E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	100MHz
Connectivity	EBI/EMI, SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	64
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8.25K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x8b, 8x10b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f122r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Figures

1.	System Overview	
	Figure 1.1. C8051F120/124 Block Diagram	21
	Figure 1.2. C8051F121/125 Block Diagram	22
	Figure 1.3. C8051F122/126 Block Diagram	23
	Figure 1.4. C8051F123/127 Block Diagram	24
	Figure 1.5. C8051F130/132 Block Diagram	25
	Figure 1.6. C8051F131/133 Block Diagram	26
	Figure 1.7. On-Board Clock and Reset	28
	Figure 1.8. On-Chip Memory Map	29
	Figure 1.9. Development/In-System Debug Diagram	30
	Figure 1.10. MAC0 Block Diagram	31
	Figure 1.11. Digital Crossbar Diagram	32
	Figure 1.12. PCA Block Diagram	33
	Figure 1.13. 12-Bit ADC Block Diagram	34
	Figure 1.14. 8-Bit ADC Diagram	35
	Figure 1.15. DAC System Block Diagram	36
	Figure 1.16. Comparator Block Diagram	37
2.	Absolute Maximum Ratings	
3.	Global DC Electrical Characteristics	
4.	Pinout and Package Definitions	
	Figure 4.1. C8051F120/2/4/6 Pinout Diagram (TQFP-100)	49
	Figure 4.2. C8051F130/2 Pinout Diagram (TQFP-100)	50
	Figure 4.3. TQFP-100 Package Drawing	51
	Figure 4.4. C8051F121/3/5/7 Pinout Diagram (TQFP-64)	52
	Figure 4.5. C8051F131/3 Pinout Diagram (TQFP-64)	53
	Figure 4.6. TQFP-64 Package Drawing	54
5.	ADC0 (12-Bit ADC, C8051F120/1/4/5 Only)	
	Figure 5.1. 12-Bit ADC0 Functional Block Diagram	55
	Figure 5.2. Typical Temperature Sensor Transfer Function	56
	Figure 5.3. ADC0 Track and Conversion Example Timing	58
	Figure 5.4. ADC0 Equivalent Input Circuits	59
	Figure 5.5. ADC0 Data Word Example	65
	Figure 5.6. 12-Bit ADC0 Window Interrupt Example:	
	Right Justified Single-Ended Data	68
	Figure 5.7. 12-Bit ADC0 Window Interrupt Example:	
	Right Justified Differential Data	69
	Figure 5.8. 12-Bit ADC0 Window Interrupt Example:	
	Left Justified Single-Ended Data	70
	Figure 5.9. 12-Bit ADC0 Window Interrupt Example:	
	Left Justified Differential Data	71

6.	ADC0 (10-Bit ADC, C8051F122/3/6/7 and C8051F13x Only)	
	Figure 6.1. 10-Bit ADC0 Functional Block Diagram	73
	Figure 6.2. Typical Temperature Sensor Transfer Function	74
	Figure 6.3. ADC0 Track and Conversion Example Timing	76
	Figure 6.4. ADC0 Equivalent Input Circuits	77
	Figure 6.5. ADC0 Data Word Example	83
	Figure 6.6. 10-Bit ADC0 Window Interrupt Example:	
	Right Justified Single-Ended Data	86
	Figure 6.7 10-Bit ADC0 Window Interrupt Example:	00
	Right Justified Differential Data	87
	Figure 6.8 10-Bit ADC0 Window Interrupt Example	0.
	L eft Justified Single-Ended Data	88
	Figure 6.9 10-Bit ADC0 Window Interrupt Example	00
	Left Justified Differential Data	89
7.	ADC2 (8-Bit ADC, C8051F12x Only)	00
••	Figure 7.1 ADC2 Eunctional Block Diagram	91
	Figure 7.2 ADC2 Track and Conversion Example Timing	93
	Figure 7.3 ADC2 Equivalent Input Circuit	94
	Figure 7.4 ADC2 Data Word Example	99
	Figure 7.5 ADC2 Window Compare Examples Single-Ended Mode	100
	Figure 7.6 ADC2 Window Compare Examples, Differential Mode	101
8.	DACs. 12-Bit Voltage Mode (C8051F12x Only)	
•	Figure 8.1. DAC Functional Block Diagram	105
9.	Voltage Reference	
-	Figure 9.1. Voltage Reference Functional Block Diagram (C8051F120/2/4/6)	114
	Figure 9.2. Voltage Reference Functional Block Diagram (C8051F121/3/5/7)	115
	Figure 9.3. Voltage Reference Functional Block Diagram (C8051F130/1/2/3)	117
10	.Comparators	
	Figure 10.1. Comparator Functional Block Diagram	119
	Figure 10.2. Comparator Hysteresis Plot	121
11.	CIP-51 Microcontroller	
	Figure 11.1. CIP-51 Block Diagram	128
	Figure 11.2. Memory Map	133
	Figure 11.3. Address Memory Map for Instruction Fetches (128 kB Flash Only)	134
	Figure 11.4. SFR Page Stack	137
	Figure 11.5. SFR Page Stack While Using SFR Page 0x0F To Access Port 5	138
	Figure 11.6. SFR Page Stack After ADC2 Window Comparator Interrupt Occurs.	139
	Figure 11.7. SFR Page Stack Upon PCA Interrupt Occurring During an ADC2 ISR	140
	Figure 11.8. SFR Page Stack Upon Return From PCA Interrupt	140
	Figure 11.9. SFR Page Stack Upon Return From ADC2 Window Interrupt	141
12	Multiply And Accumulate (MAC0)	
	Figure 12.1. MAC0 Block Diagram	165
	Figure 12.2. Integer Mode Data Representation	166
	Figure 12.3. Fractional Mode Data Representation	166
	Figure 12.4. MAC0 Pipeline	167

