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Figure 1.2. C8051F121/125 Block Diagram
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Figure 1.6. C8051F131/133 Block Diagram
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1.3. JTAG Debug and Boundary Scan

JTAG boundary scan and debug circuitry is included which provides non-intrusive, full speed, in-circuit
debugging using the production part installed in the end application, via the four-pin JTAG interface. The
JTAG port is fully compliant to IEEE 1149.1, providing full boundary scan for test and manufacturing pur-
poses.

Silicon Labs' debugging system supports inspection and modification of memory and registers, break-
points, watchpoints, a stack monitor, and single stepping. No additional target RAM, program memory, tim-
ers, or communications channels are required. All the digital and analog peripherals are functional and
work correctly while debugging. All the peripherals (except for the ADC and SMBus) are stalled when the
MCU is halted, during single stepping, or at a breakpoint in order to keep them synchronized.

The C8051F120DK development kit provides all the hardware and software necessary to develop applica-
tion code and perform in-circuit debugging with the C8051F12x or C8051F13x MCUs.

The kit includes a Windows (95 or later) development environment, a serial adapter for connecting to the
JTAG port, and a target application board with a C8051F120 MCU installed.  All of the necessary commu-
nication cables and a wall-mount power supply are also supplied with the development kit. Silicon Labs’
debug environment is a vastly superior configuration for developing and debugging embedded applications
compared to standard MCU emulators, which use on-board "ICE Chips" and target cables and require the
MCU in the application board to be socketed. Silicon Labs' debug environment both increases ease of use
and preserves the performance of the precision, on-chip analog peripherals.

Figure 1.9. Development/In-System Debug Diagram
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1.4. 16 x 16 MAC (Multiply and Accumulate) Engine

The C8051F120/1/2/3 and C8051F130/1/2/3 devices include a multiply and accumulate engine which can
be used to speed up many mathematical operations. MAC0 contains a 16-by-16 bit multiplier and a 40-bit
adder, which can perform integer or fractional multiply-accumulate and multiply operations on signed input
values in two SYSCLK cycles. A rounding engine provides a rounded 16-bit fractional result after an addi-
tional (third) SYSCLK cycle. MAC0 also contains a 1-bit arithmetic shifter that will left or right-shift the con-
tents of the 40-bit accumulator in a single SYSCLK cycle.

Figure 1.10. MAC0 Block Diagram
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1.10. 12-bit Digital to Analog Converters

The C8051F12x devices have two integrated 12-bit Digital to Analog Converters (DACs).  The MCU data
and control interface to each DAC is via the Special Function Registers. The MCU can place either or both
of the DACs in a low power shutdown mode.

The DACs are voltage output mode and include a flexible output scheduling mechanism. This scheduling
mechanism allows DAC output updates to be forced by a software write or scheduled on a Timer 2, 3, or 4
overflow. The DAC voltage reference is supplied from the dedicated VREFD input pin on the 100-pin TQFP
devices or via the internal Voltage reference on the 64-pin TQFP devices. The DACs are especially useful
as references for the comparators or offsets for the differential inputs of the ADCs.

Figure 1.15. DAC System Block Diagram
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Table 3.2. Global DC Electrical Characteristics (C8051F124/5/6/7)
–40 to +85 °C, 50 MHz System Clock unless otherwise specified.

Parameter Conditions Min Typ Max Units

Analog Supply Voltage1 2.7 3.0 3.6 V

Analog Supply Current Internal REF, ADC, DAC, Com-
parators all active

— 1.7 — mA

Analog Supply Current with 
analog sub-systems inactive

Internal REF, ADC, DAC, Com-
parators all disabled, oscillator 
disabled

— 0.2 — µA

Analog-to-Digital Supply 
Delta (|VDD – AV+|)

— — 0.5 V

Digital Supply Voltage 2.7 3.0 3.6 V

Digital Supply Current with 
CPU active

VDD = 3.0 V, Clock = 50 MHz
VDD = 3.0 V, Clock = 1 MHz
VDD = 3.0 V, Clock = 32 kHz

— 35
1

33

— mA
mA
µA

Digital Supply Current with 
CPU inactive (not accessing 
Flash)

VDD = 3.0 V, Clock = 50 MHz
VDD = 3.0 V, Clock = 1 MHz
VDD = 3.0 V, Clock = 32 kHz

