin capacitance. Using the V_{REF} pin capacitance specification from device datasheet, perform SI analysis on your board setup to determine the F_{max} of your system.

^{(12) 10}M40 and 10M50 devices have dual purpose clock input pins at top/bottom I/O banks.

Table 19. Hysteresis Specifications for Schmitt Trigger Input for Intel MAX 10 Devices

Symbol	Parameter	Condition	Minimum	Unit
V _{HYS}	Hysteresis for Schmitt trigger input	V _{CCIO} = 3.3 V	180	mV
		V _{CCIO} = 2.5 V	150	mV
		V _{CCIO} = 1.8 V	120	mV
		V _{CCIO} = 1.5 V	110	mV

Table 24. Differential HSTL and HSUL I/O Standards Specifications for Intel MAX 10 Devices

I/O Standard	V _{CCIO} (V)			V _{DIF(DC)} (V)		V _{X(AC)} (V)				V _{DIF(AC)} (V)		
	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min
HSTL-18 Class I, II	1.71	1.8	1.89	0.2	_	0.85	_	0.95	0.85	_	0.95	0.4
HSTL-15 Class I, II	1.425	1.5	1.575	0.2	_	0.71	_	0.79	0.71	_	0.79	0.4
HSTL-12 Class I, II	1.14	1.2	1.26	0.16	V _{CCIO}	0.48 × V _{CCIO}	0.5 × V _{CCIO}	0.52 × V _{CCIO}	0.48 × V _{CCIO}	0.5 × V _{CCIO}	0.52 × V _{CCIO}	0.3
HSUL-12	1.14	1.2	1.3	0.26	_	0.5 × V _{CCIO} - 0.12	0.5 × V _{CCIO}	0.5 × V _{CCIO} + 0.12	0.4 × V _{CCIO}	0.5 × V _{CCIO}	0.6 × V _{CCIO}	0.44

Differential I/O Standards Specifications

Table 25. Differential I/O Standards Specifications for Intel MAX 10 Devices

I/O Standard	,	V _{CCIO} (V)		V _{ID} (mV)	V _{ICM} (V) (18)			V _{OD} (mV) (19)(20)			V _{OS} (V) ⁽¹⁹⁾		
	Min	Тур	Max	Min	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max
LVPECL (21)	2.375	2.5	2.625	100	_	0.05	D _{MAX} ≤ 500 Mbps	1.8	_	_	_	_	_	_
						0.55	500 Mbps ≤ D _{MAX} ≤ 700 Mbps	1.8						
						1.05	D _{MAX} > 700 Mbps	1.55						
LVDS	2.375	2.5	2.625	100	_	0.05	D _{MAX} ≤ 500 Mbps	1.8	247	_	600	1.125	1.25	1.375
						0.55	500 Mbps ≤ D _{MAX} ≤ 700 Mbps	1.8						

 $^{(18)}$ V_{IN} range: 0 V \leq V_{IN} \leq 1.85 V.

⁽¹⁹⁾ R_L range: $90 \le R_L \le 110 \Omega$.

 $^{(20)}$ Low V_{OD} setting is only supported for RSDS standard.

(21) LVPECL input standard is only supported at clock input. Output standard is not supported.

I/O Standard	,	V _{CCIO} (V)		V _{ID} (mV)		V _{ICM} (V) ⁽¹⁸⁾			V _{OD} (mV) (19)(20)			V _{OS} (V) ⁽¹⁹⁾		
	Min	Тур	Max	Min	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max	
HiSpi	2.375	2.5	2.625	100	_	0.05	D _{MAX} ≤ 500 Mbps	1.8	_	_	_	_	_	_	
						0.55	500 Mbps ≤ D _{MAX} ≤ 700 Mbps	1.8							
						1.05	D _{MAX} > 700 Mbps	1.55							

Related Information

Intel MAX 10 LVDS SERDES I/O Standards Support, Intel MAX 10 High-Speed LVDS I/O User Guide Provides the list of I/O standards supported in single supply and dual supply devices.

Switching Characteristics

This section provides the performance characteristics of Intel MAX 10 core and periphery blocks.

- (24) Supported with requirement of an external level shift
- (25) Sub-LVDS input buffer is using 2.5 V differential buffer.
- (26) Differential output depends on the values of the external termination resistors.
- (27) Differential output offset voltage depends on the values of the external termination resistors.

