

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	50MHz
Connectivity	EBI/EMI, SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	32
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x8b, 8x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f125-gqr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

13. Reset Sources	
Figure 13.1. Reset Sources	177
Figure 13.2. Reset Timing	
14. Oscillators	
Figure 14.1. Oscillator Diagram	185
Figure 14.2. PLL Block Diagram	191
15. Flash Memory	
Figure 15.1. Flash Memory Map for MOVC Read and MOVX Write Operations	
Figure 15.2. 128 kB Flash Memory Map and Security Bytes	204
Figure 15.3. 64 kB Flash Memory Map and Security Bytes	205
16. Branch Target Cache	
Figure 16.1. Branch Target Cache Data Flow	211
Figure 16.2. Branch Target Cache Organiztion	212
Figure 16.3. Cache Lock Operation	214
17. External Data Memory Interface and On-Chip XRAM	
Figure 17.1. Multiplexed Configuration Example	
Figure 17.2. Non-multiplexed Configuration Example	
Figure 17.3. EMIF Operating Modes	
Figure 17.4. Non-multiplexed 16-bit MOVX Timing	
Figure 17.5. Non-multiplexed 8-bit MOVX without Bank Select Timing	
Figure 17.6. Non-multiplexed 8-bit MOVX with Bank Select Timing	
Figure 17.7. Multiplexed 16-bit MOVX Timing	
Figure 17.8. Multiplexed 8-bit MOVX without Bank Select Timing	
Figure 17.9. Multiplexed 8-bit MOVX with Bank Select Timing	232
18. Port Input/Output	
Figure 18.1. Port I/O Cell Block Diagram	
Figure 18.2. Port I/O Functional Block Diagram	
Figure 18.3. Priority Crossbar Decode Table (EMIFLE = 0; P1MDIN = 0xFF)	238
Figure 18.4. Priority Crossbar Decode Table	
(EMIFLE = 1; EMIF in Multiplexed Mode; P1MDIN = 0xFF)	241
Figure 18.5. Priority Crossbar Decode Table	
(EMIFLE = 1; EMIF in Non-Multiplexed Mode; P1MDIN = 0xFF)	
Figure 18.6. Crossbar Example	244
19. System Management Bus / I2C Bus (SMBus0)	
Figure 19.1. SMBus0 Block Diagram	
Figure 19.2. Typical SMBus Configuration	
Figure 19.3. SMBus Transaction	
Figure 19.4. Typical Master Transmitter Sequence	
Figure 19.5. Typical Master Receiver Sequence	
Figure 19.6. Typical Slave Transmitter Sequence	
Figure 19.7. Typical Slave Receiver Sequence	263
20. Enhanced Serial Peripheral Interface (SPI0)	070
Figure 20.1. SPI Block Diagram	
Figure 20.2. Multiple-Master Mode Connection Diagram	
Figure 20.3. 3-Wire Single Master and Slave Mode Connection Diagram	276

1.3. JTAG Debug and Boundary Scan

JTAG boundary scan and debug circuitry is included which provides *non-intrusive, full speed, in-circuit debugging using the production part installed in the end application,* via the four-pin JTAG interface. The JTAG port is fully compliant to IEEE 1149.1, providing full boundary scan for test and manufacturing purposes.

Silicon Labs' debugging system supports inspection and modification of memory and registers, breakpoints, watchpoints, a stack monitor, and single stepping. No additional target RAM, program memory, timers, or communications channels are required. All the digital and analog peripherals are functional and work correctly while debugging. All the peripherals (except for the ADC and SMBus) are stalled when the MCU is halted, during single stepping, or at a breakpoint in order to keep them synchronized.

The C8051F120DK development kit provides all the hardware and software necessary to develop application code and perform in-circuit debugging with the C8051F12x or C8051F13x MCUs.

The kit includes a Windows (95 or later) development environment, a serial adapter for connecting to the JTAG port, and a target application board with a C8051F120 MCU installed. All of the necessary communication cables and a wall-mount power supply are also supplied with the development kit. Silicon Labs' debug environment is a vastly superior configuration for developing and debugging embedded applications compared to standard MCU emulators, which use on-board "ICE Chips" and target cables and require the MCU in the application board to be socketed. Silicon Labs' debug environment both increases ease of use and preserves the performance of the precision, on-chip analog peripherals.

