E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	50MHz
Connectivity	EBI/EMI, SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	64
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x8b, 8x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f124-gq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

17.5.3.Split Mode with Bank Select	225
17.5.4.External Only	
17.6.EMIF Timing	
17.6.1.Non-multiplexed Mode	
17.6.2.Multiplexed Mode	
18. Port Input/Output	235
18.1.Ports 0 through 3 and the Priority Crossbar Decoder	238
18.1.1.Crossbar Pin Assignment and Allocation	
18.1.2.Configuring the Output Modes of the Port Pins	239
18.1.3.Configuring Port Pins as Digital Inputs	240
18.1.4.Weak Pullups	240
18.1.5.Configuring Port 1 Pins as Analog Inputs	240
18.1.6.External Memory Interface Pin Assignments	241
18.1.7.Crossbar Pin Assignment Example	243
18.2.Ports 4 through 7 (100-pin TQFP devices only)	252
18.2.1.Configuring Ports which are not Pinned Out	252
18.2.2.Configuring the Output Modes of the Port Pins	252
18.2.3.Configuring Port Pins as Digital Inputs	
18.2.4.Weak Pullups	253
18.2.5.External Memory Interface	
19. System Management Bus / I2C Bus (SMBus0)	
19.1.Supporting Documents	
19.2.SMBus Protocol	
19.2.1.Arbitration	
19.2.2.Clock Low Extension	
19.2.3.SCL Low Timeout	
19.2.4.SCL High (SMBus Free) Timeout	261
19.3.SMBus Transfer Modes	
19.3.1.Master Transmitter Mode	
19.3.2.Master Receiver Mode	
19.3.3.Slave Transmitter Mode	
19.3.4.Slave Receiver Mode	
19.4.SMBus Special Function Registers	
19.4.1.Control Register	
19.4.2.Clock Rate Register	
19.4.3.Data Register	
19.4.4.Address Register	
19.4.5.Status Register	
20. Enhanced Serial Peripheral Interface (SPI0)	
20.1.Signal Descriptions	274
20.1.1.Master Out, Slave In (MOSI)	
20.1.2.Master In, Slave Out (MISO)	
20.1.3.Serial Clock (SCK)	
20.1.4.Slave Select (NSS)	2/4

1.9. 8-Bit Analog to Digital Converter

The C8051F12x devices have an on-board 8-bit SAR ADC (ADC2) with an 8-channel input multiplexer and programmable gain amplifier. This ADC features a 500 ksps maximum throughput and true 8-bit linearity with an INL of ±1LSB. Eight input pins are available for measurement. The ADC is under full control of the CIP-51 microcontroller via the Special Function Registers. The ADC2 voltage reference is selected between the analog power supply (AV+) and an external VREF pin. On the 100-pin TQFP devices, ADC2 has its own dedicated Voltage Reference input pin; on the 64-pin TQFP devices, ADC2 shares a Voltage Reference input pin with ADC0. User software may put ADC2 into shutdown mode to save power.

A programmable gain amplifier follows the analog multiplexer. The gain stage can be especially useful when different ADC input channels have widely varied input voltage signals, or when it is necessary to "zoom in" on a signal with a large DC offset (in differential mode, a DAC could be used to provide the DC offset). The PGA gain can be set in software to 0.5, 1, 2, or 4.

A flexible conversion scheduling system allows ADC2 conversions to be initiated by software commands, timer overflows, or an external input signal. ADC2 conversions may also be synchronized with ADC0 software-commanded conversions. Conversion completions are indicated by a status bit and an interrupt (if enabled), and the resulting 8-bit data word is latched into an SFR upon completion.