— 27
0.4
15

— mA
mA
µA

Digital Supply Current (shut-
down)

Oscillator not running — 0.4 — µA

Digital Supply RAM Data 
Retention Voltage

— 1.5 — V

SYSCLK (System Clock)2,3 0 — 50 MHz

Specified Operating 
Temperature Range

–40 — +85 °C

Notes:
1. Analog Supply AV+ must be greater than 1 V for VDD monitor to operate.
2. SYSCLK is the internal device clock. For operational speeds in excess of 30 MHz, SYSCLK must be derived 

from the phase-locked loop (PLL).
3. SYSCLK must be at least 32 kHz to enable debugging.
40 Rev. 1.4
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SFR Definition 8.4. DAC1H: DAC1 High Byte

SFR Definition 8.5. DAC1L: DAC1 Low Byte

Bits7–0: DAC1 Data Word Most Significant Byte.

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

SFR Address:
SFR Page:

0xD3
1

Bits7–0: DAC1 Data Word Least Significant Byte.

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

SFR Address:
SFR Page:

0xD2
1

Rev. 1.4 109
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Table 9.1. Voltage Reference Electrical Characteristics
VDD = 3.0 V, AV+ = 3.0 V, –40 to +85 °C unless otherwise specified.

Parameter Conditions Min Typ Max Units

Analog Bias Generator Power 
Supply Current

BIASE = 1
— 100 — µA

Internal Reference (REFBE = 1)

Output Voltage 25 °C ambient 2.36 2.43 2.48 V

VREF Short-Circuit Current — — 30 mA

VREF Temperature Coefficient — 15 — ppm/°C

Load Regulation Load = 0 to 200 µA to AGND — 0.5 — ppm/µA

VREF Turn-on Time 1
4.7 µF tantalum, 0.1 µF ceramic 
bypass

— 2 — ms

VREF Turn-on Time 2 0.1 µF ceramic bypass — 20 — µs

VREF Turn-on Time 3 no bypass cap — 10 — µs

Reference Buffer Power Sup-
ply Current

— 40 — µA

Power Supply Rejection — 140 — ppm/V

External Reference (REFBE = 0)

Input Voltage Range 1.00 — (AV+) – 0.3 V

Input Current — 0 1 µA
118 Rev. 1.4
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and a RET pops two record bits, also.) The stack record circuitry can also detect an overflow or underflow
on the 32-bit shift register, and can notify the debug software even with the MCU running at speed.

11.2.6. Special Function Registers

The direct-access data memory locations from 0x80 to 0xFF constitute the special function registers
(SFR’s). The SFR’s provide control and data exchange with the CIP-51's resources and peripherals. The
CIP-51 duplicates the SFR’s found in a typical 8051 implementation as well as implementing additional
SFR’s used to configure and access the sub-systems unique to the MCU. This allows the addition of new
functionality while retaining compatibility with the MCS-51™ instruction set. Table 11.2 lists the SFR’s
implemented in the CIP-51 System Controller.

The SFR registers are accessed whenever the direct addressing mode is used to access memory loca-
tions from 0x80 to 0xFF. SFR’s with addresses ending in 0x0 or 0x8 (e.g. P0, TCON, P1, SCON, IE, etc.)
are bit-addressable as well as byte-addressable. All other SFR’s are byte-addressable only. Unoccupied
addresses in the SFR space are reserved for future use. Accessing these areas will have an indeterminate
effect and should be avoided. Refer to the corresponding pages of the datasheet, as indicated in
Table 11.3, for a detailed description of each register.

11.2.6.1.SFR Paging

The CIP-51 features SFR paging, allowing the device to map many SFR’s into the 0x80 to 0xFF memory
address space. The SFR memory space has 256 pages. In this way, each memory location from 0x80 to
0xFF can access up to 256 SFR’s. The C8051F12x family of devices utilizes five SFR pages: 0, 1, 2, 3,
and F. SFR pages are selected using the Special Function Register Page Selection register, SFRPAGE
(see SFR Definition 11.3). The procedure for reading and writing an SFR is as follows:

1. Select the appropriate SFR page number using the SFRPAGE register.
2. Use direct accessing mode to read or write the special function register (MOV instruction).