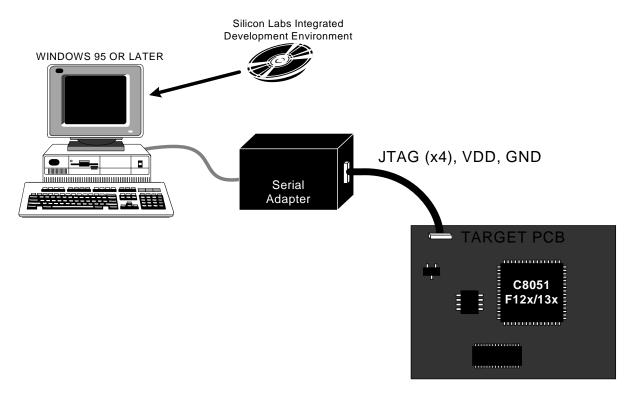


Figure 1.9. Development/In-System Debug Diagram

The Temperature Sensor transfer function is shown in Figure 5.2. The output voltage (V_{TEMP}) is the PGA input when the Temperature Sensor is selected by bits AMX0AD3-0 in register AMX0SL; this voltage will be amplified by the PGA according to the user-programmed PGA settings. Typical values for the Slope and Offset parameters can be found in Table 5.1.

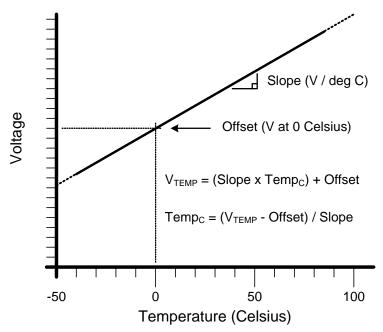


Figure 5.2. Typical Temperature Sensor Transfer Function

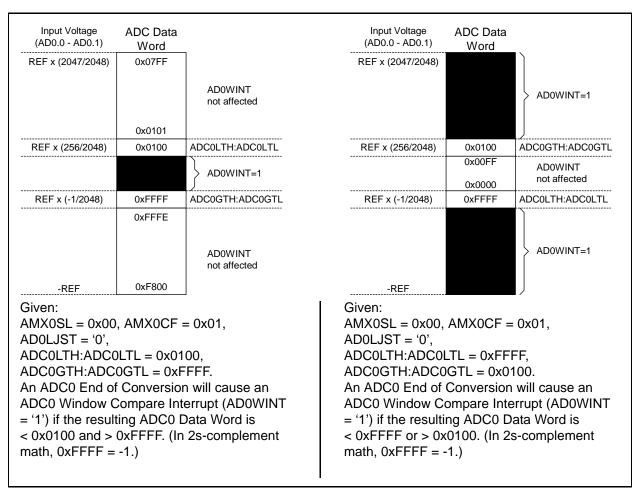


Figure 5.7. 12-Bit ADC0 Window Interrupt Example: Right Justified Differential Data

NOTES:

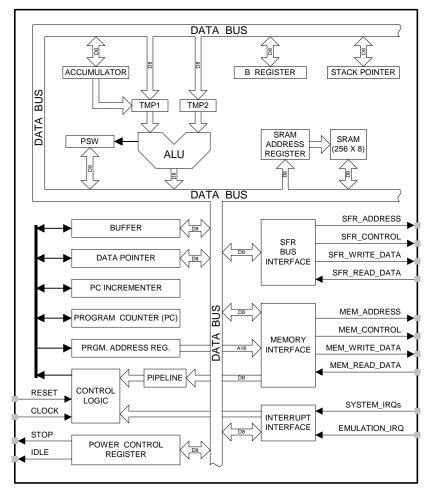


Figure 11.1. CIP-51 Block Diagram

Programming and Debugging Support

A JTAG-based serial interface is provided for in-system programming of the Flash program memory and communication with on-chip debug support logic. The re-programmable Flash can also be read and changed by the application software using the MOVC and MOVX instructions. This feature allows program memory to be used for non-volatile data storage as well as updating program code under software control.