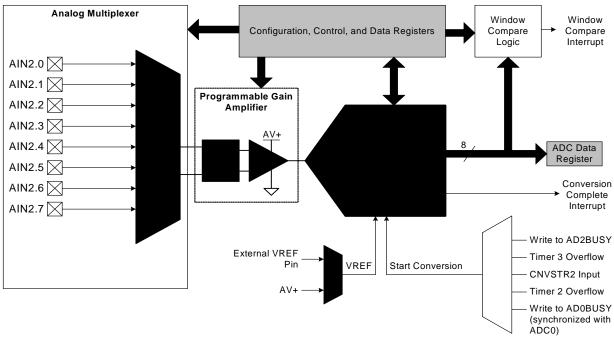


Figure 1.14. 8-Bit ADC Diagram

4. Pinout and Package Definitions

		Pin Nu	mbers			
Name	[·] F120 [·] F122 [·] F124 [·] F126	'F125	'F130 'F132	'F131 'F133	Туре	Description
V _{DD}	37, 64, 90	24, 41, 57	37, 64, 90	24, 41, 57		Digital Supply Voltage. Must be tied to +2.7 to +3.6 V.
DGND	38, 63, 89	25, 40, 56	38, 63, 89	25, 40, 56		Digital Ground. Must be tied to Ground.
AV+	11, 14	6	11, 14	6		Analog Supply Voltage. Must be tied to +2.7 to +3.6 V.
AGND	10, 13	5	10, 13	5		Analog Ground. Must be tied to Ground.
TMS	1	58	1	58	D In	JTAG Test Mode Select with internal pullup.
тск	2	59	2	59	D In	JTAG Test Clock with internal pullup.
TDI	3	60	3	60	D In	JTAG Test Data Input with internal pullup. TDI is latched on the rising edge of TCK.
TDO	4	61	4	61	D Out	JTAG Test Data Output with internal pullup. Data is shifted out on TDO on the falling edge of TCK. TDO output is a tri-state driver.
RST	5	62	5	62	D I/O	Device Reset. Open-drain output of internal V_{DD} monitor. Is driven low when V_{DD} is $< V_{RST}$ and MONEN is high. An external source can initiate a system reset by driving this pin low.
XTAL1	26	17	26	17	A In	Crystal Input. This pin is the return for the inter- nal oscillator circuit for a crystal or ceramic reso- nator. For a precision internal clock, connect a crystal or ceramic resonator from XTAL1 to XTAL2. If overdriven by an external CMOS clock, this becomes the system clock.
XTAL2	27	18	27	18	A Out	Crystal Output. This pin is the excitation driver for a crystal or ceramic resonator.
MONEN	28	19	28	19	D In	V_{DD} Monitor Enable. When tied high, this pin enables the internal V_{DD} monitor, which forces a system reset when V_{DD} is < V_{RST} . When tied low, the internal V_{DD} monitor is disabled. This pin must be tied high or low.

Table 4.1. Pin Definitions

		Pin Nu	mbers			
Name	[•] F120 [•] F122 [•] F124 [•] F126	_	'F130 'F132	'F131 'F133	Туре	Description
ALE/P4.5	93		93		D I/O	ALE Strobe for External Memory Address bus (multiplexed mode) Port 4.5 See Port Input/Output section for complete description.
RD/P4.6	92		92		D I/O	/RD Strobe for External Memory Address bus Port 4.6 See Port Input/Output section for complete description.
WR/P4.7	91		91		D I/O	/WR Strobe for External Memory Address bus Port 4.7 See Port Input/Output section for complete description.
A8/P5.0	88		88		D I/O	Bit 8 External Memory Address bus (Non-multi- plexed mode) Port 5.0 See Port Input/Output section for complete description.
A9/P5.1	87		87		D I/O	Port 5.1. See Port Input/Output section for complete description.
A10/P5.2	86		86		D I/O	Port 5.2. See Port Input/Output section for complete description.
A11/P5.3	85		85		D I/O	Port 5.3. See Port Input/Output section for complete description.
A12/P5.4	84		84		D I/O	Port 5.4. See Port Input/Output section for complete description.
A13/P5.5	83		83		D I/O	Port 5.5. See Port Input/Output section for complete description.
A14/P5.6	82		82		D I/O	Port 5.6. See Port Input/Output section for complete description.
A15/P5.7	81		81		D I/O	Port 5.7. See Port Input/Output section for complete description.

Table 4.1. Pin Definitions (Continued)

7.3. ADC2 Programmable Window Detector

The ADC2 Programmable Window Detector continuously compares the ADC2 output to user-programmed limits, and notifies the system when a desired condition is detected. This is especially effective in an interrupt-driven system, saving code space and CPU bandwidth while delivering faster system response times. The window detector interrupt flag (AD2WINT in register ADC2CN) can also be used in polled mode. The ADC2 Greater-Than (ADC2GT) and Less-Than (ADC2LT) registers hold the comparison values. Example comparisons for Differential and Single-ended modes are shown in Figure 7.6 and Figure 7.5, respectively. Notice that the window detector flag can be programmed to indicate when measured data is inside or outside of the user-programmed limits, depending on the contents of the ADC2LT and ADC2GT registers.

7.3.1. Window Detector In Single-Ended Mode

Figure 7.5 shows two example window comparisons for Single-ended mode, with ADC2LT = 0x20 and ADC2GT = 0x10. Notice that in Single-ended mode, the codes vary from 0 to VREF*(255/256) and are represented as 8-bit unsigned integers. In the left example, an AD2WINT interrupt will be generated if the ADC2 conversion word (ADC2) is within the range defined by ADC2GT and ADC2LT (if 0x10 < ADC2 < 0x20). In the right example, and AD2WINT interrupt will be generated if ADC2 is outside of the range defined by ADC2GT and ADC2LT (if ADC2 < 0x10 or ADC2 > 0x20).