11.2.6.2.Interrupts and SFR Paging

When an interrupt occurs, the SFR Page Register will automatically switch to the SFR page containing the
flag bit that caused the interrupt. The automatic SFR Page switch function conveniently removes the bur-
den of switching SFR pages from the interrupt service routine. Upon execution of the RETI instruction, the
SFR page is automatically restored to the SFR Page in use prior to the interrupt. This is accomplished via
a three-byte SFR Page Stack. The top byte of the stack is SFRPAGE, the current SFR Page. The second
byte of the SFR Page Stack is SFRNEXT. The third, or bottom byte of the SFR Page Stack is SFRLAST.
On interrupt, the current SFRPAGE value is pushed to the SFRNEXT byte, and the value of SFRNEXT is
pushed to SFRLAST. Hardware then loads SFRPAGE with the SFR Page containing the flag bit associated
with the interrupt. On a return from interrupt, the SFR Page Stack is popped resulting in the value of
SFRNEXT returning to the SFRPAGE register, thereby restoring the SFR page context without software
intervention. The value in SFRLAST (0x00 if there is no SFR Page value in the bottom of the stack) of the
stack is placed in SFRNEXT register. If desired, the values stored in SFRNEXT and SFRLAST may be
modified during an interrupt, enabling the CPU to return to a different SFR Page upon execution of the
RETI instruction (on interrupt exit). Modifying registers in the SFR Page Stack does not cause a push or
pop of the stack. Only interrupt calls and returns will cause push/pop operations on the SFR Page Stack.
136 Rev. 1.4
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13.1. Power-on Reset

The C8051F120/1/2/3/4/5/6/7 family incorporates a power supply monitor that holds the MCU in the reset
state until VDD rises above the VRST level during power-up. See Figure 13.2 for timing diagram, and refer
to Table 13.1 for the Electrical Characteristics of the power supply monitor circuit. The RST pin is asserted
low until the end of the 100 ms VDD Monitor timeout in order to allow the VDD supply to stabilize. The VDD

Monitor reset is enabled and disabled using the external VDD monitor enable pin (MONEN).  When the VDD

Monitor is enabled, it is selected as a reset source using the PORSF bit.  If the RSTSRC register is written
by firmware, PORSF (RSTSRC.1) must be written to ‘1’ for the VDD Monitor to be effective.

On exit from a power-on reset, the PORSF flag (RSTSRC.1) is set by hardware to logic 1. All of the other
reset flags in the RSTSRC Register are indeterminate. PORSF is cleared by all other resets. Since all
resets cause program execution to begin at the same location (0x0000) software can read the PORSF flag
to determine if a power-up was the cause of reset. The contents of internal data memory should be
assumed to be undefined after a power-on reset.

Figure 13.2. Reset Timing

13.2. Power-fail Reset

When a power-down transition or power irregularity causes VDD to drop below VRST, the power supply
monitor will drive the RST pin low and return the CIP-51 to the reset state. When VDD returns to a level
above VRST, the CIP-51 will leave the reset state in the same manner as that for the power-on reset (see
Figure 13.2). Note that even though internal data memory contents are not altered by the power-fail reset,
it is impossible to determine if VDD dropped below the level required for data retention. If the PORSF flag is
set to logic 1, the data may no longer be valid.
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The Flash Access Limit security feature (see SFR Definition 15.1) protects proprietary program code and
data from being read by software running on the device. This feature provides support for OEMs that wish
to program the MCU with proprietary value-added firmware before distribution. The value-added firmware
can be protected while allowing additional code to be programmed in remaining program memory space
later.

The Flash Access Limit (FAL) is a 17-bit address that establishes two logical partitions in the program
memory space. The first is an upper partition consisting of all the program memory locations at or above
the FAL address, and the second is a lower partition consisting of all the program memory locations start-
ing at 0x00000 up to (but excluding) the FAL address. Software in the upper partition can execute code in
the lower partition, but is prohibited from reading locations in the lower partition using the MOVC instruc-
tion. (Executing a MOVC instruction from the upper partition with a source address in the lower partition
will return indeterminate data.) Software running in the lower partition can access locations in both the
upper and lower partition without restriction. 