Figure 1.2. C8051F121/125 Block Diagram

1.1.3. Additional Features

Several key enhancements are implemented in the CIP-51 core and peripherals to improve overall performance and ease of use in end applications.

The extended interrupt handler provides 20 interrupt sources into the CIP-51 (as opposed to 7 for the standard 8051), allowing the numerous analog and digital peripherals to interrupt the controller. An interrupt driven system requires less intervention by the MCU, giving it more effective throughput. The extra interrupt sources are very useful when building multi-tasking, real-time systems.

There are up to seven reset sources for the MCU: an on-board V_{DD} monitor, a Watchdog Timer, a missing clock detector, a voltage level detection from Comparator0, a forced software reset, the CNVSTR0 input pin, and the RST pin. The RST pin is bi-directional, accommodating an external reset, or allowing the internally generated POR to be output on the RST pin. Each reset source except for the V_{DD} monitor and Reset Input pin may be disabled by the user in software; the V_{DD} monitor is enabled/disabled via the MONEN pin. The Watchdog Timer may be permanently enabled in software after a power-on reset during MCU initialization.

The MCU has an internal, stand alone clock generator which is used by default as the system clock after any reset. If desired, the clock source may be switched on the fly to the external oscillator, which can use a crystal, ceramic resonator, capacitor, RC, or external clock source to generate the system clock. This can be extremely useful in low power applications, allowing the MCU to run from a slow (power saving) external crystal source, while periodically switching to the 24.5 MHz internal oscillator as needed. Additionally, an on-chip PLL is provided to achieve higher system clock speeds for increased throughput.

Figure 1.7. On-Board Clock and Reset

Figure 4.4. C8051F121/3/5/7 Pinout Diagram (TQFP-64)

8. DACs, 12-Bit Voltage Mode (C8051F12x Only)

The C8051F12x devices include two on-chip 12-bit voltage-mode Digital-to-Analog Converters (DACs). Each DAC has an output swing of 0 V to (VREF-1LSB) for a corresponding input code range of 0x000 to 0xFFF. The DACs may be enabled/disabled via their corresponding control registers, DAC0CN and DAC1CN. While disabled, the DAC output is maintained in a high-impedance state, and the DAC supply current falls to 1 μ A or less. The voltage reference for each DAC is supplied at the VREFD pin (C8051F120/2/4/6 devices) or the VREF pin (C8051F121/3/5/7 devices). Note that the VREF pin on C8051F121/3/5/7 devices may be driven by the internal voltage reference or an external source. If the internal voltage reference is used it must be enabled in order for the DAC outputs to be valid. See **Section** "9. Voltage Reference" on page 113 for more information on configuring the voltage reference for the DACs.

8.1. DAC Output Scheduling

Each DAC features a flexible output update mechanism which allows for seamless full-scale changes and supports jitter-free updates for waveform generation. The following examples are written in terms of DAC0, but DAC1 operation is identical.