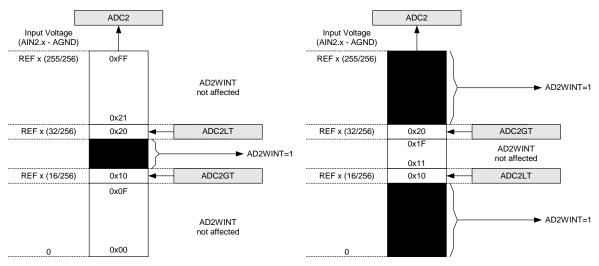


Figure 7.5. ADC2 Window Compare Examples, Single-Ended Mode

7.3.2. Window Detector In Differential Mode

Figure 7.6 shows two example window comparisons for differential mode, with ADC2LT = 0x10 (+16d) and ADC2GT = 0xFF (-1d). Notice that in Differential mode, the codes vary from -VREF to VREF*(127/128) and are represented as 8-bit 2's complement signed integers. In the left example, an AD2WINT interrupt will be generated if the ADC2 conversion word (ADC2L) is within the range defined by ADC2GT and ADC2LT (if 0xFF (-1d) < ADC2 < 0x0F (16d)). In the right example, an AD2WINT interrupt will be generated if ADC2 is outside of the range defined by ADC2GT and ADC2LT (if ADC2 < 0xFF (-1d) or ADC2 > 0x10 (+16d)).

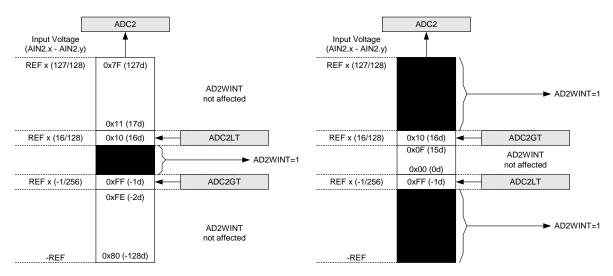


Figure 7.6. ADC2 Window Compare Examples, Differential Mode

		SFR Det	finition 8.	3. DAC0C	N: DAC0	Control					
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Valu			
DAC0EN	- ۱	-	DAC0MD'	1 DAC0MD0	DAC0DF2	DAC0DF1	DAC0DF0	0000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	,			
							SFR Address: SFR Page:	-			
Bit7:		isabled. DA	C0 Output p	oin is disable in is active; [er shutdowr	n mode.			
Bits6–5:		UNUSED. Read = 00b; Write = don't care.									
Bits4–3:											
	00: DAC ou	utput update	es occur on	a write to DA	C0H.						
	01: DAC ou	utput update	es occur on	Timer 3 over	flow.						
	10: DAC οι	utput update	es occur on	Timer 4 over	flow.						
	11: DAC ou	itput update	es occur on	Timer 2 over	flow.						
Bits2–0:	DAC0DF2-	-0: DAC0 D	ata Format	Bits:							
		-	ificant nibble e is in DAC0	e of the DAC	0 Data Word	d is in DAC	0H[3:0], wh	ile the lea			
		DAC0H			DACOL						
		MSB						LSE			
	sig	-	its are in DA	s of the DAC(COL[7:1].		DAC					
	N	ISB		Ī				LSB			
	010: The	e most sian	ificant 6-bits	s of the DAC) Data Word	d is in DAC	0H[5:0], wh	ile the lea			
			its are in DA	C0L[7:2].							
			its are in DA	C0L[7:2].		DAC0	L				
		nificant 6-bi	its are in DA	C0L[7:2].		DACO	L LSB				
	sig MSB 011: The	nificant 6-bi DAC0H	ificant 7-bits	s of the DAC) Data Word		LSB				
	sig MSB 011: The	nificant 6-bi DAC0H		s of the DAC) Data Word		LSB 0H[6:0], wh				
	sig MSB 011: The	nificant 6-bi DACOH	ificant 7-bits	s of the DAC) Data Word	d is in DAC	LSB 0H[6:0], wh				
M	sig MSB 011: The sig SB 1xx: The	nificant 6-bi DACOH e most sign nificant 5-bi DACOH e most sign	ificant 7-bits its are in DA	s of the DAC(COL[7:3].		d is in DAC DAC0	LSB 0H[6:0], wh L SB	ile the lea			
M	SB 1xx: The sig	nificant 6-bi DACOH e most sign nificant 5-bi DACOH e most sign	ificant 7-bits its are in DA	s of the DAC(COL[7:3].		d is in DAC DACO	LSB 0H[6:0], wh L SB 0H[7:0], wh	ile the lea			
	SB 1xx: The sig	nificant 6-bi DACOH e most sign nificant 5-bi DACOH e most sign nificant 4-bi	ificant 7-bits its are in DA	s of the DAC(COL[7:3].		d is in DAC DACO	LSB 0H[6:0], wh L SB 0H[7:0], wh	ile the lea			
MSB	SB 1xx: The sig	nificant 6-bi DACOH e most sign nificant 5-bi DACOH e most sign nificant 4-bi	ificant 7-bits its are in DA	s of the DAC(COL[7:3].		d is in DAC DACO	LSB 0H[6:0], wh L SB 0H[7:0], wh	ile the lea			
	SB 1xx: The sig	nificant 6-bi DACOH e most sign nificant 5-bi DACOH e most sign nificant 4-bi	ificant 7-bits its are in DA	s of the DAC(COL[7:3].		d is in DAC DACO	LSB 0H[6:0], wh L SB 0H[7:0], wh	ile the lea			