The Value-added firmware should be placed in the lower partition. On reset, control is passed to the value-
added firmware via the reset vector. Once the value-added firmware completes its initial execution, it
branches to a predetermined location in the upper partition. If entry points are published, software running
in the upper partition may execute program code in the lower partition, but it cannot read or change the
contents of the lower partition. Parameters may be passed to the program code running in the lower parti-
tion either through the typical method of placing them on the stack or in registers before the call or by plac-
ing them in prescribed memory locations in the upper partition.

The FAL address is specified using the contents of the Flash Access Limit Register. The 8 MSBs of the 17-
bit FAL address are determined by the setting of the FLACL register. Thus, the FAL can be located on 512-
byte boundaries anywhere in program memory space. However, the 1024-byte erase sector size essen-
tially requires that a 1024 boundary be used. The contents of a non-initialized FLACL security byte are
0x00, thereby setting the FAL address to 0x00000 and allowing read access to all locations in program
memory space by default.

SFR Definition 15.1. FLACL: Flash Access Limit 

Bits 7–0: FLACL: Flash Access Limit.
This register holds the most significant 8 bits of the 17-bit program memory read/write/erase 
limit address. The lower 9 bits of the read/write/erase limit are always set to 0. A write to this 
register sets the Flash Access Limit. This register can only be written once after any reset. 
Any subsequent writes are ignored until the next reset. To fully protect all addresses 
below this limit, bit 0 of FLACL should be set to ‘0’ to align the FAL on a 1024-byte 
Flash page boundary.

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:

SFR Address:
SFR Page:

0xB7
F
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SFR Definition 17.2. EMI0CF: External Memory Configuration

Bits7–6: Unused. Read = 00b. Write = don’t care.
Bit5: PRTSEL: EMIF Port Select.

0: EMIF active on P0–P3.
1: EMIF active on P4–P7.

Bit4: EMD2: EMIF Multiplex Mode Select.
0: EMIF operates in multiplexed address/data mode.
1: EMIF operates in non-multiplexed mode (separate address and data pins).

Bits3–2: EMD1-0: EMIF Operating Mode Select.
These bits control the operating mode of the External Memory Interface.
00: Internal Only: MOVX accesses on-chip XRAM only. All effective addresses alias to on-
chip memory space.
01: Split Mode without Bank Select: Accesses below the 8 k boundary are directed on-chip. 
Accesses above the 8 k boundary are directed off-chip. 8-bit off-chip MOVX operations use 
the current contents of the Address High port latches to resolve upper address byte. Note 
that in order to access off-chip space, EMI0CN must be set to a page that is not contained in 
the on-chip address space.
10: Split Mode with Bank Select: Accesses below the 8 k boundary are directed on-chip. 
Accesses above the 8k boundary are directed off-chip. 8-bit off-chip MOVX operations use 
the contents of EMI0CN to determine the high-byte of the address.
11: External Only: MOVX accesses off-chip XRAM only. On-chip XRAM is not visible to the 
CPU.

Bits1–0: EALE1–0: ALE Pulse-Width Select Bits (only has effect when EMD2 = 0).
00: ALE high and ALE low pulse width = 1 SYSCLK cycle.
01: ALE high and ALE low pulse width = 2 SYSCLK cycles.
10: ALE high and ALE low pulse width = 3 SYSCLK cycles.
11: ALE high and ALE low pulse width = 4 SYSCLK cycles.

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

- - PRTSEL EMD2 EMD1 EMD0 EALE1 EALE0 00000011
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

SFR Address:
SFR Page:

0xA3
0

Rev. 1.4 221
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Table 18.1. Port I/O DC Electrical Characteristics

VDD = 2.7 to 3.6 V, –40 to +85 °C unless otherwise specified.

Parameter Conditions Min Typ Max Units

Output High Voltage 
(VOH)

IOH = -3 mA, Port I/O Push-Pull
IOH = -10 µA, Port I/O Push-Pull
IOH = -10 mA, Port I/O Push-Pull

VDD – 0.7
VDD – 0.1

VDD – 0.8

V

Output Low Voltage 
(VOL)

IOL = 8.5 mA
IOL = 10 µA
IOL = 25 mA 1.0

0.6
0.1

V

Input High Voltage (VIH) 0.7 x VDD

Input Low Voltage (VIL)
0.3 x 
VDD

Input Leakage Current
DGND < Port Pin < VDD, Pin Tri-state
Weak Pullup Off
Weak Pullup On 10