Figure 8.1. DAC Functional Block Diagram

8.1.1. Update Output On-Demand

In its default mode (DAC0CN.[4:3] = '00') the DAC0 output is updated "on-demand" on a write to the highbyte of the DAC0 data register (DAC0H). It is important to note that writes to DAC0L are held, and have no effect on the DAC0 output until a write to DAC0H takes place. If writing a full 12-bit word to the DAC data registers, the 12-bit data word is written to the low byte (DAC0L) and high byte (DAC0H) data registers. Data is latched into DAC0 after a write to the corresponding DAC0H register, **so the write sequence should be DAC0L followed by DAC0H** if the full 12-bit resolution is required. The DAC can be used in 8bit mode by initializing DAC0L to the desired value (typically 0x00), and writing data to only DAC0H (also see **Section 8.2** for information on formatting the 12-bit DAC data word within the 16-bit SFR space).

8.1.2. Update Output Based on Timer Overflow

Similar to the ADC operation, in which an ADC conversion can be initiated by a timer overflow independently of the processor, the DAC outputs can use a Timer overflow to schedule an output update event. This feature is useful in systems where the DAC is used to generate a waveform of a defined sampling rate by eliminating the effects of variable interrupt latency and instruction execution on the timing of the DAC output. When the DACOMD bits (DACOCN.[4:3]) are set to '01', '10', or '11', writes to both DAC data registers (DACOL and DACOH) are held until an associated Timer overflow event (Timer 3, Timer 4, or Timer 2, respectively) occurs, at which time the DACOH:DACOL contents are copied to the DAC input latches allowing the DAC output to change to the new value.

8.2. DAC Output Scaling/Justification

In some instances, input data should be shifted prior to a DAC0 write operation to properly justify data within the DAC input registers. This action would typically require one or more load and shift operations, adding software overhead and slowing DAC throughput. To alleviate this problem, the data-formatting feature provides a means for the user to program the orientation of the DAC0 data word within data registers DAC0H and DAC0L. The three DAC0DF bits (DAC0CN.[2:0]) allow the user to specify one of five data word orientations as shown in the DAC0CN register definition.

DAC1 is functionally the same as DAC0 described above. The electrical specifications for both DAC0 and DAC1 are given in Table 8.1.

NOTES:

13. Reset Sources

Reset circuitry allows the controller to be easily placed in a predefined default condition. On entry to this reset state, the following occur:

- CIP-51 halts program execution.
- Special Function Registers (SFRs) are initialized to their defined reset values.
- External port pins are forced to a known configuration.
- Interrupts and timers are disabled.

All SFRs are reset to the predefined values noted in the SFR detailed descriptions. The contents of internal data memory are unaffected during a reset; any previously stored data is preserved. However, since the stack pointer SFR is reset, the stack is effectively lost even though the data on the stack are not altered.

The I/O port latches are reset to 0xFF (all logic 1's), activating internal weak pullups during and after the reset. For V_{DD} Monitor resets, the RST pin is driven low until the end of the V_{DD} reset timeout.

On exit from the reset state, the program counter (PC) is reset, and the system clock defaults to the internal oscillator running at its lowest frequency. Refer to Section "**14. Oscillators**" on page **185** for information on selecting and configuring the system clock source. The Watchdog Timer is enabled using its longest timeout interval (see Section "**13.7. Watchdog Timer Reset**" on page **179**). Once the system clock source is stable, program execution begins at location 0x0000.

There are seven sources for putting the MCU into the reset state: power-on, power-fail, external RST pin, external CNVSTR0 signal, software command, Comparator0, Missing Clock Detector, and Watchdog Timer. Each reset source is described in the following sections.

Figure 13.1. Reset Sources

Table 13.1. Reset Electrical Characteristics

-40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
RST Output Low Voltage	$I_{OL} = 8.5 \text{ mA}, V_{DD} = 2.7 \text{ to } 3.6 \text{ V}$	—	_	0.6	V
RST Input High Voltage		0.7 x V _{DD}	_	_	V
RST Input Low Voltage		_	_	0.3 x V _{DD}	
RST Input Leakage Current	$\overline{RST} = 0.0 \text{ V}$		50		μA
V _{DD} for RST Output Valid		1.0	_	_	V
AV+ for RST Output Valid		1.0			V
V _{DD} POR Threshold (V _{RST})*		2.40	2.55	2.70	V
Minimum \overline{RST} Low Time to Generate a System Reset		10	_	—	ns
Reset Time Delay	RST rising edge after V _{DD} crosses V _{RST} threshold	80	100	120	ms
Missing Clock Detector Timeout	Time from last system clock to reset initiation	100	220	500	μs
*Note: When operating at frequencies	s above 50 MHz, minimum ${ m V_{DD}}$ suppl	y Voltage is 3	3.0 V.		