	ss: 0xD1	544	D 444	544	D 444	5.44	544	D (1)(1)	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value	
-	-	-	AD0VRS	AD2VRS	TEMPE	BIASE	REFBE	00000000	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Bits7–5: Bit4:	Bits7–5: UNUSED. Read = 000b; Write = don't care. Bit4: AD0VRS: ADC0 Voltage Reference Select.								
Bitti	0: ADC0 volta	•							
	1: ADC0 volta	•		•					
Bit3:	AD2VRS: AD	•		•					
Bito.	0: ADC2 volta								
	1: ADC2 volta	•		•					
Bit2:	TEMPE: Tem	•							
DRE.	0: Internal Ter			o Biti					
	1: Internal Ter								
Bit1:	BIASE: ADC/	•		nable Bit (N	/lust be '1' i	f using AD	C DAC or	VRFF)	
Bitti	0: Internal Bia					i donig / D	0, 27.0, 0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	1: Internal Bia								
Bit0:	REFBE: Inter		•••••	nable Bit					
Bito.									
	0: Internal Reference Buffer Off. 1: Internal Reference Buffer On. Internal voltage reference is driven on the VREF pin.								

SFR Definition 9.2. REF0CN: Reference Control (C8051F121/3/5/7)

and a RET pops two record bits, also.) The stack record circuitry can also detect an overflow or underflow on the 32-bit shift register, and can notify the debug software even with the MCU running at speed.

11.2.6. Special Function Registers

The direct-access data memory locations from 0x80 to 0xFF constitute the special function registers (SFR's). The SFR's provide control and data exchange with the CIP-51's resources and peripherals. The CIP-51 duplicates the SFR's found in a typical 8051 implementation as well as implementing additional SFR's used to configure and access the sub-systems unique to the MCU. This allows the addition of new functionality while retaining compatibility with the MCS-51[™] instruction set. Table 11.2 lists the SFR's implemented in the CIP-51 System Controller.

The SFR registers are accessed whenever the direct addressing mode is used to access memory locations from 0x80 to 0xFF. SFR's with addresses ending in 0x0 or 0x8 (e.g. P0, TCON, P1, SCON, IE, etc.) are bit-addressable as well as byte-addressable. All other SFR's are byte-addressable only. Unoccupied addresses in the SFR space are reserved for future use. Accessing these areas will have an indeterminate effect and should be avoided. Refer to the corresponding pages of the datasheet, as indicated in Table 11.3, for a detailed description of each register.

11.2.6.1.SFR Paging

The CIP-51 features *SFR paging*, allowing the device to map many SFR's into the 0x80 to 0xFF memory address space. The SFR memory space has 256 *pages*. In this way, each memory location from 0x80 to 0xFF can access up to 256 SFR's. The C8051F12x family of devices utilizes five SFR pages: 0, 1, 2, 3, and F. SFR pages are selected using the Special Function Register Page Selection register, SFRPAGE (see SFR Definition 11.3). The procedure for reading and writing an SFR is as follows:

- 1. Select the appropriate SFR page number using the SFRPAGE register.
- 2. Use direct accessing mode to read or write the special function register (MOV instruction).