± 1
µA

Input Capacitance 5 pF
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18.1.7. Crossbar Pin Assignment Example

In this example (Figure 18.6), we configure the Crossbar to allocate Port pins for UART0, the SMBus,
UART1, /INT0, and /INT1 (8 pins total). Additionally, we configure the External Memory Interface to oper-
ate in Multiplexed mode and to appear on the Low ports. Further, we configure P1.2, P1.3, and P1.4 for
Analog Input mode so that the voltages at these pins can be measured by ADC2. The configuration steps
are as follows:

1. XBR0, XBR1, and XBR2 are set such that UART0EN = 1, SMB0EN = 1, INT0E = 1, 
INT1E = 1, and EMIFLE = 1. Thus: XBR0 = 0x05, XBR1 = 0x14, and XBR2 = 0x02.

2. We configure the External Memory Interface to use Multiplexed mode and to appear on the
Low ports. PRTSEL = 0, EMD2 = 0.

3. We configure the desired Port 1 pins to Analog Input mode by setting P1MDIN to 0xE3 
(P1.4, P1.3, and P1.2 are Analog Inputs, so their associated P1MDIN bits are set to logic 0).

4. We enable the Crossbar by setting XBARE = 1: XBR2 = 0x42.
- UART0 has the highest priority, so P0.0 is assigned to TX0, and P0.1 is assigned to RX0.
- The SMBus is next in priority order, so P0.2 is assigned to SDA, and P0.3 is assigned to

SCL.
- UART1 is next in priority order, so P0.4 is assigned to TX1. Because the External Memory

Interface is selected on the lower Ports, EMIFLE = 1, which causes the Crossbar to skip
P0.6 (/RD) and P0.7 (/WR). Because the External Memory Interface is configured in Multi-
plexed mode, the Crossbar will also skip P0.5 (ALE). RX1 is assigned to the next non-
skipped pin, which in this case is P1.0.

- /INT0 is next in priority order, so it is assigned to P1.1.
- P1MDIN is set to 0xE3, which configures P1.2, P1.3, and P1.4 as Analog Inputs, causing

the Crossbar to skip these pins.
- /INT1 is next in priority order, so it is assigned to the next non-skipped pin, which is P1.5.
- The External Memory Interface will drive Ports 2 and 3 (denoted by red dots in

Figure 18.6) during the execution of an off-chip MOVX instruction.
5. We set the UART0 TX pin (TX0, P0.0) and UART1 TX pin (TX1, P0.4) outputs to Push-Pull by

setting P0MDOUT = 0x11.
6. We configure all EMIF-controlled pins to push-pull output mode by setting P0MDOUT |= 0xE0;

P2MDOUT = 0xFF; P3MDOUT = 0xFF.
7. We explicitly disable the output drivers on the 3 Analog Input pins by setting P1MDOUT =

0x00 (configure outputs to Open-Drain) and P1 = 0xFF (a logic 1 selects the high-impedance
state).
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SFR Definition 18.6. P1: Port1 Data

SFR Definition 18.7. P1MDIN: Port1 Input Mode

Bits7–0: P1.[7:0]: Port1 Output Latch Bits.
(Write - Output appears on I/O pins per XBR0, XBR1, and XBR2 Registers)
0: Logic Low Output.
1: Logic High Output (open if corresponding P1MDOUT.n bit = 0).
(Read - Regardless of XBR0, XBR1, and XBR2 Register settings).
0: P1.n pin is logic low.
1: P1.n pin is logic high.

Notes:
1.On C8051F12x devices, P1.[7:0] can be configured as inputs to ADC2 as AIN2.[7:0], in which 

case they are ‘skipped’ by the Crossbar assignment process and their digital input paths are 
disabled, depending on P1MDIN (See SFR Definition 18.7). Note that in analog mode, the 
output mode of the pin is determined by the Port 1 latch and P1MDOUT (SFR Definition 18.8). 
See Section “7. ADC2 (8-Bit ADC, C8051F12x Only)” on page 91 for more information 
about ADC2.

2. P1.[7:0] can be driven by the External Data Memory Interface (as Address[15:8] in Non-
multiplexed mode). See Section “17. External Data Memory Interface and On-Chip 
XRAM” on page 219 for more information about the External Memory Interface.