⁽¹⁸⁾ V_{IN} range: $0 \text{ V} \leq V_{IN} \leq 1.85 \text{ V}$. (19) R_L range: $90 \leq R_L \leq 110 \Omega$.

⁽²⁰⁾ Low V_{OD} setting is only supported for RSDS standard.

 $^{^{(22)}}$ No fixed V_{IN} , V_{OD} , and V_{OS} specifications for Bus LVDS (BLVDS). They are dependent on the system topology.

⁽²³⁾ Mini-LVDS, RSDS, and Point-to-Point Differential Signaling (PPDS) standards are only supported at the output pins for Intel MAX 10 devices.

Internal Oscillator Specifications

Table 32. Internal Oscillator Frequencies for Intel MAX 10 Devices

You can access to the internal oscillator frequencies in this table. The duty cycle of internal oscillator is approximately 45%-55%.

Device		Frequency		Unit
	Minimum	Typical	Maximum	
10M02	55	82	116	MHz
10M04				
10M08				
10M16				
10M25				
10M40	35	52	77	MHz
10M50				

UFM Performance Specifications

Table 33. UFM Performance Specifications for Intel MAX 10 Devices

Block	Mode	Interface	Device	Frequ	iency	Unit
				Minimum	Maximum	
UFM	Avalon®-MM slave	Parallel ⁽³³⁾	10M02 ⁽³⁴⁾	3.43	7.25	MHz
			10M04, 10M08, 10M16, 10M25, 10M40, 10M50	5	116	MHz
		Serial (34)	10M02, 10M04, 10M08, 10M16, 10M25	3.43	7.25	MHz
			10M40, 10M50	2.18	4.81	MHz

⁽³³⁾ Clock source is derived from user, except for 10M02 device.

⁽³⁴⁾ Clock source is derived from 1/16 of the frequency of the internal oscillator.

ADC Performance Specifications

Single Supply Devices ADC Performance Specifications

Table 34. ADC Performance Specifications for Intel MAX 10 Single Supply Devices

	Parameter.	Complete	Constitution	B41		Mana	1115
	Parameter	Symbol	Condition	Min	Тур	Max	Unit
ADC resolution		_	_	_	_	12	bits
ADC supply voltage		V _{CC_ONE}	_	2.85	3.0/3.3	3.465	V
External reference voltage		V _{REF}	_	V _{CC_ONE} - 0.5	_	V _{CC_ONE}	V
Sampling rate		F _S	Accumulative sampling rate	_	_	1	MSPS
Operating junction ter	mperature range	T ₁	_	-40	25	125	°C
Analog input voltage		V _{IN}	Prescalar disabled	0	_	V _{REF}	V
			Prescalar enabled (35)	0	_	3.6	V
Input resistance		R _{IN}	_	_	(36)	_	_
Input capacitance		C _{IN}	_	_	(36)	_	_
DC Accuracy	Offset error and drift	E _{offset}	Prescalar disabled	-0.2	_	0.2	%FS
			Prescalar enabled	-0.5	_	0.5	%FS
	Gain error and drift	Egain	Prescalar disabled	-0.5	_	0.5	%FS
			Prescalar enabled	-0.75	_	0.75	%FS
	Differential non linearity	DNL	External V _{REF} , no missing code	-0.9	_	0.9	LSB
			Internal V _{REF} , no missing code	-1	_	1.7	LSB
	<u> </u>	,	,		1		continued

⁽³⁵⁾ Prescalar function divides the analog input voltage by half. The analog input handles up to 3.6 V for the Intel MAX 10 single supply devices.

⁽³⁶⁾ Download the SPICE models for simulation.

	Parameter	Symbol	Condition	Min	Тур	Max	Unit
			Internal V _{REF} , no missing code	-1	_	1.7	LSB
	Integral non linearity	INL	_	-2	_	2	LSB
AC Accuracy	Total harmonic distortion	THD	$F_{IN} = 50 \text{ kHz}, F_S = 1 \text{ MHz}, PLL$	-70 ⁽⁴⁴⁾⁽⁴⁵⁾ ⁽⁴⁶⁾	_	_	dB
	Signal-to-noise ratio	SNR	$F_{IN} = 50 \text{ kHz}, F_S = 1 \text{ MHz}, PLL$	62 (47)(48)(46)	_	_	dB
	Signal-to-noise and distortion	SINAD	$F_{IN} = 50 \text{ kHz}, F_S = 1 \text{ MHz},$ PLL	61.5 ⁽⁴⁹⁾ (50)(46)	_	_	dB
On-Chip Temperature	Temperature sampling rate	T _S	_	_	_	50	kSPS
Sensor	Absolute accuracy	_	-40 to 125°C, with 64 samples averaging	_	_	±5	°C
			1				continued

⁽⁴⁴⁾ Total harmonic distortion is -65 dB for dual function pin.