11.2.6.2.Interrupts and SFR Paging

When an interrupt occurs, the SFR Page Register will automatically switch to the SFR page containing the flag bit that caused the interrupt. The automatic SFR Page switch function conveniently removes the burden of switching SFR pages from the interrupt service routine. Upon execution of the RETI instruction, the SFR page is automatically restored to the SFR Page in use prior to the interrupt. This is accomplished via a three-byte *SFR Page Stack*. The top byte of the stack is SFRPAGE, the current SFR Page. The second byte of the SFR Page Stack is SFRNEXT. The third, or bottom byte of the SFR Page Stack is SFRLAST. On interrupt, the current SFRPAGE value is pushed to the SFR Page containing the flag bit associated with the interrupt. On a return from interrupt, the SFR Page Stack is popped resulting in the value of SFRNEXT returning to the SFRPAGE register, thereby restoring the SFR page context without software intervention. The value in SFRLAST (0x00 if there is no SFR Page value in the bottom of the stack) of the stack is placed in SFRNEXT register. If desired, the values stored in SFRNEXT and SFRLAST may be modified during an interrupt, enabling the CPU to return to a different SFR Page upon execution of the RETI instruction (on interrupt exit). Modifying registers in the SFR Page Stack does not cause a push or pop of the stack. Only interrupt calls and returns will cause push/pop operations on the SFR Page Stack.

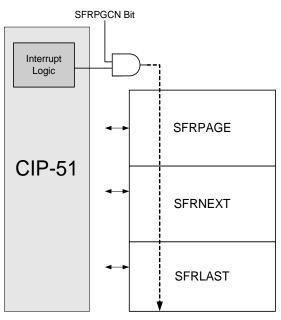


Figure 11.4. SFR Page Stack

Automatic hardware switching of the SFR Page on interrupts may be enabled or disabled as desired using the SFR Automatic Page Control Enable Bit located in the SFR Page Control Register (SFRPGCN). This function defaults to 'enabled' upon reset. In this way, the autoswitching function will be enabled unless disabled in software.

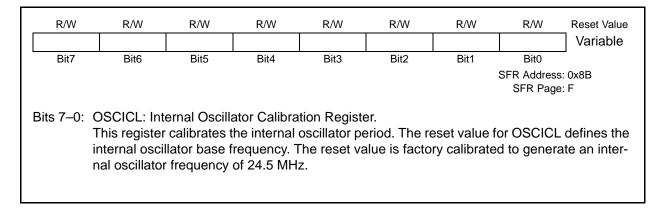
A summary of the SFR locations (address and SFR page) is provided in Table 11.2. in the form of an SFR memory map. Each memory location in the map has an SFR page row, denoting the page in which that SFR resides. Note that certain SFR's are accessible from ALL SFR pages, and are denoted by the "(ALL PAGES)" designation. For example, the Port I/O registers P0, P1, P2, and P3 all have the "(ALL PAGES)" designation, indicating these SFR's are accessible from all SFR pages regardless of the SFRPAGE register value.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	Reset Value			
CY	AC	F0	RS1	RS0	OV	F1	PARITY	0000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable			
							SFR Address SFR Page	: 0xD0 : All Pages			
Bit7:	CY: Carry I This bit is s	•	ne last arithmet	tic operatio	n resulted	in a carry (a	addition) or	a borrow			
		This bit is set when the last arithmetic operation resulted in a carry (addition) or a borrow subtraction). It is cleared to 0 by all other arithmetic operations.									
Bit6:	AC: Auxilia										
			e last arithmeti								
Bit5:	from (subtr F0: User F		high order nib	ble. It is cl	eared to 0	by all other	arithmetic of	operations.			
Dito.		•	able, general pu	urpose flac	ı for use uı	nder softwar	e control.				
Bits4–3:			Bank Select.								
	These bits	select whi	ch register ban	k is used o	during regi	ster accesse	es.				
	RS1	RS0	Register Bank	Add	ress						
	0	0	0	0x00-	-0x07						
	0	1	1	0x08-	-0x0F						
	1	0	2	0x10-	-0x17						
	1	1	3	0x18-	-0x1F						
Bit2:	OV: Overflo	ow Flag.									
Ditt.		•	der the followin	g circumst	ances:						
			SUBB instructi			ange overflo	W.				
			esults in an ove	· ·	•	er than 255)					
			uses a divide-l								
		is cleared	to 0 by the AD	D, ADDC,	SUBB, MI	JL, and DIV	instructions	s in all other			
Bit1:	cases. F1: User F										
DILT.			able, general pu	Irnose flag	I for Use III	nder softwar	e control				
Bit0:	PARITY: P		sio, general pr				0.0011101.				
			e sum of the ei	ight bits in	the accum	ulator is odd	and cleare	d if the sum			
	is even.			-							