The on-chip debug support logic facilitates full speed in-circuit debugging, allowing the setting of hardware breakpoints and watch points, starting, stopping and single stepping through program execution (including interrupt service routines), examination of the program's call stack, and reading/writing the contents of registers and memory. This method of on-chip debug is completely non-intrusive and non-invasive, requiring no RAM, Stack, timers, or other on-chip resources.

The CIP-51 is supported by development tools from Silicon Labs and third party vendors. Silicon Labs provides an integrated development environment (IDE) including editor, macro assembler, debugger and programmer. The IDE's debugger and programmer interface to the CIP-51 via its JTAG interface to provide fast and efficient in-system device programming and debugging. Third party macro assemblers and C compilers are also available.

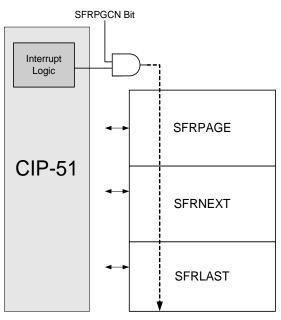


Figure 11.4. SFR Page Stack

Automatic hardware switching of the SFR Page on interrupts may be enabled or disabled as desired using the SFR Automatic Page Control Enable Bit located in the SFR Page Control Register (SFRPGCN). This function defaults to 'enabled' upon reset. In this way, the autoswitching function will be enabled unless disabled in software.

A summary of the SFR locations (address and SFR page) is provided in Table 11.2. in the form of an SFR memory map. Each memory location in the map has an SFR page row, denoting the page in which that SFR resides. Note that certain SFR's are accessible from ALL SFR pages, and are denoted by the "(ALL PAGES)" designation. For example, the Port I/O registers P0, P1, P2, and P3 all have the "(ALL PAGES)" designation, indicating these SFR's are accessible from all SFR pages regardless of the SFRPAGE register value.

Table 11.3. Special Function Registers (Continued)

SFRs are listed in alphabetical order. All undefined SFR locations are reserved.

Register	Address	SFR Page	Description	Page No.
TMR4L	0xCC	2	Timer/Counter 4 Low Byte	page 323
WDTCN	0xFF	All Pages	Watchdog Timer Control	page 181
XBR0	0xE1	F	Port I/O Crossbar Control 0	page 245
XBR1	0xE2 F		Port I/O Crossbar Control 1	page 246
XBR2	0xE3 F Port I/O Crossbar Control 2		page 247	
 Refers t Refers t Refers t Refers t Refers t 	o a register in t	the C8051F1 the C8051F1 the C8051F1 the C8051F1	22/3/6/7 and C8051F130/1/2/3 only. 20/1/2/3/4/5/6/7 only. 20/1/2/3 and C8051F130/1/2/3 only. 20/2/4/6 only.	

7. Refers to a register in the C8051F130/1/2/3 only.

11.3.5. Interrupt Register Descriptions

The SFRs used to enable the interrupt sources and set their priority level are described below. Refer to the datasheet section associated with a particular on-chip peripheral for information regarding valid interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value					
EA	IEGF0	ET2	ES0	ET1	EX1	ET0	EX0	0000000					
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable					
							SFR Addres SFR Page						
Bit7:	EA: Enable A			ll interrunte	lt override	e the indivi	dual interri	int mask set.					
	This bit globally enables/disables all interrupts. It overrides the individual interrupt mask set- tings.												
	0: Disable all	interrupt s	ources.										
	1: Enable ea			to its indivi	dual mask s	etting.							
Bit6:	IEGF0: Gene					Ū							
	This is a gen	eral purpos	se flag for u	se under so	oftware cont	rol.							
Bit5:	ET2: Enabler												
	This bit sets		•	ner 2 interru	ıpt.								
	0: Disable Timer 2 interrupt.												
	1: Enable Timer 2 interrupt.												
Bit4:	ES0: Enable UARTO Interrupt.												
	This bit sets the masking of the UART0 interrupt.												
	0: Disable UART0 interrupt. 1: Enable UART0 interrupt.												
Bit3:													
DII.J.	ET1: Enable Timer 1 Interrupt. This bit sets the masking of the Timer 1 interrupt.												
			•		ipt.								
	0: Disable Timer 1 interrupt. 1: Enable Timer 1 interrupt.												
Bit2:	EX1: Enable External Interrupt 1.												
DRE.	This bit sets the masking of External Interrupt 1.												
	0: Disable External Interrupt 1.												
	1: Enable External Interrupt 1.												
Bit1:	ETO: Enable Timer 0 Interrupt.												
	This bit sets the masking of the Timer 0 interrupt.												
	0: Disable Timer 0 interrupts.												
	1: Enable Tin	ner 0 interr	upts.										
Bit0:	EX0: Enable												
	This bit sets	the maskin	g of Externa	al Interrupt	0.								
	0: Disable Ex	ternal Inter	rrupt 0.										
	1: Enable Ex												