 $^{^{(45)}}$ THD with prescalar enabled is 6dB less than the specification.

⁽⁴⁶⁾ When using internal V_{REF} , THD = 66 dB, SNR = 58 dB and SINAD = 57.5 dB for dedicated ADC input channels.

⁽⁴⁷⁾ Signal-to-noise ratio is 54 dB for dual function pin.

 $^{^{(48)}}$ SNR with prescalar enabled is 6dB less than the specification.

⁽⁴⁹⁾ Signal-to-noise and distortion is 53 dB for dual function pin.

⁽⁵⁰⁾ SINAD with prescalar enabled is 6dB less than the specification.

⁽⁵¹⁾ For the Intel Quartus Prime software version 15.0 and later, Modular ADC Core and Modular Dual ADC Core IP cores handle the 64 samples averaging. For the Intel Quartus Prime software versions prior to 14.1, you need to implement your own averaging calculation.

M10-DATASHEET | 2018.06.29

Symbol	Parameter	Mode	-16,	-A6, -C7	, –17		-A7			-C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
		×4	40	_	300	40	_	300	40	_	300	Mbps
		×2	20	_	300	20	_	300	20	_	300	Mbps
		×1	10	_	300	10	_	300	10	_	300	Mbps
t _{DUTY}	Duty cycle on transmitter output clock	_	45	_	55	45	_	55	45	_	55	%
TCCS ⁽⁵⁷⁾	Transmitter channel- to-channel skew	_	_	_	300	_	_	300	_	_	300	ps
t _{x Jitter} (58)	Output jitter (high- speed I/O performance pin)	-	_	_	425	_	_	425	_	_	425	ps
	Output jitter (low- speed I/O performance pin)	_	_	_	470	_	_	470	_	_	470	ps
t _{RISE}	Rise time	20 - 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	ps
t _{FALL}	Fall time	20 - 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	ps
t _{LOCK}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	_	_	_	1	_	_	1	_	-	1	ms

 $^{^{(57)}}$ TCCS specifications apply to I/O banks from the same side only.

 $^{^{(58)}}$ TX jitter is the jitter induced from core noise and I/O switching noise.

M10-DATASHEET | 2018.06.29

Symbol	Parameter	Mode	-C7, -I7			-A7			-C8		Unit	
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
t _{RISE}	Rise time	20 - 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	ps
t _{FALL}	Fall time	20 - 80%, C _{LOAD} = 5 pF	_	500	_	_	500	_	_	500	_	ps
t _{LOCK}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	_	I	_	1	_	_	1	_	_	1	ms

Dual Supply Devices True LVDS Transmitter Timing Specifications

Table 42. True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices

True **LVDS** transmitter is only supported at the bottom I/O banks.

Symbol	Parameter	Mode		-16		-A	6, -C7, -	·17		-A7			-C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
f _{HSCLK}	Input clock	×10	5	_	360	5	_	340	5	_	310	5	_	300	MHz
	frequency	×8	5	_	360	5	_	360	5	_	320	5	_	320	MHz
		×7	5	_	360	5	_	340	5	_	310	5	_	300	MHz
		×4	5	_	360	5	-	350	5	_	320	5	_	320	MHz
		×2	5	_	360	5	-	350	5	_	320	5	_	320	MHz
		×1	5	_	360	5	ı	350	5	_	320	5	_	320	MHz
HSIODR	Data rate	×10	100	_	720	100	-	680	100	_	620	100	_	600	Mbps
		×8	80	_	720	80	ı	720	80	_	640	80	_	640	Mbps
		×7	70	_	720	70	-	680	70	_	620	70	_	600	Mbps
		×4	40	_	720	40	-	700	40	_	640	40	_	640	Mbps
		×2	20	_	720	20	ı	700	20	_	640	20	_	640	Mbps
	continued														

M10-DATASHEET | 2018.06.29

Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications

Single Supply Devices Emulated LVDS_E_3R Transmitter Timing Specifications

Table 43. Emulated LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Single Supply Devices

Emulated LVDS_E_3R transmitters are supported at the output pin of all I/O banks.