–40 to +85 °C un	-40 to +85 °C unless otherwise specified								
Input	Multiplier	PII0flt	Output	Min	Тур	Max	Units		
Frequency	(Pll0mul)	Setting	Frequency						
5 MHz	20	0x0F	100 MHz		202		μs		
	13	0x0F	65 MHz		115		μs		
	16	0x1F	80 MHz		241		μs		
	9	0x1F	45 MHz		116		μs		
	12	0x2F	60 MHz		258		μs		
	6	0x2F	30 MHz		112		μs		
	10	0x3F	50 MHz		263		μs		
	5	0x3F	25 MHz		113		μs		
	4	0x01	100 MHz		42		μs		
	2	0x01	50 MHz		33		μs		
	3	0x11	75 MHz		48		μs		
25 MHz	2	0x11	50 MHz		17		μs		
25 MHz	2	0x21	50 MHz		42		μs		
	1	0x21	25 MHz		33		μs		
	2	0x31	50 MHz		60		μs		
	1	0x31	25 MHz		25		μs		

Table 14.3. PLL Lock Timing Characteristics

- 5. Select the memory mode (on-chip only, split mode without bank select, split mode with bank select, or off-chip only).
- 6. Set up timing to interface with off-chip memory or peripherals.

Each of these five steps is explained in detail in the following sections. The Port selection, Multiplexed mode selection, and Mode bits are located in the EMI0CF register shown in SFR Definition 17.2.

17.3. Port Selection and Configuration

The External Memory Interface can appear on Ports 3, 2, 1, and 0 (All Devices) or on Ports 7, 6, 5, and 4 (100-pin TQFP devices only), depending on the state of the PRTSEL bit (EMI0CF.5). If the lower Ports are selected, the EMIFLE bit (XBR2.1) must be set to a '1' so that the Crossbar will skip over P0.7 (/WR), P0.6 (/RD), and if multiplexed mode is selected P0.5 (ALE). For more information about the configuring the Crossbar, see Section "18.1. Ports 0 through 3 and the Priority Crossbar Decoder" on page 238.

The External Memory Interface claims the associated Port pins for memory operations ONLY during the execution of an off-chip MOVX instruction. Once the MOVX instruction has completed, control of the Port pins reverts to the Port latches or to the Crossbar (on Ports 3, 2, 1, and 0). See Section "18. Port Input/ Output" on page 235 for more information about the Crossbar and Port operation and configuration. The Port latches should be explicitly configured to 'park' the External Memory Interface pins in a dormant state, most commonly by setting them to a logic 1.

During the execution of the MOVX instruction, the External Memory Interface will explicitly disable the drivers on all Port pins that are acting as Inputs (Data[7:0] during a READ operation, for example). The Output mode of the Port pins (whether the pin is configured as Open-Drain or Push-Pull) is unaffected by the External Memory Interface operation, and remains controlled by the PnMDOUT registers. In most cases, the output modes of all EMIF pins should be configured for push-pull mode. See "Configuring the Output Modes of the Port Pins" on page 239.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
PGSEL7	PGSEL6	PGSEL5	PGSEL4	PGSEL3	PGSEL2	PGSEL1	PGSEL0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
							SFR Address: SFR Page:	0xA2 0
Bits7–0: 	PGSEL[7:0]: The XRAM F address whe RAM. 0x00: 0x000 0x01: 0x010 0xFE: 0xFE(0xFF: 0xFF(XRAM Page Page Select on using an 0 to 0x00FF 0 to 0x01FF 00 to 0xFEF	ge Select Bi Bits provid 8-bit MOV> - - F	its. le the high t < command	oyte of the 1 , effectively	6-bit exterr selecting a	nal data me 256-byte p	mory age of

SFR Definition 17.1. EMI0CN: External Memory Interface Control

17.6.2. Multiplexed Mode

17.6.2.1.16-bit MOVX: EMI0CF[4:2] = '001', '010', or '011'