SFR Definition 11.12. IE: Interrupt Enable

PLL Frequency = Reference Frequency $\times \frac{\text{PLLN}}{\text{PLLM}}$

14.7.3. Powering on and Initializing the PLL

To set up and use the PLL as the system clock after power-up of the device, the following procedure should be implemented:

- Step 1. Ensure that the reference clock to be used (internal or external) is running and stable.
- Step 2. Set the PLLSRC bit (PLL0CN.2) to select the desired clock source for the PLL.
- Step 3. Program the Flash read timing bits, FLRT (FLSCL.5–4) to the appropriate value for the new clock rate (see Section "15. Flash Memory" on page 199).
- Step 4. Enable power to the PLL by setting PLLPWR (PLL0CN.0) to '1'.
- Step 5. Program the PLL0DIV register to produce the divided reference frequency to the PLL.
- Step 6. Program the PLLLP3–0 bits (PLL0FLT.3–0) to the appropriate range for the divided reference frequency.
- Step 7. Program the PLLICO1–0 bits (PLL0FLT.5–4) to the appropriate range for the PLL output frequency.
- Step 8. Program the PLLOMUL register to the desired clock multiplication factor.
- Step 9. Wait at least 5 µs, to provide a fast frequency lock.
- Step 10. Enable the PLL by setting PLLEN (PLL0CN.1) to '1'.
- Step 11. Poll PLLLCK (PLL0CN.4) until it changes from '0' to '1'.
- Step 12. Switch the System Clock source to the PLL using the CLKSEL register.

If the PLL characteristics need to be changed when the PLL is already running, the following procedure should be implemented:

- Step 1. The system clock should first be switched to either the internal oscillator or an external clock source that is running and stable, using the CLKSEL register.
- Step 2. Ensure that the reference clock to be used for the new PLL setting (internal or external) is running and stable.
- Step 3. Set the PLLSRC bit (PLL0CN.2) to select the new clock source for the PLL.
- Step 4. If moving to a faster frequency, program the Flash read timing bits, FLRT (FLSCL.5–4) to the appropriate value for the new clock rate (see Section "15. Flash Memory" on page 199).
- Step 5. Disable the PLL by setting PLLEN (PLL0CN.1) to '0'.
- Step 6. Program the PLL0DIV register to produce the divided reference frequency to the PLL.
- Step 7. Program the PLLLP3–0 bits (PLL0FLT.3–0) to the appropriate range for the divided reference frequency.
- Step 8. Program the PLLICO1-0 bits (PLL0FLT.5–4) to the appropriate range for the PLL output frequency.
- Step 9. Program the PLLOMUL register to the desired clock multiplication factor.
- Step 10. Enable the PLL by setting PLLEN (PLL0CN.1) to '1'.
- Step 11. Poll PLLLCK (PLL0CN.4) until it changes from '0' to '1'.
- Step 12. Switch the System Clock source to the PLL using the CLKSEL register.
- Step 13. If moving to a slower frequency, program the Flash read timing bits, FLRT (FLSCL.5–4) to the appropriate value for the new clock rate (see **Section "15. Flash Memory" on**

page 199). Important Note: Cache reads, cache writes, and the prefetch engine should be disabled whenever the FLRT bits are changed to a lower setting.