Symbol	Parameter	Mode		-C7, -I7			-A7			-C8		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	1
f _{HSCLK}	Input clock frequency	×10	5	_	142.5	5	_	100	5	_	100	MHz
	(high-speed I/O performance pin)	×8	5	_	142.5	5	_	100	5	_	100	MHz
		×7	5	_	142.5	5	_	100	5	_	100	MHz
		×4	5	_	142.5	5	_	100	5	_	100	MHz
		×2	5	_	142.5	5	_	100	5	_	100	MHz
	×1	5	_	285	5	_	200	5	_	200	MHz	
HSIODR Data rate (high-speed I/O performance pin)	×10	100	_	285	100	_	200	100	_	200	Mbps	
	×8	80	_	285	80	_	200	80	_	200	Mbps	
		×7	70	_	285	70	_	200	70	_	200	Mbps
		×4	40	_	285	40	_	200	40	_	200	Mbps
		×2	20	_	285	20	_	200	20	_	200	Mbps
		×1	10	_	285	10	_	200	10	_	200	Mbps
f _{HSCLK}	Input clock frequency	×10	5	_	100	5	_	100	5	_	100	MHz
	(low-speed I/O performance pin)	×8	5	_	100	5	_	100	5	_	100	MHz
		×7	5	_	100	5	_	100	5	_	100	MHz
		×4	5	_	100	5	_	100	5	_	100	MHz
		×2	5	_	100	5	_	100	5	_	100	MHz
		×1	5	_	200	5	_	200	5	_	200	MHz
HSIODR	Data rate (low-speed I/O performance pin)	×10	100	_	200	100	_	200	100	_	200	Mbps
			,	<u> </u>			·				coi	ntinued

Symbol	Parameter	Mode	-C7,	, –17	-/	A7	-0	C8	Unit
			Min	Max	Min	Max	Min	Max	
		×8	80	200	80	200	80	200	Mbps
		×7	70	200	70	200	70	200	Mbps
		×4	40	200	40	200	40	200	Mbps
		×2	20	200	20	200	20	200	Mbps
		×1	10	200	10	200	10	200	Mbps
SW	Sampling window (high- speed I/O performance pin)	_	_	910	_	910	_	910	ps
	Sampling window (low- speed I/O performance pin)	_	_	1,110	_	1,110	_	1,110	ps
t _{x Jitter} (71)	Input jitter	_	_	1,000	_	1,000	_	1,000	ps
t _{LOCK}	Time required for the PLL to lock, after CONF_DONE signal goes high, indicating the completion of device configuration	-	_	1	_	1	_	1	ms

Dual Supply Devices LVDS, TMDS, HiSpi, SLVS, and Sub-LVDS Receiver Timing Specifications

Table 46. LVDS, TMDS, HiSpi, SLVS, and Sub-LVDS Receiver Timing Specifications for Intel MAX 10 Dual Supply Devices LVDS, TMDS, HiSpi, SLVS, and Sub-LVDS receivers are supported at all banks.

Symbol	Parameter	Mode	-16, -A6,	-I6, -A6, -C7, -I7		-A7		-C8	
			Min	Max	Min	Max	Min	Max	
f _{HSCLK}	Input clock frequency (high-	×10	5	350	5	320	5	320	MHz
	speed I/O performance pin)	×8	5	360	5	320	5	320	MHz
		×7	5	350	5	320	5	320	MHz
		×4	5	360	5	320	5	320	MHz
					•				ontinued

 $^{^{(71)}}$ TX jitter is the jitter induced from core noise and I/O switching noise.

JTAG Timing Parameters

Table 49. JTAG Timing Parameters for Intel MAX 10 Devices

The values are based on $C_L = 10$ pF of TDO.