Figure 17.7. Multiplexed 16-bit MOVX Timing

n an				3 6	
RXO		////			
SCK					
MISO					
MOSI				. ()	>
NSS					
SOA				M) U	nininini T
sci					
TX1					
jRX1					
CEXO			1		
CEX1					
CEX2					
CEX3					
CEX4					8
CEXS			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
eci			////		
CPO				<u></u>	<u> </u>
GP1	<u>.</u>				<u> </u>
T0	<u></u>				<u> </u>
3) 		//// 			, <i>M</i> , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1999 I I Tro				41) - 41) 	
, 				4// 4/ 	, , , , , , , , , , , , , , , , , , ,
TA					· ·///////////////////////////////////
TAFX					· · · · · · · · · · · · · · · · · · ·
ISVSCLK		 ////	 ////		· · · · · · · · · · · · · · · · · · ·
CNVSTRO		 Mil	 ////		
CNVSTR2					· · · · · · · · · · · · · · · · · · ·

Figure 18.5. Priority Crossbar Decode Table (EMIFLE = 1; EMIF in Non-Multiplexed Mode; P1MDIN = 0xFF)

18.1.7. Crossbar Pin Assignment Example

In this example (Figure 18.6), we configure the Crossbar to allocate Port pins for UART0, the SMBus, UART1, /INT0, and /INT1 (8 pins total). Additionally, we configure the External Memory Interface to operate in Multiplexed mode and to appear on the Low ports. Further, we configure P1.2, P1.3, and P1.4 for Analog Input mode so that the voltages at these pins can be measured by ADC2. The configuration steps are as follows:

- 1. XBR0, XBR1, and XBR2 are set such that UART0EN = 1, SMB0EN = 1, INT0E = 1, INT1E = 1, and EMIFLE = 1. Thus: XBR0 = 0x05, XBR1 = 0x14, and XBR2 = 0x02.
- We configure the External Memory Interface to use Multiplexed mode and to appear on the Low ports. PRTSEL = 0, EMD2 = 0.
- We configure the desired Port 1 pins to Analog Input mode by setting P1MDIN to 0xE3 (P1.4, P1.3, and P1.2 are Analog Inputs, so their associated P1MDIN bits are set to logic 0).
- 4. We enable the Crossbar by setting XBARE = 1: XBR2 = 0x42.
 - UART0 has the highest priority, so P0.0 is assigned to TX0, and P0.1 is assigned to RX0.
 - The SMBus is next in priority order, so P0.2 is assigned to SDA, and P0.3 is assigned to SCL.
 - UART1 is next in priority order, so P0.4 is assigned to TX1. Because the External Memory Interface is selected on the lower Ports, EMIFLE = 1, which causes the Crossbar to skip P0.6 (/RD) and P0.7 (/WR). Because the External Memory Interface is configured in Multiplexed mode, the Crossbar will also skip P0.5 (ALE). RX1 is assigned to the next nonskipped pin, which in this case is P1.0.
 - /INT0 is next in priority order, so it is assigned to P1.1.
 - P1MDIN is set to 0xE3, which configures P1.2, P1.3, and P1.4 as Analog Inputs, causing the Crossbar to skip these pins.
 - /INT1 is next in priority order, so it is assigned to the next non-skipped pin, which is P1.5.
 - The External Memory Interface will drive Ports 2 and 3 (denoted by red dots in Figure 18.6) during the execution of an off-chip MOVX instruction.
- 5. We set the UART0 TX pin (TX0, P0.0) and UART1 TX pin (TX1, P0.4) outputs to Push-Pull by setting P0MDOUT = 0x11.
- We configure all EMIF-controlled pins to push-pull output mode by setting P0MDOUT |= 0xE0; P2MDOUT = 0xFF; P3MDOUT = 0xFF.
- We explicitly disable the output drivers on the 3 Analog Input pins by setting P1MDOUT = 0x00 (configure outputs to Open-Drain) and P1 = 0xFF (a logic 1 selects the high-impedance state).

20.6. SPI Special Function Registers

SPI0 is accessed and controlled through four special function registers in the system controller: SPI0CN Control Register, SPI0DAT Data Register, SPI0CFG Configuration Register, and SPI0CKR Clock Rate Register. The four special function registers related to the operation of the SPI0 Bus are described in the following figures.