To shut down the PLL, the system clock should be switched to the internal oscillator or a stable external clock source, using the CLKSEL register. Next, disable the PLL by setting PLLEN (PLL0CN.1) to '0'. Finally, the PLL can be powered off, by setting PLLPWR (PLL0CN.0) to '0'. Note that the PLLEN and PLL-PWR bits can be cleared at the same time.

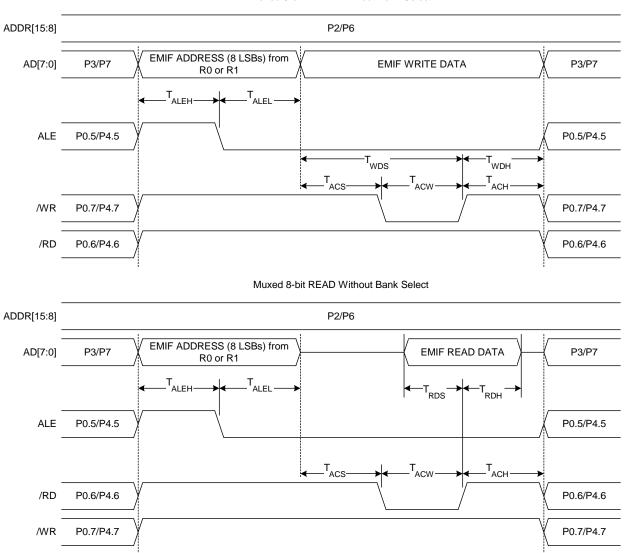
R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	Reset Value				
-	-	-	PLLLCK	0	PLLSRC	PLLEN	PLLPWR	00000000				
Bit7	Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0											
	SFR Address: 0x89 SFR Page: F											
Bits 7–5:	Bits 7–5: UNUSED: Read = 000b; Write = don't care.											
Bit 4:	PLLCK: PLL	Lock Flag.										
	0: PLL Frequ											
	1: PLL Frequ	lency is loc	ked.									
Bit 3:	RESERVED											
Bit 2:	PLLSRC: PL											
	0: PLL Refer											
D:4.4.	1: PLL Refer			External Os	cillator.							
Bit 1:	PLLEN: PLL 0: PLL is hel											
	1: PLL is ner		N/R must h	<u>م</u> '1'								
Bit 0:	PLLPWR: PL											
Dit U.	0: PLL bias of			ed. No statio	c power is c	onsumed						
	1: PLL bias g				•							
		,										

SFR Definition 14.5. PLL0CN: PLL Control

15.2. Security Options

The CIP-51 provides security options to protect the Flash memory from inadvertent modification by software as well as prevent the viewing of proprietary program code and constants. The Program Store Write Enable (PSCTL.0), Program Store Erase Enable (PSCTL.1), and Flash Write/Erase Enable (FLACL.0) bits protect the Flash memory from accidental modification by software. These bits must be explicitly set to logic 1 before software can write or erase the Flash memory. Additional security features prevent proprietary program code and data constants from being read or altered across the JTAG interface or by software running on the system controller.

A set of security lock bytes protect the Flash program memory from being read or altered across the JTAG interface. Each bit in a security lock-byte protects one 16k-byte block of memory. Clearing a bit to logic 0 in the Read Lock Byte prevents the corresponding block of Flash memory from being read across the JTAG interface. Clearing a bit in the Write/Erase Lock Byte protects the block from JTAG erasures and/or writes. The Scratchpad area is read or write/erase locked when all bits in the corresponding security byte are cleared to logic 0.


On the C8051F12x and C8051F130/1, the security lock bytes are located at 0x1FBFE (Write/Erase Lock) and 0x1FBFF (Read Lock), as shown in Figure 15.2. On the C8051F132/3, the security lock bytes are located at 0x0FFFE (Write/Erase Lock) and 0x0FFFF (Read Lock), as shown in Figure 15.3. The 1024-byte sector containing the lock bytes can be written to, but not erased, by software. An attempted read of a read-locked byte returns undefined data. Debugging code in a read-locked sector is not possible through the JTAG interface. The lock bits can always be read from and written to logic 0 regardless of the security setting applied to the block containing the security bytes. This allows additional blocks to be protected after the block containing the security bytes has been locked.