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0 11111111

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
Bit 

Addressable

SFR Address:
SFR Page:

0x90
All Pages

Bits7–0: P1MDIN.[7:0]: Port 1 Input Mode Bits.
0: Port Pin is configured in Analog Input mode. The digital input path is disabled (a read from 
the Port bit will always return ‘0’). The weak pullup on the pin is disabled.
1: Port Pin is configured in Digital Input mode. A read from the Port bit will return the logic 
level at the Pin. When configured as a digital input, the state of the weak pullup for the port 
pin is determined by the WEAKPUD bit (XBR2.7, see SFR Definition 18.3).

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

11111111
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

SFR Address:
SFR Page:

0xAD
F
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Figure 20.8. SPI Master Timing (CKPHA = 0)

 

Figure 20.9. SPI Master Timing (CKPHA = 1)
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21.2. Multiprocessor Communications

Modes 2 and 3 support multiprocessor communication between a master processor and one or more slave
processors by special use of the ninth data bit and the built-in UART0 address recognition hardware. When
a master processor wants to transmit to one or more slaves, it first sends an address byte to select the tar-
get(s). An address byte differs from a data byte in that its ninth bit is logic 1; in a data byte, the ninth bit is
always set to logic 0. UART0 will recognize as “valid” (i.e., capable of causing an interrupt) two types of
addresses: (1) a masked address and (2) a broadcast address at any given time. Both are described
below.

21.2.1. Configuration of a Masked Address

The UART0 address is configured via two SFR’s: SADDR0 (Serial Address) and SADEN0 (Serial Address
Enable). SADEN0 sets the bit mask for the address held in SADDR0: bits set to logic 1 in SADEN0 corre-
spond to bits in SADDR0 that are checked against the received address byte; bits set to logic 0 in SADEN0
correspond to “don’t care” bits in SADDR0.

Setting the SM20 bit (SCON0.5) configures UART0 such that when a stop bit is received, UART0 will gen-
erate an interrupt only if the ninth bit is logic 1 (RB80 = ‘1’) and the received data byte matches the UART0
slave address. Following the received address interrupt, the slave will clear its SM20 bit to enable interrupts
on the reception of the following data byte(s). Once the entire message is received, the addressed slave
resets its SM20 bit to ignore all transmissions until it receives the next address byte. While SM20 is logic 1,
UART0 ignores all bytes that do not match the UART0 address and include a ninth bit that is logic 1.

21.2.2. Broadcast Addressing

Multiple addresses can be assigned to a single slave and/or a single address can be assigned to multiple
slaves, thereby enabling "broadcast" transmissions to more than one slave simultaneously. The broadcast
address is the logical OR of registers SADDR0 and SADEN0, and ‘0’s of the result are treated as “don’t
cares”. Typically a broadcast address of 0xFF (hexadecimal) is acknowledged by all slaves, assuming
“don’t care” bits as ‘1’s. The master processor can be configured to receive all transmissions or a protocol
can be implemented such that the master/slave role is temporarily reversed to enable half-duplex trans-
mission between the original master and slave(s)..

Note in the above examples 4, 5, and 6, each slave would recognize as “valid” an address of 0xFF as a
broadcast address. Also note that examples 4, 5, and 6 uses the same SADDR0 and SADEN0 register
values as shown in the examples 1, 2, and 3 respectively (slaves #1, 2, and 3). Thus, a master could
address each slave device individually using a masked address, and also broadcast to all three slave
devices. For example, if a Master were to send an address “11110101”, only slave #1 would recognize the
address as valid. If a master were to then send an address of “11111111”, all three slave devices would rec-
ognize the address as a valid broadcast address.