R	R/W	R/W	R/W	R	R	R	R	Reset Value
SPIBSY	MSTEN	CKPHA	CKPOL	SLVSEL	NSSIN	SRMT	RXBMT	00000111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
							SFR Address SFR Page	a: 0x9A a: 0
Bit 7:	SPIBSY: SP	I Busy (read	d only).			/ • •		
D'1 0	This bit is se	et to logic 1	when a SP	transfer is	in progress	(Master or	slave Mode	€).
Bit 6:	MSTEN: Ma	Ister Mode E	nable.		~			
	1: Enable m	aster mode	Operate il	n slave mou	e.			
Bit 5		In Clock Ph	. Operate a	s a master.				
Dit 0.	This bit cont	rols the SPI	0 clock pha	ise				
	0: Data cent	ered on firs	t edge of S	CK period.*				
	1: Data cent	ered on sec	cond edge o	of SCK peric	d.*			
Bit 4:	CKPOL: SP	I0 Clock Po	larity.	-				
	This bit cont	rols the SP	0 clock pol	arity.				
	0: SCK line	low in idle s	tate.					
D:4 0.	1: SCK line	high in idle :	state.					
BIT 3:	SLVSEL: SI	ave Selecte	d Flag (read	a only).	ia law india	oting SDIO i	in the color	tod alove lt
	is cleared to	logic 0 whe	n NSS is h	iah (slave n	nt selected) This hit d	oes not indi	icate the
	instantaneou	is value at t	the NSS pir	but rather	a de-alitch	ed version (of the pin in	
Bit 2:	NSSIN: NSS	S Instantane	ous Pin Inc	out (read on	v).			puti
	This bit mim	ics the insta	, antaneous v	value that is	present on	the NSS p	ort pin at the	e time that
	the register i	is read. This	s input is no	ot de-glitche	d.			
Bit 1:	SRMT: Shift	Register Er	mpty (Valid	in Slave Mo	de, read or	۱ly).		
	This bit will I	pe set to log	jic 1 when a	all data has	been transf	ferred in/ou	t of the shift	register,
	and there is	no new info	ormation av	ailable to re	ad from the	transmit b	uffer or write	e to the
	receive buffe	er. It returns	to logic U v	vnen a data	byte is trar	isterred to 1	ine snift reg	ister from
		Duiler OF Dy IT – 1 when	in Master l	1011 SCN. Mode				
Bit 0.	RXBMT Re	ceive Buffer	Frenty (Va	lid in Slave	Mode read	l only)		
Dit 0.	This bit will b	be set to loc	ic 1 when t	he receive k	ouffer has b	been read a	nd contains	no new
	information.	If there is no	, ew informat	ion available	e in the rec	eive buffer t	that has not	been read,
	this bit will re	eturn to logi	c 0.					
	NOTE: RXB	MT = 1 whe	en in Maste	r Mode.				
*N		مام مامغم ب				a a a la stat - U	-14 1.4	
"Note:	In slave mo	ue, data on	NIUSI IS Sa 2 SVSCI V	hefore the	e center of	each data l	on. In maste	er mode, data avimum
	settling time	for the slav	e device S	belote the t	1 for timin	n uala Dil, 10 a paramete	rs	
	sound inte		5 46 Miles. C			y paramete	10.	

SFR Definition 20.1. SPI0CFG: SPI0 Configuration

21. UART0

UART0 is an enhanced serial port with frame error detection and address recognition hardware. UART0 may operate in full-duplex asynchronous or half-duplex synchronous modes, and mutiproccessor communication is fully supported. Receive data is buffered in a holding register, allowing UART0 to start reception of a second incoming data byte before software has finished reading the previous data byte. A Receive Overrun bit indicates when new received data is latched into the receive buffer before the previously received byte has been read.

UART0 is accessed via its associated SFR's, Serial Control (SCON0) and Serial Data Buffer (SBUF0). The single SBUF0 location provides access to both transmit and receive registers. Reading SCON0 accesses the Receive register and writing SCON0 accesses the Transmit register.

UART0 may be operated in polled or interrupt mode. UART0 has two sources of interrupts: a Transmit Interrupt flag, TI0 (SCON0.1) set when transmission of a data byte is complete, and a Receive Interrupt flag, RI0 (SCON0.0) set when reception of a data byte is complete. UART0 interrupt flags are not cleared by hardware when the CPU vectors to the interrupt service routine; they must be cleared manually by software. This allows software to determine the cause of the UART0 interrupt (transmit complete or receive complete).