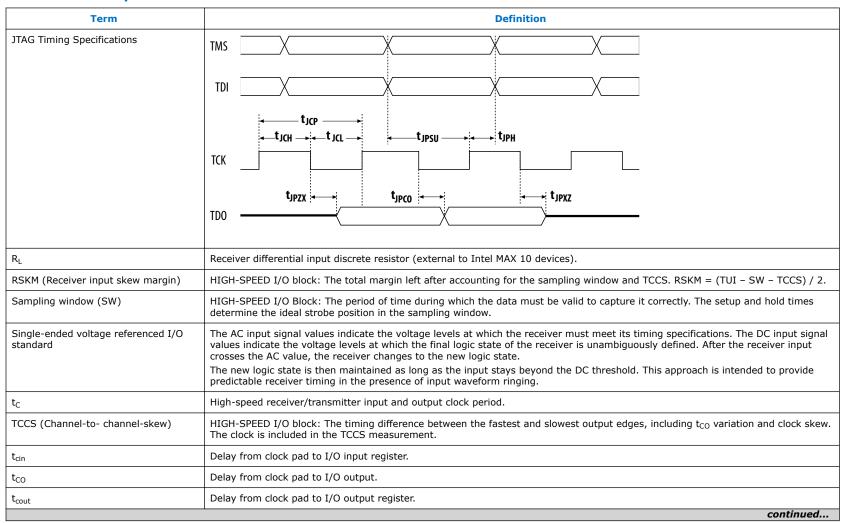
The affected Boundary Scan Test (BST) instructions are SAMPLE/PRELOAD, EXTEST, INTEST, and CHECK_STATUS.

Symbol	Parameter	Non-BST and non	-CONFIG_IO Operation	BST and Co	ONFIG_IO Operation	Unit
		Minimum	Maximum	Minimum	Maximum	
t _{JCP}	TCK clock period	40	_	50	_	ns
t _{JCH}	TCK clock high time	20	_	25	_	ns
t _{JCL}	TCK clock low time	20	_	25	_	ns
t _{JPSU_TDI}	JTAG port setup time	2	_	2	_	ns
t _{JPSU_TMS}	JTAG port setup time	3	_	3	_	ns
t _{JPH}	JTAG port hold time	10	_	10	_	ns
t _{JPCO}	JTAG port clock to output	-	 15 (for V_{CCIO} = 3.3, 3.0, and 2.5 V) 17 (for V_{CCIO} = 1.8 and 1.5 V) 	_	• 18 (for V _{CCIO} = 3.3, 3.0, and 2.5 V) • 20 (for V _{CCIO} = 1.8 and 1.5 V)	ns
t _{JPZX}	JTAG port high impedance to valid output	-	 15 (for V_{CCIO} = 3.3, 3.0, and 2.5 V) 17 (for V_{CCIO} = 1.8 and 1.5 V) 	-	 15 (for V_{CCIO} = 3.3, 3.0, and 2.5 V) 17 (for V_{CCIO} = 1.8 and 1.5 V) 	ns
t_{JPXZ}	JTAG port valid output to high impedance	-	 15 (for V_{CCIO} = 3.3, 3.0, and 2.5 V) 17 (for V_{CCIO} = 1.8 and 1.5 V) 	-	 15 (for V_{CCIO} = 3.3, 3.0, and 2.5 V) 17 (for V_{CCIO} = 1.8 and 1.5 V) 	ns

Device	CFM Data	Size (bits)
	Without Memory Initialization	With Memory Initialization
10M25	4,140,000	4,780,000
10M40	7,840,000	9,670,000
10M50	7,840,000	9,670,000

Internal Configuration Time

The internal configuration time measurement is from the rising edge of nSTATUS signal to the rising edge of $CONF_DONE$ signal.


Table 53. Internal Configuration Time for Intel MAX 10 Devices (Uncompressed .rbf)

Device				Internal Configu	ration Time (ms)			
		Unenc	rypted			Encry	/pted	
	Without Memor	y Initialization	With Memory	With Memory Initialization Without Memor		y Initialization	With Memory	Initialization
	Min	Max	Min	Max	Min	Max	Min	Max
10M02	0.3	1.7	_	_	1.7	5.4	_	_
10M04	0.6	2.7	1.0	3.4	5.0	15.0	6.8	19.6
10M08	0.6	2.7	1.0	3.4	5.0	15.0	6.8	19.6
10M16	1.1	3.7	1.4	4.5	9.3	25.3	11.7	31.5
10M25	1.0	3.7	1.3	4.4	14.0	38.1	16.9	45.7
10M40	2.6	6.9	3.2	9.8	41.5	112.1	51.7	139.6
10M50	2.6	6.9	3.2	9.8	41.5	112.1	51.7	139.6