Example 1, SLAVE #1 Example 2, SLAVE #2 Example 3, SLAVE #3
SADDR0 = 00110101 SADDR0 = 00110101 SADDR0 = 00110101
SADEN0 = 00001111 SADEN0 = 11110011 SADEN0 = 11000000

UART0 Address = xxxx0101 UART0 Address = 0011xx01 UART0 Address = 00xxxxxx

Example 4, SLAVE #1 Example 5, SLAVE #2 Example 6, SLAVE #3
SADDR0 = 00110101 SADDR0 = 00110101 SADDR0 = 00110101
SADEN0 = 00001111 SADEN0 = 11110011 SADEN0 = 11000000

Broadcast Address = 00111111 Broadcast Address = 11110111 Broadcast Address = 11110101
Where all ZEROES in the Broadcast address are don’t cares.
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22. UART1
UART1 is an asynchronous, full duplex serial port offering modes 1 and 3 of the standard 8051 UART.
Enhanced baud rate support allows a wide range of clock sources to generate standard baud rates (details
in Section “22.1. Enhanced Baud Rate Generation” on page 300). Received data buffering allows
UART1 to start reception of a second incoming data byte before software has finished reading the previous
data byte.

UART1 has two associated SFRs: Serial Control Register 1 (SCON1) and Serial Data Buffer 1 (SBUF1).
The single SBUF1 location provides access to both transmit and receive registers. Reading SBUF1
accesses the buffered Receive register; writing SBUF1 accesses the Transmit register. 

With UART1 interrupts enabled, an interrupt is generated each time a transmit is completed (TI1 is set in
SCON1), or a data byte has been received (RI1 is set in SCON1). The UART1 interrupt flags are not
cleared by hardware when the CPU vectors to the interrupt service routine. They must be cleared manually
by software, allowing software to determine the cause of the UART1 interrupt (transmit complete or receive
complete).

Figure 22.1. UART1 Block Diagram
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23.2.3. Auto-Reload Mode

In Auto-Reload Mode, the counter/timer can be configured to count up or down and cause an interrupt/flag
to occur upon an overflow/underflow event. When counting up, the counter/timer will set its overflow/under-
flow flag (TFn) and cause an interrupt (if enabled) upon overflow/underflow, and the values in the Reload/
Capture Registers (RCAPnH and RCAPnL) are loaded into the timer and the timer is restarted. When the
Timer External Enable Bit (EXENn) bit is set to ‘1’ and the Decrement Enable Bit (DCENn) is ‘0’, a falling
edge (‘1’-to-‘0’ transition) on the TnEX pin will cause a timer reload. Note that timer overflows will also
cause auto-reloads. When DCENn is set to ‘1’, the state of the TnEX pin controls whether the counter/timer
counts up (increments) or down (decrements), and will not cause an auto-reload or interrupt event (Timer 3
shares the T2EX pin with Timer 2). See Section 23.2.1 for information concerning configuration of a timer
to count down.

When counting down, the counter/timer will set its overflow/underflow flag (TFn) and cause an interrupt (if
enabled) when the value in the TMRnH and TMRnL registers matches the 16-bit value in the Reload/Cap-
ture Registers (RCAPnH and RCAPnL). This is considered an underflow event, and will cause the timer to
load the value 0xFFFF. The timer is automatically restarted when an underflow occurs.

Counter/Timer with Auto-Reload mode is selected by clearing the CP/RLn bit. Setting TRn to logic 1
enables and starts the timer. 

In Auto-Reload Mode, the External Flag (EXFn) toggles upon every overflow or underflow and does not
cause an interrupt. The EXFn flag can be used as the most significant bit (MSB) of a 17-bit counter.

.

Figure 23.5. Tn Auto-reload (T2,3,4)  and Toggle Mode (T2,4) Block Diagram
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Important Note About the PCA0CN Register: If the main PCA counter (PCA0H : PCA0L) overflows
during the execution phase of a read-modify-write instruction (bit-wise SETB or CLR, ANL, ORL, XRL) that
targets the PCA0CN register, the CF (Counter Overflow) bit will not be set. If the CF flag is used by soft-
ware to keep track of counter overflows, the following steps should be taken when performing a bit-wise
operation on the PCA0CN register:

Step 1. Disable global interrupts.
Step 2. Read PCA0L. This will latch the value of PCA0H.
Step 3. Read PCA0H, saving the value.
Step 4. Execute the bit-wise operation on CCFn (for example, CLR CCF0, or CCF0 = 0;).
Step 5. Read PCA0L.
Step 6. Read PCA0H, saving the value.
Step 7. If the value of PCA0H read in Step 3 is 0xFF and the value for PCA0H read in Step 6 is 

0x00, then manually set the CF bit in software (for example, SETB CF, or CF = 1;).
Step 8. Re-enable interrupts.
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