SFR Definition 11.9. PSW: Program Status Word

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value					
-	ES1	-	EADC2	EWADC2	ET4	EADC0	ET3	0000000					
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_					
							SFR Address: 0xE7 SFR Page: All Pages						
							SFR Pag	e: All Pages					
Bit7:	UNUSED. R	ead = 0b, V	Vrite = don	't care.									
Bit6:	ES1: Enable UART1 Interrupt.												
	This bit sets	This bit sets the masking of the UART1 interrupt.											
	0: Disable U		•										
	1: Enable UA		•										
Bit5:	UNUSED. R												
Bit4:	EADC2: Ena												
	This bit sets 0: Disable Al				onversion	interrupt.							
	1: Enable A												
Bit3:	EWADC2: E			•	nterrupt								
Dito:	This bit sets				•	nterrupt.							
	0: Disable Al		•		•								
	1: Enable AD												
Bit2:	ET4: Enable	Timer 4 In	terrupt										
	This bit sets			ner 4 interrup	ot.								
	0: Disable Ti		•										
Dire	1: Enable Tir		•										
Bit1:	EADC0: Ena				•	Interview							
	This bit sets 0: Disable Al				onversion	interrupt.							
	1: Enable A												
Bit0:	ET3: Enable												
2.101	This bit sets			ner 3 interru	ot.								
	0: Disable Ti												
	1: Enable Tir	mer 3 interr	upts.										

SFR Definition 11.15. EIE2: Extended Interrupt Enable 2


SFR Definition 13.1. WDTCN: Watchdog Timer Control

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Ditt	Dito	Dito	Ditt	Dito	DIL		SFR Address: SFR Page:	-	
Bits7–0:	WDT Contro Writing 0xA5 Writing 0xDE Writing 0xFF	both enable followed w	ithin 4 syst	em clocks b		ables the V	VDT.		
Bit4:	Watchdog Si Reading the 0: WDT is in 1: WDT is ac	tatus Bit (wl WDTCN.[4 active	nen Read)		hdog Timer	⁻ Status.			
Bits2–0:	 WDT is active Bits2–0: Watchdog Timeout Interval Bits The WDTCN.[2:0] bits set the Watchdog Timeout Interval. When writing these bits, WDTCN.7 must be set to 0. 								

Electrical specifications for the precision internal oscillator are given in Table 14.1. Note that the system clock may be derived from the programmed internal oscillator divided by 1, 2, 4, or 8, as defined by the IFCN bits in register OSCICN.

SFR Definition 14.1. OSCICL: Internal Oscillator Calibration.

SFR Definition 14.2. OSCICN: Internal Oscillator Control

R/W	R	R/W	R	R/W	R/W	R/W	R/W	Reset Value			
IOSCEN	I IFRDY	-	11000000								
Bit7	Bit6	Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0									
							SFR Address: SFR Page:				
Bit 7:	IOSCEN: Int 0: Internal O 1: Internal O	scillator Dis	abled.	Bit.							
Bit 6:	IFRDY: Inter 0: Internal O 1: Internal O	scillator not	running at	programme	d frequency	/.					
Bits 5-2:	Reserved.			-							
Bits 1–0:	IFCN1-0: Int	ernal Oscilla	ator Freque	ncy Control	Bits.						
	00: Internal (Oscillator is	divided by	8.							
	01: Internal (Oscillator is	divided by	4.							
	10: Internal (Oscillator is	divided by	2.							
	11: Internal (Oscillator is	divided by	1.							

15.1.3. Writing Flash Memory From Software

Bytes in Flash memory can be written one byte at a time, or in small blocks. The CHBLKW bit in register CCH0CN (SFR Definition 16.1) controls whether a single byte or a block of bytes is written to Flash during a write operation. When CHBLKW is cleared to '0', the Flash will be written one byte at a time. When CHBLKW is set to '1', the Flash will be written in blocks of four bytes for addresses in code space, or blocks of two bytes for addresses in the Scratchpad area. Block writes are performed in the same amount of time as single byte writes, which can save time when storing large amounts of data to Flash memory.

For single-byte writes to Flash, bytes are written individually, and the Flash write is performed after each MOVX write instruction. The recommended procedure for writing Flash in single bytes is as follows:

- Step 1. Disable interrupts.
- Step 2. Clear CHBLKW (CCH0CN.0) to select single-byte write mode.
- Step 3. If writing to bytes in Bank 1, Bank 2, or Bank 3, set the COBANK bits (PSBANK.5-4) for the appropriate bank.
- Step 4. If writing to bytes in the Scratchpad area, set the SFLE bit (PSCTL.2).
- Step 5. Set FLWE (FLSCL.0) to enable Flash writes/erases via user software.
- Step 6. Set PSWE (PSCTL.0) to redirect MOVX commands to write to Flash.
- Step 7. Use the MOVX instruction to write a data byte to the desired location (repeat as necessary).
- Step 8. Clear the PSWE bit to redirect MOVX commands to the XRAM data space.
- Step 9. Clear the FLWE bit, to disable Flash writes/erases.
- Step 10. If writing to bytes in the Scratchpad area, clear the SFLE bit.
- Step 11. Re-enable interrupts.