Glossary

Table 59. Glossary

M10-DATASHEET | 2018.06.29

Term	Definition
t _{DUTY}	HIGH-SPEED I/O Block: Duty cycle on high-speed transmitter output clock.
t _{FALL}	Signal high-to-low transition time (80–20%).
t _H	Input register hold time.
Timing Unit Interval (TUI)	HIGH-SPEED I/O block: The timing budget allowed for skew, propagation delays, and data sampling window. (TUI = $1/(Receiver Input Clock Frequency Multiplication Factor) = t_C/w)$.
t _{INJITTER}	Period jitter on PLL clock input.
toutjitter_dedclk	Period jitter on dedicated clock output driven by a PLL.
t _{OUTJITTER_IO}	Period jitter on general purpose I/O driven by a PLL.
t _{pllcin}	Delay from PLL inclk pad to I/O input register.
t _{pllcout}	Delay from PLL inclk pad to I/O output register.
t _{RISE}	Signal low-to-high transition time (20–80%).
t _{SU}	Input register setup time.
V _{CM(DC)}	DC common mode input voltage.
V _{DIF(AC)}	AC differential input voltage: The minimum AC input differential voltage required for switching.
V _{DIF(DC)}	DC differential input voltage: The minimum DC input differential voltage required for switching.
V _{HYS}	Hysteresis for Schmitt trigger input.
V _{ICM}	Input common mode voltage: The common mode of the differential signal at the receiver.
V _{ID}	Input differential Voltage Swing: The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.
V _{IH}	Voltage input high: The minimum positive voltage applied to the input which is accepted by the device as a logic high.
V _{IH(AC)}	High-level AC input voltage.
V _{IH(DC)}	High-level DC input voltage.
V _{IL}	Voltage input low: The maximum positive voltage applied to the input which is accepted by the device as a logic low.
V _{IL (AC)}	Low-level AC input voltage.
V _{IL (DC)}	Low-level DC input voltage.
V _{IN}	DC input voltage.
	continued

Term	Definition
V _{OCM}	Output common mode voltage: The common mode of the differential signal at the transmitter.
V _{OD}	Output differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission line at the transmitter. $V_{OD} = V_{OH} - V_{OL}$.
V _{OH}	Voltage output high: The maximum positive voltage from an output which the device considers is accepted as the minimum positive high level.
V _{OL}	Voltage output low: The maximum positive voltage from an output which the device considers is accepted as the maximum positive low level.
V _{OS}	Output offset voltage: $V_{OS} = (V_{OH} + V_{OL}) / 2$.
V _{OX (AC)}	AC differential Output cross point voltage: The voltage at which the differential output signals must cross.
V _{REF}	Reference voltage for SSTL, HSTL, and HSUL I/O Standards.
V _{REF(AC)}	AC input reference voltage for SSTL, HSTL, and HSUL I/O Standards. $V_{REF(AC)} = V_{REF(DC)} + \text{noise}$. The peak-to-peak AC noise on V_{REF} should not exceed 2% of $V_{REF(DC)}$.
V _{REF(DC)}	DC input reference voltage for SSTL, HSTL, and HSUL I/O Standards.
V _{SWING (AC)}	AC differential input voltage: AC Input differential voltage required for switching.
V _{SWING (DC)}	DC differential input voltage: DC Input differential voltage required for switching.
Vπ	Termination voltage for SSTL, HSTL, and HSUL I/O Standards.
V _{X (AC)}	AC differential Input cross point voltage: The voltage at which the differential input signals must cross.

Document Revision History for the Intel MAX 10 FPGA Device Datasheet

Document Version	Changes
2018.06.29	 Removed links on instant-on feature. Added JTAG timing specifications term in <i>Glossary</i>. Renamed the following IP cores as per Intel rebranding: Renamed Altera Modular ADC IP core to Modular ADC core Intel FPGA IP core. Renamed Altera Modular Dual ADC IP core to Modular Dual ADC core Intel FPGA IP core.

M10-DATASHEET | 2018.06.29

Date	Version	Changes
		Added -A6 speed grade in the following tables: — Intel MAX 10 Device Grades and Speed Grades Supported — Series OCT without Calibration Specifications for Intel MAX 10 Devices — Clock Tree Specifications for Intel MAX 10 Devices — Embedded Multiplier Specifications for Intel MAX 10 Devices — Memory Block Performance Specifications for Intel MAX 10 Devices — True PPDS and Emulated PPDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices — True RSDS and Emulated RSDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices — Emulated RSDS_E_1R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices — True Mini-LVDS and Emulated Mini-LVDS_E_3R Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices — True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices — True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices — Emulated LVDS_E_3R, SLVS, and Sub-LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices — LVDS, TMDS, HiSpi, SLVS, and Sub-LVDS Receiver Timing Specifications for Intel MAX 10 Dual Supply Devices — IOE Programmable Delay on Row Pins for Intel MAX 10 Devices — IOE Programmable Delay on Column Pins for Intel MAX 10 Devices — Updated the maximum value for input clock cycle-to-cycle jitter (t _{INJITTER_CCJ}) with F _{INPFD} < 100 MHz condition from 750 ps to ±750 ps in PLL Specifications for Intel MAX 10 Devices table. • Updated the dual supply mode performance in Embedded Multiplier Specifications for Intel MAX 10 Devices table. • Updated the dual supply mode performance in Embedded Multiplier Specifications for Intel MAX 10 Devices table. • Updated specifications in UFM Performance Specifications for Intel MAX 10 Devices table. • Updated specifications in UFM Performance Specifications for Intel MAX 10 Devices table. • Updated Specifications in UFM Performance Specifications for Intel MAX 10 Devices table. • Updated IOE programmable delay for r
June 2015	2015.06.12	 Updated the maximum values in Internal Weak Pull-Up Resistor for Intel MAX 10 Devices table. Removed Internal Weak Pull-Up Resistor equation. Updated the note for input resistance and input capacitance parameters in the ADC Performance Specifications table for both single supply and dual supply devices. Note: Download the SPICE models for simulation. Added a note to AC Accuracy - THD, SNR, and SINAD parameters in the ADC Performance Specifications for Intel MAX 10 Dual Supply Devices table. Note: When using internal V_{REF}, THD = 66 dB, SNR = 58 dB and SINAD = 57.5 dB for dedicated ADC input channels. Updated clock period jitter and cycle-to-cycle period jitter parameters in the Memory Output Clock Jitter Specifications for Intel MAX 10 Devices table.
		continued

Date	Version	Changes
		Updated SSTL-2 Class I and II I/O standard specifications for JEDEC compliance as follows:
		 VIL(AC) Max: Updated from V_{REF} - 0.35 to V_{REF} - 0.31
		 VIH(AC) Min: Updated from V_{REF} + 0.35 to V_{REF} + 0.31
		Added a note to BLVDS in Differential I/O Standards Specifications for Intel MAX 10 Devices table: BLVDS TX is not supported in single supply devices.
		Added a link to MAX 10 High-Speed LVDS I/O User Guide for the list of I/O standards supported in single supply and dual supply devices.
		Added a statement in PLL Specifications for Intel MAX 10 Single Supply Device table: For V36 package, the PLL specification is based on single supply devices.
		Added Internal Oscillator Specifications from Intel MAX 10 Clocking and PLL User Guide.
		Added UFM specifications for serial interface.
		Updated total harmonic distortion (THD) specifications as follows:
		— Single supply devices: Updated from 65 dB to -65 dB
		 — Dual supply devices: Updated from 70 dB to −70 dB (updated from 65 dB to −65 dB for dual function pin)
		Added condition for On-Chip Temperature Sensor—Absolute accuracy parameter in ADC Performance Specifications for Intel MAX 10 Dual Supply Devices table. The condition is: with 64 samples averaging.
		Updated the description in Periphery Performance Specifications to mention that proper timing closure is required in design.
		Updated HSIODR and f _{HSCLK} specifications for x10 and x7 modes in True LVDS Transmitter Timing Specifications for Intel MAX 10 Dual Supply Devices.
		• Added specifications for low-speed I/O performance pin sampling window in LVDS Receiver Timing Specifications for Intel MAX 10 Single Supply Devices table: Max = 900 ps for -C7, -I7, -A7, and -C8 speed grades.
		Added t _{RU_nCONFIG} and t _{RU_nRSTIMER} specifications for different devices in Remote System Upgrade Circuitry Timing Specifications for Intel MAX 10 Devices table.
		Removed the word "internal oscillator" in User Watchdog Timer Specifications for Intel MAX 10 Devices table to avoid confusion.
		Added IOE programmable delay specifications.
September 2014	2014.09.22	Initial release.