Important Note: To ensure protection from external access, the block containing the lock bytes must be Write/Erase locked. On the 128 kB devices (C8051F12x and C8051F130/1), the block containing the security bytes is 0x18000-0x1BFFF, and is locked by clearing bit 7 of the Write/Erase Lock Byte. On the 64 kB devices (C8051F132/3), the block containing the security bytes is 0x0C000-0x0FFFF, and is locked by clearing bit 3 of the Write/Erase Lock Byte. If the page containing the security bytes is not Write/Erase locked, it is still possible to erase this page of Flash memory through the JTAG port and reset the security bytes.

When the page containing the security bytes has been Write/Erase locked, a JTAG full device erase must be performed to unlock any areas of Flash protected by the security bytes. A JTAG full device erase is initiated by performing a normal JTAG erase operation on either of the security byte locations. This operation must be initiated through the JTAG port, and cannot be performed from firmware running on the device.

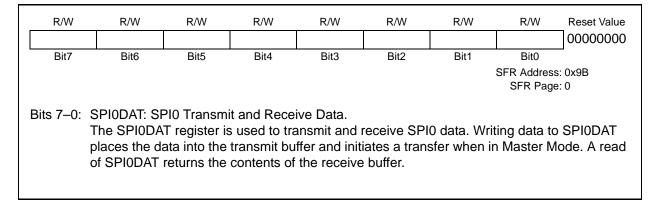
17.6.2.2.8-bit MOVX without Bank Select: EMI0CF[4:2] = '001' or '011'.

Muxed 8-bit WRITE Without Bank Select

Figure 17.8. Multiplexed 8-bit MOVX without Bank Select Timing

				p	0		P1		P2		p3		Crossbar Registe
PIN I/O	0	1	2	3	4	5 6 7 0 1	2 3 4 5 6 7	0 1 2	3 4	5 6 7	2 3 4	5 6 7	orossom rregiste
X0	۲												
exo 🛛		۲											
ск	۲		۲										
niso 🛛		۲											
nosi 🛛					•								
iss				۲									
DA	۲		۲	۲	0	10 A							
ICL		۲		۲									
TX1	۲		۲	۲	۲								
X1		۲		۲									
CEXO	۲		۲	۲	۲								
CEX1		۲		۲									
CEX2													
EX3				۲									
EX4													
EX5													
CI	۲	۲	۲	۲	0	6 6							
CP0	۲	۲	۲	۲	0	10 A							
CP1	۲	۲	۲	۲	۲								
0	۲	۲	۲	۲	۲								
NTO	۲	۲	۲	۲									
1	۲	۲	۲	۲	۲								
INT1	۲	۲	۲	۲	0	6 6							
2	۲	۲	۲	۲	0								
2EX	۲	۲	۲	۲	۲								
4	۲	۲	۲	۲	۲								
'4EX	۲	۲	۲	۲	0	0.0							
SYSCLK	۲	۲	۲	۲	0	6.6							
humanna	ann an		١		0								
NVSTRO	1000	1000			11. 111								

(EMIFLE = 1; EMIF in Multiplexed Mode; P1MDIN = 0xE3; XBR0 = 0x05; XBR1 = 0x14; XBR2 = 0x42)


Figure 18.6. Crossbar Example

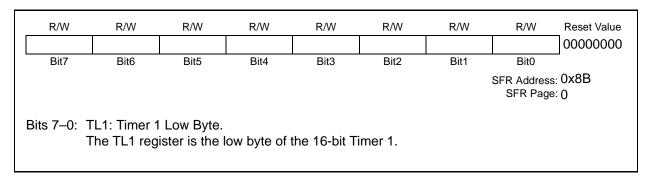
SFR Definition 20.3. SPI0CKR: SPI0 Clock Rate