For block Flash writes, the Flash write procedure is only performed after the last byte of each block is written with the MOVX write instruction. When writing to addresses located in any of the four code banks, a Flash write block is four bytes long, from addresses ending in 00b to addresses ending in 11b. Writes must be performed sequentially (i.e. addresses ending in 00b, 01b, 10b, and 11b must be written in order). The Flash write will be performed following the MOVX write that targets the address ending in 11b. When writing to addresses located in the Flash Scratchpad area, a Flash block is two bytes long, from addresses ending in 0b to addresses ending in 1b. The Flash write will be performed following the MOVX write that targets the address ending in 1b. If any bytes in the block do not need to be updated in Flash, they should be written to 0xFF. The recommended procedure for writing Flash in blocks is as follows:

- Step 1. Disable interrupts.
- Step 2. Set CHBLKW (CCH0CN.0) to select block write mode.
- Step 3. If writing to bytes in Bank 1, Bank 2, or Bank 3, set the COBANK bits (PSBANK.5-4) for the appropriate bank.
- Step 4. If writing to bytes in the Scratchpad area, set the SFLE bit (PSCTL.2).
- Step 5. Set FLWE (FLSCL.0) to enable Flash writes/erases via user software.
- Step 6. Set PSWE (PSCTL.0) to redirect MOVX commands to write to Flash.
- Step 7. Use the MOVX instruction to write data bytes to the desired block. The data bytes must be written sequentially, and the last byte written must be the high byte of the block (see text for details, repeat as necessary).
- Step 8. Clear the PSWE bit to redirect MOVX commands to the XRAM data space.
- Step 9. Clear the FLWE bit, to disable Flash writes/erases.
- Step 10. If writing to bytes in the Scratchpad area, clear the SFLE bit.
- Step 11. Re-enable interrupts.

17.4.2. Non-multiplexed Configuration

In Non-multiplexed mode, the Data Bus and the Address Bus pins are not shared. An example of a Nonmultiplexed Configuration is shown in Figure 17.2. See **Section "17.6.1. Non-multiplexed Mode" on page 227** for more information about Non-multiplexed operation.

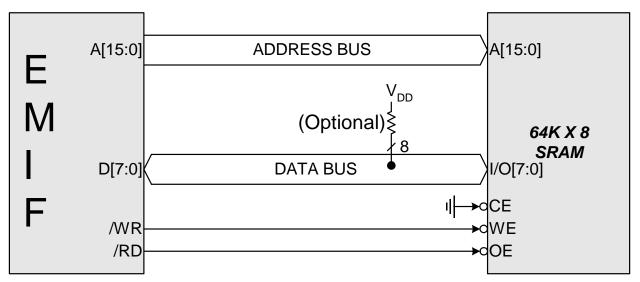
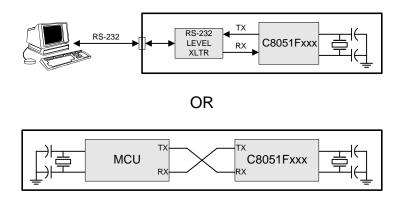



Figure 17.2. Non-multiplexed Configuration Example

Figure 21.6. UART0 Modes 1, 2, and 3 Interconnect Diagram

21.1.4. Mode 3: 9-Bit UART, Variable Baud Rate

Mode 3 uses the Mode 2 transmission protocol with the Mode 1 baud rate generation. Mode 3 operation transmits 11 bits: a start bit, 8 data bits (LSB first), a programmable ninth data bit, and a stop bit. The baud rate is derived from Timer 1 or Timer 2, 3, or 4 overflows, as defined by Equation 21.1 and Equation 21.3. Multiprocessor communications and hardware address recognition are supported, as described in **Section 21.2**.

22.2.2. 9-Bit UART

9-bit UART mode uses a total of eleven bits per data byte: a start bit, 8 data bits (LSB first), a programmable ninth data bit, and a stop bit. The state of the ninth transmit data bit is determined by the value in TB81 (SCON1.3), which is assigned by user software. It can be assigned the value of the parity flag (bit P in register PSW) for error detection, or used in multiprocessor communications. On receive, the ninth data bit goes into RB81 (SCON1.2) and the stop bit is ignored.