Figure 21.1. UART0 Block Diagram

SFR Definition	24.2.	PCA0MD:	PCA0	Mode
----------------	-------	---------	------	------

R/W	R/W	R/	W	R/W	R/W	R/W	R/W	R/W	Reset Value	
CIDL	-	-	-	-	CPS2	CPS1	CPS0	ECF	00000000	
Bit7	Bit6	Bi	t5	Bit4	Bit3	Bit2	Bit1	Bit0		
								SFR Addres SFR Pag	s: 0xD9 e: 0	
Bit7:	CIDL: PC	CA0 Coun	iter/Tim	ner Idle Co	ontrol.					
	Specifies	PCA0 be	havior	when CP	U is in Idle	Mode.				
	0: PCA0	continues	s to fur	ction norn	nally while t	he system o	controller is	in Idle Mo	de.	
	1: PCA0	operation	is sus	pended w	hile the sys	tem control	ler is in Idle	Mode.		
Bits6-4:	UNUSED	UNUSED. Read = 000b, Write = don't care.								
Bits3–1:	CPS2-CF	PS0: PCA	0 Cou	nter/Timer	Pulse Sele	ct.				
	These bits select the timebase source for the PCA0 counter									
	CP52	CP51	CP5	0	<u> </u>		nepase			
0 0 0 System clock divided by 12 0 0 1 System clock divided by 4										
0 0 0 System clock divided by 12 0 0 1 System clock divided by 4 0 1 0 Timer 0 overflow										
	0 0 1 System clock divided by 4 0 1 0 Timer 0 overflow									
	0 0 1 System clock divided by 12 0 0 1 System clock divided by 4 0 1 0 Timer 0 overflow 0 1 1 High-to-low transitions on ECI (max rate = system clock divided by 4)									
	Ū	•	•	divideo	d by 4)					
	1	0	0	Systen	n clock					
	1	0	1	Extern	al clock divi	ded by 8 (s	ynchronize	d with syst	em clock)	
	1	1	0	Reserv	/ed					
	1	1	1	Reserv	/ed					
Bit0:	1 1 0 Reserved 1 1 1 Reserved ECF: PCA Counter/Timer Overflow Interrupt Enable. This bit sets the masking of the PCA0 Counter/Timer Overflow (CF) interrupt. 0: Disable the CF interrupt. 1: Enable a PCA0 Counter/Timer Overflow interrupt request when CF (PCA0CN.7) is set.									

25. JTAG (IEEE 1149.1)

Each MCU has an on-chip JTAG interface and logic to support boundary scan for production and in-system testing, Flash read/write operations, and non-intrusive in-circuit debug. The JTAG interface is fully compliant with the IEEE 1149.1 specification. Refer to this specification for detailed descriptions of the Test Interface and Boundary-Scan Architecture. Access of the JTAG Instruction Register (IR) and Data Registers (DR) are as described in the Test Access Port and Operation of the IEEE 1149.1 specification.

The JTAG interface is accessed via four dedicated pins on the MCU: TCK, TMS, TDI, and TDO.

Through the 16-bit JTAG Instruction Register (IR), any of the eight instructions shown in Figure 25.1 can be commanded. There are three DR's associated with JTAG Boundary-Scan, and four associated with Flash read/write operations on the MCU.

Di+15		Reset Va	alue)0					
DILTO		ыю						
IR Value	Instruction	Description						
0x0000	EXTEST	elects the Boundary Data Register for control and observability of all evice pins						
0x0002	SAMPLE/ PRELOAD	Selects the Boundary Data Register for observability and presetting the scan-path latches	elects the Boundary Data Register for observability and presetting the can-path latches					
0x0004	IDCODE	Selects device ID Register						
0xFFFF	BYPASS	Selects Bypass Data Register						
0x0082	Flash Control	Selects FLASHCON Register to control how the interface logic respond to reads and writes to the FLASHDAT Register	s					
0x0083	Flash Data	Selects FLASHDAT Register for reads and writes to the Flash memory						
0x0084	Flash Address	Selects FLASHADR Register which holds the address of all Flash read, write, and erase operations						
0x0085	Flash Scale	Selects FLASHSCL Register which controls the Flash one-shot timer ar read-always enable	∩d					

JTAG Register Definition 25.1. IR: JTAG Instruction Register