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
SCR7	SCR6	SCR5	SCR4	SCR3	SCR2	SCR1	SCR0	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Address SFR Page	
	SCR7-SCR							<i>.</i> .
	These bits de or master m							
	clock, and is							
	and SPI0CK	-	-	•		•		
				a				
			$f_{SCK} = -$	$\frac{\text{SYSC}}{2 \times (\text{SPI0C})}$				
			V SCK	$2 \times (SPIOC)$	KR + 1)			
f	or 0 <= SPI	0CKR <= 2	55					
Example: I	f SYSCLK =	2 MHz and	SPIOCKR	= 0x04,				
•				,				
	2000000	1						
$f_{SCK} =$	$\frac{2000000}{2 \times (4+1)}$)						
	2 ~ (1 + 1)						
0								
$f_{SCK} = 2$	200 <i>kHz</i> ,							

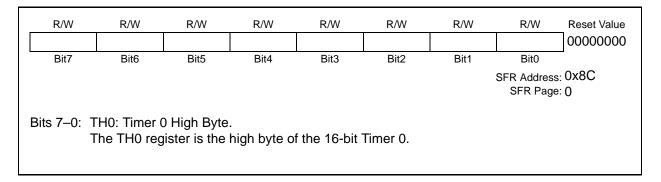
SFR Definition 20.4. SPI0DAT: SPI0 Data

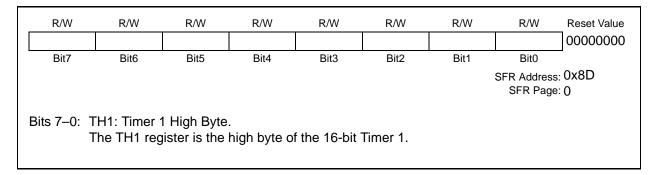
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
SM00	SM10	SM20	REN0	TB80	RB80	TI0	RI0	0000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0 SFR Addres	Bit Addressable s: 0x98			
							SFR Pag				
Bits7–6:		10: Serial Po	rt Operatior	n Mode:							
	Write:										
	When writt	en, these bits	s select the	Serial Port	Operation	Mode as f	ollows:				
	SM00	SM10		Mod	0		1				
	0	0	Mode		onous Mod	0	-				
	0				/ariable Bai		-				
	1	0			Fixed Bau						
				-			-				
	1	1	wode 3: 9-1	BIT UAR I, V	/ariable Bau	Jo Rate	J				
	Pooding th	ese bits retu	ne the our) modo oc d	lofinad abr					
Bit5:	-						Jve.				
DIIJ.	SM20: Multiprocessor Communication Enable.										
	The function of this bit is dependent on the Serial Port Operation Mode. Mode 0: No effect										
	Mode 1: Checks for valid stop bit.										
	0: Logic level of stop bit is ignored.										
	1: RIO will only be activated if stop bit is logic level 1.										
	Mode 2 and 3: Multiprocessor Communications Enable.										
	0: Logic level of ninth bit is ignored.										
		RIO is set and			ated only w	hen the ni	nth bit is loo	gic 1 and the			
		ddress match									
Bit4:	REN0: Red	ceive Enable.									
	This bit enables/disables the UART0 receiver.										
	0: UART0 reception disabled.										
		reception ena									
Bit3:	TB80: Ninth Transmission Bit.										
	-	evel of this bit		-				2 and 3. It is			
		Modes 0 an		r cleared by	y software a	as required	1.				
Bit2:	RB80: Ninth Receive Bit.										
	The bit is assigned the logic level of the ninth bit received in Modes 2 and 3. In Mode 1, if SM20 is logic 0, RB80 is assigned the logic level of the received stop bit. RB8 is not used in										
		gic 0, RB80 is	s assigned t	the logic le	vel of the re	ceived sto	p bit. RB8 is	s not used in			
D:14 .	Mode 0.		- -								
Bit1:		mit Interrupt F		to hoo hoo				a 0th hit in			
		dware when a									
		at the begine etting this bit									
		•				UARTUIII	enupt servi	ce routine.			
Bit0:		ust be cleared ve Interrupt F		by soliware	;						
		dware when a	-	ita has hoo	n received		(as salacto	d by the			
		When the UA									
		RT0 interrupt									
		(i o interiupt)			it must be t	ieaieu iild	nuany by SC	Jiiwaid.			