Data transmission begins when an instruction writes a data byte to the SBUF1 register. The TI1 Transmit Interrupt Flag (SCON1.1) is set at the end of the transmission (the beginning of the stop-bit time). Data reception can begin any time after the REN1 Receive Enable bit (SCON1.4) is set to '1'. After the stop bit is received, the data byte will be loaded into the SBUF1 receive register if the following conditions are met: (1) RI1 must be logic 0, and (2) if MCE1 is logic 1, the 9th bit must be logic 1 (when MCE1 is logic 0, the state of the ninth data bit is unimportant). If these conditions are met, the eight bits of data are stored in SBUF1, the ninth bit is stored in RB81, and the RI1 flag is set to '1'. A UART1 interrupt will occur if enabled when either TI1 or RI1 is set to '1'.

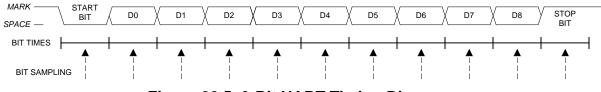


Figure 22.5. 9-Bit UART Timing Diagram

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
GATE1	C/T1	T1M1	T1M0	GATE0	C/T0	T0M1	T0M0	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_			
							SFR Address SFR Page				
Bit7:		enabled w	e Control. hen TR1 = 1 i nly when TR1	•		•					
Bit6:	C/T1: Counter/Timer 1 Select.										
	0: Timer F	unction: Tir	mer 1 increme	ented by clo	k defined	by T1M bit	(CKCON.4)).			
	1: Counter	Function:	Timer 1 increi	mented by h	igh-to-low	transitions	on external	input pin			
	(T1).										
Bits5–4:			Mode Select								
	These bits	select the	Timer 1 opera	ation mode.							
	T1M1	T1M0		Mod	е		7				
	0	0	Мос	Mode 0: 13-bit counter/timer							
	0	1	Мос	le 1: 16-bit o	counter/tim	er					
	1	0	Mode 2: 8-b								
	1	1	M	ode 3: Time	r 1 inactive						
Bit3:	GATE0: Ti	mar 0 Cat	Control								
DILJ.			hen TR0 = 1 i	rrespective	of /INITO Io	aic loval					
			nly when TR0								
Bit2:	C/T0: Cou			- 170070							
			ner 0 increme	ented by clo	ck defined	by T0M bit	(CKCON.3).			
			Timer 0 increi								
	(T0).			·	-						
Bits1–0:			Mode Select								
	These bits	select the	Timer 0 opera	ation mode.							
	T0M1	T0M0		Mod	9]				
	0	0	Mod	e 0: 13-bit c	ounter/time	er	1				
	0	1	Mod	e 1: 16-bit c	ounter/time	er	1				
	1	0	Mode 2: 8-b	it counter/tir	ner with au	to-reload	1				
	1	1	Mode	3: Two 8-bit	counter/tin	ners	1				

SFR Definition 23.2. TMOD: Timer Mode

SFR Definition 23.10. RCAPnL: Timer 2, 3, and 4 Capture Register Low Byte

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	0000000
SFR Address:	RCAP2L: 0xC	A; RCAP3L: 0	xCA; RCAP4L	: 0xCA				
SFR Page:	RCAP2L: pag	e 0; RCAP3L:	page 1; RCAF	P4L: page 2				
ar	ne RCAP2,	3, and 4L re gured in ca	egister capt pture mode	ures the low . When Tim	v byte of Tir	ner 2, 3, an		

SFR Definition 23.11. RCAPnH: Timer 2, 3, and 4 Capture Register High Byte

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
								0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SFR Address:	RCAP2H: 0xC	B; RCAP3H:	0xCB; RCAP4	H: 0xCB				
SFR Page:	RCAP2H: pag	e 0; RCAP3H	page 1; RCA	P4H: page 2				
ar	ne RCAP2, nd 4 is confi	3, and 4H r gured in ca	egister capt pture mode		h byte of T er 2, 3, and	imer 2, 3, aı		Timer 2, 3, to-reload

SFR Definition 23.12. TMRnL: Timer 2, 3, and 4 Low Byte

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
								0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SFR Address	: TMR2L: 0xCC	; TMR3L: 0xC	C; TMR4L: 0x	CC				
SFR Page	: TMR2L: page	0; TMR3L: pa	ge 1; TMR4L:	page 2				
SFR Page	: TMR2L: page	0; TMR3L: pa	ge 1; IMR4L:	page 2				
Bits 7–0; T	L2, 3, and 4	: Timer 2, 3	. and 4 Low	/ Byte.				