SFR Definition 21.1. SCON0: UART0 Control



SFR Definition 21.2. SSTA0: UART0 Status and Clock Selection


R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value					
FE0	RXOV0	TXCOL0	SMOD0	S0TCLK1	S0TCLK0	S0RCLK1	S0RCLK0	0000000					
Bit7	Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0												
							SFR Address: SFR Page:						
							OF INT age.	.0					
Bit7:	FE0: Frame	•											
	This flag indicates if an invalid (low) STOP bit is detected. 0: Frame Error has not been detected 1: Frame Error has been detected												
Bito	1: Frame Error has been detected.												
Bit6:	RXOV0: Receive Overrun Flag.*												
	This flag indicates new data has been latched into the receive buffer before software has read the previous byte. 0: Receive overrun has not been detected.												
	1: Receive (•								
Bit5:	TXCOL0: Tr												
				•	en to the SE	BUF0 regist	ter while a tr	ansmission is					
	in progress.					-							
	0: Transmis												
	1: Transmis												
Bit4:	SMOD0: UA												
				•	function of	f the UART	0 baud rate	logic for config-					
	urations des				4								
	0: UART0 b 1: UART0 b												
Bits3-2	UART0 Trar												
Bit00 2.	e, are the	ionne Dada			on Bito								
	S0TCLK1	SOTCLK		orial Trans	mit Boud I	Rate Clock	Sourco						
	0	0				RT0 TX Bai		_					
	0	0					X baud rate	_					
	1	0			-		X baud rate						
	1	1			-		X baud rate						
					0								
Bits1–0:	UART0 Rec	eive Baud	Rate Clo	ock Selectio	on Bits								
	S0RCLK1	SORCLK		erial Rece	ive Baud F	Rate Clock	Source	7					
	0	0				RT0 RX Ba		-					
	0	1					X baud rate	-					
	1	0					X baud rate						
	1	1			•		X baud rate						
	L				-								
*Note:	FE0, RXOV	0, and TXC	COL0 are	e flags only	, and no int	terrupt is ge	enerated by	these conditions					


SFR Definition 23.5. TL1: Timer 1 Low Byte

SFR Definition 23.6. TH0: Timer 0 High Byte

SFR Definition 23.7. TH1: Timer 1 High Byte

24.2.6. 16-Bit Pulse Width Modulator Mode

Each PCA0 module may also be operated in 16-Bit PWM mode. In this mode, the 16-bit capture/compare module defines the number of PCA0 clocks for the low time of the PWM signal. When the PCA0 counter matches the module contents, the output on CEXn is asserted high; when the counter overflows, CEXn is asserted low. To output a varying duty cycle, new value writes should be synchronized with PCA0 CCFn match interrupts. 16-Bit PWM Mode is enabled by setting the ECOMn, PWMn, and PWM16n bits in the PCA0CPMn register. For a varying duty cycle, CCFn should also be set to logic 1 to enable match interrupts. The duty cycle for 16-Bit PWM Mode is given by Equation 24.3.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/ Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to '0'; writing to PCA0CPHn sets ECOMn to '1'.

Equation 24.3. 16-Bit PWM Duty Cycle

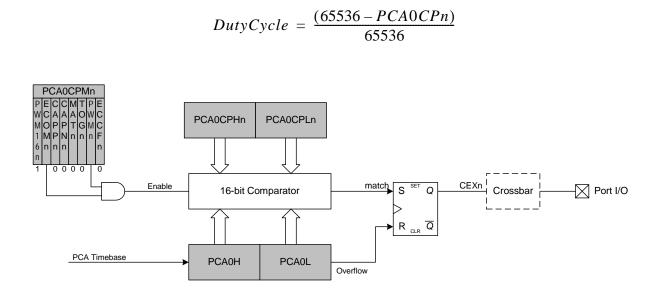


Figure 24.9. PCA 16-Bit PWM Mode

NOTES:

