E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	50MHz
Connectivity	EBI/EMI, SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	64
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x8b, 8x10b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f126-gq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. System Overview

The C8051F12x and C8051F13x device families are fully integrated mixed-signal System-on-a-Chip MCUs with 64 digital I/O pins (100-pin TQFP) or 32 digital I/O pins (64-pin TQFP).

Highlighted features are listed below. Refer to Table 1.1 for specific product feature selection.

- High-Speed pipelined 8051-compatible CIP-51 microcontroller core (100 MIPS or 50 MIPS)
- In-system, full-speed, non-intrusive debug interface (on-chip)
- True 12 or 10-bit 100 ksps ADC with PGA and 8-channel analog multiplexer
- True 8-bit 500 ksps ADC with PGA and 8-channel analog multiplexer (C8051F12x Family)
- Two 12-bit DACs with programmable update scheduling (C8051F12x Family)
- 2-cycle 16 by 16 Multiply and Accumulate Engine (C8051F120/1/2/3 and C8051F130/1/2/3)
- 128 or 64 kB of in-system programmable Flash memory
- 8448 (8 k + 256) bytes of on-chip RAM
- External Data Memory Interface with 64 kB address space
- SPI, SMBus/I2C, and (2) UART serial interfaces implemented in hardware
- Five general purpose 16-bit Timers
- Programmable Counter/Timer Array with 6 capture/compare modules
- On-chip Watchdog Timer, V_{DD} Monitor, and Temperature Sensor

With on-chip V_{DD} monitor, Watchdog Timer, and clock oscillator, the C8051F12x and C8051F13x devices are truly stand-alone System-on-a-Chip solutions. All analog and digital peripherals are enabled/disabled and configured by user firmware. The Flash memory can be reprogrammed even in-circuit, providing non-volatile data storage, and also allowing field upgrades of the 8051 firmware.

On-board JTAG debug circuitry allows non-intrusive (uses no on-chip resources), full speed, in-circuit debugging using the production MCU installed in the final application. This debug system supports inspection and modification of memory and registers, setting breakpoints, watchpoints, single stepping, run and halt commands. All analog and digital peripherals are fully functional while debugging using JTAG.

Each MCU is specified for operation over the industrial temperature range (-45 to +85 °C). The Port I/O, RST, and JTAG pins are tolerant for input signals up to 5 V. The devices are available in 100-pin TQFP or 64-pin TQFP packaging. Table 1.1 lists the specific device features and package offerings for each part number. Figure 1.1 through Figure 1.6 show functional block diagrams for each device.

1.1.3. Additional Features

Several key enhancements are implemented in the CIP-51 core and peripherals to improve overall performance and ease of use in end applications.

The extended interrupt handler provides 20 interrupt sources into the CIP-51 (as opposed to 7 for the standard 8051), allowing the numerous analog and digital peripherals to interrupt the controller. An interrupt driven system requires less intervention by the MCU, giving it more effective throughput. The extra interrupt sources are very useful when building multi-tasking, real-time systems.

There are up to seven reset sources for the MCU: an on-board V_{DD} monitor, a Watchdog Timer, a missing clock detector, a voltage level detection from Comparator0, a forced software reset, the CNVSTR0 input pin, and the RST pin. The RST pin is bi-directional, accommodating an external reset, or allowing the internally generated POR to be output on the RST pin. Each reset source except for the V_{DD} monitor and Reset Input pin may be disabled by the user in software; the V_{DD} monitor is enabled/disabled via the MONEN pin. The Watchdog Timer may be permanently enabled in software after a power-on reset during MCU initialization.

The MCU has an internal, stand alone clock generator which is used by default as the system clock after any reset. If desired, the clock source may be switched on the fly to the external oscillator, which can use a crystal, ceramic resonator, capacitor, RC, or external clock source to generate the system clock. This can be extremely useful in low power applications, allowing the MCU to run from a slow (power saving) external crystal source, while periodically switching to the 24.5 MHz internal oscillator as needed. Additionally, an on-chip PLL is provided to achieve higher system clock speeds for increased throughput.

Figure 1.7. On-Board Clock and Reset

1.6. Programmable Counter Array

An on-board Programmable Counter/Timer Array (PCA) is included in addition to the five 16-bit general purpose counter/timers. The PCA consists of a dedicated 16-bit counter/timer time base with 6 programmable capture/compare modules. The timebase is clocked from one of six sources: the system clock divided by 12, the system clock divided by 4, Timer 0 overflow, an External Clock Input (ECI pin), the system clock, or the external oscillator source divided by 8.

Each capture/compare module can be configured to operate in one of six modes: Edge-Triggered Capture, Software Timer, High Speed Output, Frequency Output, 8-Bit Pulse Width Modulator, or 16-Bit Pulse Width Modulator. The PCA Capture/Compare Module I/O and External Clock Input are routed to the MCU Port I/ O via the Digital Crossbar.

Figure 1.12. PCA Block Diagram

1.7. Serial Ports

Serial peripherals included on the devices are two Enhanced Full-Duplex UARTs, SPI Bus, and SMBus/ I2C. Each of the serial buses is fully implemented in hardware and makes extensive use of the CIP-51's interrupts, thus requiring very little intervention by the CPU. The serial buses do not "share" resources such as timers, interrupts, or Port I/O, so any or all of the serial buses may be used together with any other.

Figure 4.3. TQFP-100 Package Drawing

SFR Page SFR Addr	: 0 ess: 0xBC									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
AD0SC	SC4 AD0SC3 AD0SC2 AD0SC1 AD0SC0 AMP0GN2 AMP0GN1 A						AMP0GN	0 11111000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_		
Bits7–3:	: AD0SC4–0: ADC0 SAR Conversion Clock Period Bits. The SAR Conversion clock is derived from system clock by the following equation, where <i>AD0SC</i> refers to the 5-bit value held in AD0SC4-0, and <i>CLK_{SAR0}</i> refers to the desired ADC0 SAR clock (Note: the ADC0 SAR Conversion Clock should be less than or equal to 2.5 MHz). $AD0SC = \frac{SYSCLK}{2 \times CLK_{SAR0}} - 1$ (<i>AD0SC</i> > 00000b)									
Bits2–0:	When the AE to facilitate fa AMPOGN2-C 000: Gain = 2 010: Gain = 2 011: Gain = 4 10x: Gain = 6 11x: Gain = 0	00SC bits a aster ADC c 0: ADC0 Inte 1 2 4 3 16 0.5	e equal to onversions	00000b, the at slower S fier Gain (P	e SAR Conve SYSCLK spe GA).	ersion clock eds.	k is equal t	to SYSCLK		

SFR Definition 5.3. ADC0CF: ADC0 Configuration

SFR Definition 5.9. ADC0LTH: ADC0 Less-Than Data High Byte

SFR Definition 5.10. ADC0LTL: ADC0 Less-Than Data Low Byte

Figure 5.6. 12-Bit ADC0 Window Interrupt Example: Right Justified Single-Ended Data

9. Voltage Reference

The voltage reference options available on the C8051F12x and C8051F13x device families vary according to the device capabilities.

All devices include an internal voltage reference circuit, consisting of a 1.2 V, 15 ppm/°C (typical) bandgap voltage reference generator and a gain-of-two output buffer amplifier. The internal reference may be routed via the VREF pin to external system components or to the voltage reference input pins. The maximum load seen by the VREF pin must be less than 200 μ A to AGND. Bypass capacitors of 0.1 μ F and 4.7 μ F are recommended from the VREF pin to AGND.

The Reference Control Register, REF0CN enables/disables the internal reference generator and the internal temperature sensor on all devices. The BIASE bit in REF0CN enables the on-board reference generator while the REFBE bit enables the gain-of-two buffer amplifier which drives the VREF pin. When disabled, the supply current drawn by the bandgap and buffer amplifier falls to less than 1 μ A (typical) and the output of the buffer amplifier enters a high impedance state. If the internal bandgap is used as the reference voltage generator, BIASE and REFBE must both be set to logic 1. If the internal reference is not used, REFBE may be set to logic 0. Note that the BIASE bit must be set to logic 1 if any DACs or ADCs are used, regardless of whether the voltage reference is derived from the on-chip reference or supplied by an off-chip source. If no ADCs or DACs are being used, both of these bits can be set to logic 0 to conserve power.

When enabled, the temperature sensor connects to the highest order input of the ADC0 input multiplexer. The TEMPE bit within REF0CN enables and disables the temperature sensor. While disabled, the temperature sensor defaults to a high impedance state. Any ADC measurements performed on the sensor while disabled will result in undefined data.

The electrical specifications for the internal voltage reference are given in Table 9.1.

9.1. Reference Configuration on the C8051F120/2/4/6

On the C8051F120/2/4/6 devices, the REF0CN register also allows selection of the voltage reference source for ADC0 and ADC2, as shown in SFR Definition 9.1. Bits AD0VRS and AD2VRS in the REF0CN register select the ADC0 and ADC2 voltage reference sources, respectively. Three voltage reference input pins allow each ADC and the two DACs to reference an external voltage reference or the on-chip voltage reference output (with an external connection). ADC0 may also reference the DAC0 output internally, and ADC2 may reference the analog power supply voltage, via the VREF multiplexers shown in Figure 9.1.

SFR Page	0								
SFR Addre	ess: UXD1								
R/W	W R/W R/W R/W R/W R/W R/W R/W Res								
-	AD0VRS AD2VRS TEMPE BIASE REFBE 00000								
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Bits7–5:	UNUSED. Re	ad = 000b:	Write = dor	n't care.					
Bit4	AD0VRS AD	C0 Voltage	Reference	Select					
Ditti	0. ADC0 volta	ane referen	ce from VRI	=FA pin					
	1. ADC0 volta	age referen	ce from DA	20 output					
Bit3 [.]	AD2VRS AD	C2 Voltage	Reference	Select					
Bito.	0. ADC2 volta	and referen	ce from VRI	=FA pin					
	1. ADC2 volta	age referen	ce from AV-	-					
Bit2 [.]	TEMPE: Tem	perature Se	ensor Enabl	e Bit					
BRE:	0: Internal Ter	mperature S	Sensor Off	o Biti					
	1: Internal Ter	mperature S	Sensor On						
Bit1.	BIASE ADC/	DAC Bias (Senerator F	nable Bit (N	/lust he '1' i	if using AD(C DAC or	VREE)	
Ditti	0: Internal Bia	as Generato	or Off				0, 2, 10, 0.	····	
	1: Internal Bia	as Generato	or On						
Bit0 [.]	REFRE: Inter	nal Referer	ice Buffer F	nable Bit					
Bito.	0: Internal Re	ference Bu	ffer Off						
	1: Internal Re	ference Bu	ffer On Inte	vinal voltage	reference	is driven or	the VREE	nin	
				inal voltage				P	

SFR Definition 9.2. REF0CN: Reference Control (C8051F121/3/5/7)

		-	Cleak
Mnemonic	Description	Bytes	Clock
DEC A	Decrement A	1	1
DEC Rn	Decrement register	1	1
DEC direct	Decrement direct byte	2	2
DEC @Ri	Decrement indirect RAM	1	2
INC DPTR	Increment Data Pointer	1	1
MUL AB	Multiply A and B	1	4
DIV AB	Divide A by B	1	8
DA A	Decimal adjust A	1	1
	Logical Operations		
ANL A, Rn	AND Register to A	1	1
ANL A, direct	AND direct byte to A	2	2
ANL A, @Ri	AND indirect RAM to A	1	2
ANL A, #data	AND immediate to A	2	2
ANL direct, A	AND A to direct byte	2	2
ANL direct, #data	AND immediate to direct byte	3	3
ORL A. Rn	OR Register to A	1	1
ORL A. direct	OR direct byte to A	2	2
ORL A. @Ri	OR indirect RAM to A	1	2
ORL A #data	OR immediate to A	2	2
ORL direct A	OR A to direct byte	2	2
ORL direct #data	OR immediate to direct byte	3	3
XRI A Rn	Exclusive-OR Register to A	1	1
XRL A direct	Exclusive-OR direct byte to A	2	2
XRLA @Ri	Exclusive-OR indirect RAM to A	1	2
XRL A #data		2	2
XRL A; #data XRL direct A	Exclusive OR miniculate to A	2	2
XRL direct, A	Exclusive OR A to direct byte	3	2
		1	1
		1	1
	Potato A left	1	1
	Pototo A loft through Corny	1	1
	Pototo A right	1	1
	Rotate A right through Corny	1	1
	Rotate A fight through Carry	1	1
SWAP A	Swap hibbles of A	I	I
	Maya Degister to A	1	1
MOV A, KII	Nove direct bute to A	1	1
	Move direct byte to A	2	2
		1	2
MOV A, #data	Move immediate to A	2	2
MOV Rn, A	Move A to Register	1	1
MOV Rn, direct	Nove direct byte to Register	2	2
MOV Rn, #data	Move immediate to Register	2	2
MOV direct, A	Move A to direct byte	2	2
MOV direct, Rn	Move Register to direct byte	2	2
MOV direct, direct	Move direct byte to direct byte	3	3

Table 11.1. CIP-51 Instruction Set Summary (Continued)

SFR Definition 17.2. EMI0CF: External Memory Configuration

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
-	-	PRTSEL	EMD2	EMD1	EMD0	EALE1	EALE0	00000011				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0					
	SFR Address: 0xA3											
	SFR Page: 0											
Bits7_6.	Unused Re	ad – 00b M	/rite – don't	care								
Bit5:	PRTSEL: EMIF Port Select.											
	0: EMIF active on P0–P3.											
	1: EMIF activ	ve on P4–P	7.									
Bit4:	EMD2: EMIF	- Multiplex I	Mode Selec	:t.								
	0: EMIF ope	rates in mu	Itiplexed ad	dress/data	mode.							
	1: EMIF ope	rates in nor	n-multiplexe	d mode (se	parate addr	ess and da	ta pins).					
Bits3-2:	EMD1-0: EN	IIF Operatir	ng Mode Se	elect.	vtornal Mar	non (Intorfo						
		Ontrol the 0 Only: MOV	Accesses		ΔM only ΔI	l offective a	iddresses a	lias to on-				
	chip memory	/ space.	1 00003003									
	01: Split Mod	de without E	Bank Select	: Accesses	below the 8	k boundar	v are direct	ed on-chip.				
	Accesses at	ove the 8 k	boundary a	are directed	off-chip. 8-	bit off-chip	, MOVX ope	rations use				
	the current c	ontents of t	he Address	High port l	atches to re	solve uppe	r address b	yte. Note				
	that in order	to access o	ff-chip spac	e, EMI0CN	must be se	t to a page	that is not o	contained in				
	the on-chip a	address spa	ace.									
	10: Split Mod	de with Ban	k Select: A	ccesses bel	ow the 8 k l	boundary a	re directed	on-chip.				
	Accesses at		boundary a	re directed	OTT-Chip. 8-	oit oπ-chip i addrose	viOvx oper	ations use				
	11. External	Only: MOV		off-chin XE	2 AM only O	auuress. In-chin XRA	M is not vi	sible to the				
	CPU		A 0000300									
Bits1–0:	EALE1–0: A	LE Pulse-W	/idth Select	Bits (only h	as effect w	hen EMD2	= 0).					
	00: ALE high	n and ALE l	ow pulse wi	idth = 1 SYS	SCLK cycle.		,					
	01: ALE high	n and ALE I	ow pulse wi	idth = 2 SYS	SCLK cycles	S.						
	10: ALE high	n and ALE I	ow pulse w	idth = 3 SYS	SCLK cycle	S.						
	11: ALE high	and ALE lo	ow pulse wi	dth = 4 SYS	SCLK cycles	S.						

System Clock Frequency (MHz)	Divide Factor	Timer 1 Reload Value ¹	Timer 2, 3, or 4 Reload Value	Resulting Baud Rate (Hz) ²
100.0	864	0xCA	0xFFCA	115200 (115741)
99.5328	864	0xCA	0xFFCA	115200
50.0	432	0xE5	0xFFE5	115200 (115741)
49.7664	432	0xE5	0xFFE5	115200
24.0	208	0xF3	0xFFF3	115200 (115384)
22.1184	192	0xF4	0xFFF4	115200
18.432	160	0xF6	0xFFF6	115200
11.0592	96	0xFA	0xFFFA	115200
3.6864	32	0xFE	0xFFFE	115200
1.8432	16	0xFF	0xFFFF	115200
100.0	3472	0x27	0xFF27	28800 (28802)
99.5328	3456	0x28	0xFF28	28800
50.0	1744	0x93	0xFF93	28800 (28670)
49.7664	1728	0x94	0xFF94	28800
24.0	832	0xCC	0xFFCC	28800 (28846)
22.1184	768	0xD0	0xFFD0	28800
18.432	640	0xD8	0xFFD8	28800
11.0592	348	0xE8	0xFFE8	28800
3.6864	128	0xF8	0xFFF8	28800
1.8432	64	0xFC	0xFFFC	28800
100.0	10416	-	0xFD75	9600 (9601)
99.5328	10368	-	0xFD78	9600
50.0	5216	-	0xFEBA	9600 (9586)
49.7664	5184	-	0xFEBC	9600
24.0	2496	0x64	0xFF64	9600 (9615)
22.1184	2304	0x70	0xFF70	9600
18.432	1920	0x88	0xFF88	9600
11.0592	1152	0xB8	0xFFB8	9600
3.6864	384	0xE8	0xFFE8	9600
1.8432	192	0xF4	0xFFF4	9600

Table 21.2. Oscillator Frequencies for Standard Baud Rates

Notes:

1. Assumes SMOD0 = 1 and T1M = 1.

2. Numbers in parenthesis show the actual baud rate.

22.2.2. 9-Bit UART

9-bit UART mode uses a total of eleven bits per data byte: a start bit, 8 data bits (LSB first), a programmable ninth data bit, and a stop bit. The state of the ninth transmit data bit is determined by the value in TB81 (SCON1.3), which is assigned by user software. It can be assigned the value of the parity flag (bit P in register PSW) for error detection, or used in multiprocessor communications. On receive, the ninth data bit goes into RB81 (SCON1.2) and the stop bit is ignored.

Data transmission begins when an instruction writes a data byte to the SBUF1 register. The TI1 Transmit Interrupt Flag (SCON1.1) is set at the end of the transmission (the beginning of the stop-bit time). Data reception can begin any time after the REN1 Receive Enable bit (SCON1.4) is set to '1'. After the stop bit is received, the data byte will be loaded into the SBUF1 receive register if the following conditions are met: (1) RI1 must be logic 0, and (2) if MCE1 is logic 1, the 9th bit must be logic 1 (when MCE1 is logic 0, the state of the ninth data bit is unimportant). If these conditions are met, the eight bits of data are stored in SBUF1, the ninth bit is stored in RB81, and the RI1 flag is set to '1'. A UART1 interrupt will occur if enabled when either TI1 or RI1 is set to '1'.

Figure 22.5. 9-Bit UART Timing Diagram

23.1.2. Mode 1: 16-bit Counter/Timer

Mode 1 operation is the same as Mode 0, except that the counter/timer registers use all 16 bits. The counter/timers are enabled and configured in Mode 1 in the same manner as for Mode 0.

23.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload

Mode 2 configures Timer 0 or Timer 1 to operate as 8-bit counter/timers with automatic reload of the start value. TL0 holds the count and TH0 holds the reload value. When the counter in TL0 overflows from 0xFF to 0x00, the timer overflow flag TF0 (TCON.5) is set and the counter in TL0 is reloaded from TH0. If Timer 0 interrupts are enabled, an interrupt will occur when the TF0 flag is set. The reload value in TH0 is not changed. TL0 must be initialized to the desired value before enabling the timer for the first count to be correct. When in Mode 2, Timer 1 operates identically to Timer 0.

Both counter/timers are enabled and configured in Mode 2 in the same manner as Mode 0. Setting the TR0 bit (TCON.4) enables the timer when either GATE0 (TMOD.3) is logic 0 or when the input signal /INT0 is low

23.2. Timer 2, Timer 3, and Timer 4

Timers 2, 3, and 4 are 16-bit counter/timers, each formed by two 8-bit SFR's: TMRnL (low byte) and TMRnH (high byte) where n = 2, 3, and 4 for timers 2, 3, and 4 respectively. Timers 2 and 4 feature autoreload, capture, and toggle output modes with the ability to count up or down. Timer 3 features auto-reload and capture modes, with the ability to count up or down. Capture Mode and Auto-reload mode are selected using bits in the Timer 2, 3, and 4 Control registers (TMRnCN). Toggle output mode is selected using the Timer 2 or 4 Configuration registers (TMRnCF). These timers may also be used to generate a squarewave at an external pin. As with Timers 0 and 1, Timers 2, 3, and 4 can use either the system clock (divided by one, two, or twelve), external clock (divided by eight) or transitions on an external input pin as its clock source. Timer 2 and 3 can be used to start an ADC Data Conversion and Timers 2, 3, and 4 can schedule DAC outputs. Timers 1, 2, 3, or 4 may be used to generate baud rates for UART 0. Only Timer 1 can be used to generate baud rates for UART 1.

The Counter/Timer Select bit C/Tn bit (TMRnCN.1) configures the peripheral as a counter or timer. Clearing C/Tn configures the Timer to be in a timer mode (i.e., the system clock or transitions on an external pin as the input for the timer). When C/Tn is set to 1, the timer is configured as a counter (i.e., high-to-low transitions at the Tn input pin increment (or decrement) the counter/timer register. Timer 3 and Timer 2 share the T2 input pin. Refer to **Section "18.1. Ports 0 through 3 and the Priority Crossbar Decoder" on page 238** for information on selecting and configuring external I/O pins for digital peripherals, such as the Tn pin.

Timer 2, 3, and 4 can use either SYSCLK, SYSCLK divided by 2, SYSCLK divided by 12, an external clock divided by 8, or high-to-low transitions on the Tn input pin as its clock source when operating in Counter/ Timer with Capture mode. Clearing the C/Tn bit (TMRnCN.1) selects the system clock/external clock as the input for the timer. The Timer Clock Select bits TnM0 and TnM1 in TMRnCF can be used to select the system clock undivided, system clock divided by two, system clock divided by 12, or an external clock provided at the XTAL1/XTAL2 pins divided by 8 (see SFR Definition 23.13). When C/Tn is set to logic 1, a high-to-low transition at the Tn input pin increments the counter/timer register (i.e., configured as a counter).

23.2.1. Configuring Timer 2, 3, and 4 to Count Down

Timers 2, 3, and 4 have the ability to count down. When the timer's Decrement Enable Bit (DCENn) in the Timer Configuration Register (See SFR Definition 23.13) is set to '1', the timer can then count *up* or *down*. When DCENn = 1, the direction of the timer's count is controlled by the TnEX pin's logic level (Timer 3 shares the T2EX pin with Timer 2). When TnEX = 1, the counter/timer will count up; when TnEX = 0, the counter/timer will count down. To use this feature, TnEX must be enabled in the digital crossbar and configured as a digital input.

Note: When DCENn = 1, other functions of the TnEX input (i.e., capture and auto-reload) are not available. TnEX will only control the direction of the timer when DCENn = 1.

SFR Definition 23.9. TMRnCF: Timer 2, 3, and 4 Configuration

			R/W	R/W	R/W	R/W	R/W	Reset Value					
-	-	-	TnM1	TnM0	TOGn	TnOE	DCENn	00000000					
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0						
SFR Addr	SFR Address: TMR2CF:0xC9;TMR3CF:0xC9;TMR4CF:0xC9												
SFR P	SFR Page TMR2CF: page 0;TMR3CF: page 1;TMR4CF: Page 2												
Bit7–5:	Reserved.												
Bit4–3:	3: TnM1 and TnM0: Timer Clock Mode Select Bits.												
	Bits used to s	select the 11	mer clock s	source. The	sources ca	in be the Sy	stem Cloc	:K					
	(SYSCLK), S	SCLK UIVI	ded by 2 o	r 12, or the	external clo	ick alviaea i		c source is					
		0110WS. /12											
		12											
	10: EXTERN	AL CLOCK/	8 (Synchro	nized to the	e System C	lock)							
	11: SYSCLK/	2	- (-)		-,	,							
Bit2:	TOGn: Toggle	e output sta	te bit.										
	When timer is	s used to tog	gle a port p	pin, this bit o	an be used	I to read the	state of th	e output, or					
	can be writte	n to in order	to force th	e state of th	ne output (T	imer 2 and	Timer 4 O	nly).					
Bit1:	TnOE: Timer	output enal	ole bit.										
	This bit enab	les the time	r to output	a 50% duty	cycle outpu	it to the time	er's assign	ed external					
	NOTE: A tim	or is configu	urad for Sau	uara Mava I	Dutnut as fr	allower							
	$\frac{NOTL}{CP/RI} = 0$	er is cornige	lieu ioi Syl		Sulpul as h	5110143.							
	C/Tn = 0												
	TnOE = 1												
	Load RCAPn	H:RCAPnL	(See "Squa	are Wave F	requency (Timer 2 and	Timer 4 C	Only)" on					
	page 320.)												
	Configure Po	ort Pin to out	put square	wave (See	Section "1	8. Port Inp	ut/Output'	" on					
	page 235)	o a al o los o do		hin at Timar		ما به میشد ام							
	1: Output of t	oggie mode	not avalla	ble at Timer	s's assigne	a port pin.							
Bit0 [.]	DCENn: Dec	rement Ena	ble Bit		assigned p	Jit pin.							
Bito.	This bit enab	les the time	r to count u	up or down a	as determin	ed by the s	tate of TnE	EX.					
	0: Timer will o	count up, re	gardless of	f the state of	f TnEX.	· · · , · · · ·							
	1: Timer will a	count up or	down depe	ending on th	e state of T	nEX as follo	ows:						
	if Tnl	$\Xi X = 0$, the	timer count	ts DOWN.									
	if Tnl	$\Xi X = 1$, the	timer count	ts UP.									
Note	Timor 2 and	Timor 2 aka	ro the TO -	nd TOEV -:	20								
Note:	nmer 3 and	nmer z sna	ie the 12 a	na izek pi	115.								

PWM16	ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	Operation Mode
Х	Х	1	0	0	0	0	Х	Capture triggered by positive edge on CEXn
Х	Х	0	1	0	0	0	Х	Capture triggered by negative edge on CEXn
Х	Х	1	1	0	0	0	Х	Capture triggered by transition on CEXn
Х	1	0	0	1	0	0	Х	Software Timer
Х	1	0	0	1	1	0	Х	High Speed Output
Х	1	0	0	0	1	1	Х	Frequency Output
0	1	0	0	0	0	1	0	8-Bit Pulse Width Modulator
1	1	0	0	0	0	1	0	16-Bit Pulse Width Modulator

Table 24.2. PCA0CPM Register Settings for PCA Capture/Compare Modules

X = Don't Care

24.2.1. Edge-triggered Capture Mode

In this mode, a valid transition on the CEXn pin causes PCA0 to capture the value of the PCA0 counter/ timer and load it into the corresponding module's 16-bit capture/compare register (PCA0CPLn and PCA0CPHn). The CAPPn and CAPNn bits in the PCA0CPMn register are used to select the type of transition that triggers the capture: low-to-high transition (positive edge), high-to-low transition (negative edge), or either transition (positive or negative edge). When a capture occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1 and an interrupt request is generated if CCF interrupts are enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software.

Figure 24.4. PCA Capture Mode Diagram

Note: The signal at CEXn must be high or low for at least 2 system clock cycles in order to be valid.

24.2.4. Frequency Output Mode

Frequency Output Mode produces a programmable-frequency square wave on the module's associated CEXn pin. The capture/compare module high byte holds the number of PCA clocks to count before the output is toggled. The frequency of the square wave is then defined by Equation 24.1.

Equation 24.1. Square Wave Frequency Output

$$F_{sqr} = \frac{F_{PCA}}{2 \times PCA0CPHn}$$

Note: A value of 0x00 in the PCA0CPHn register is equal to 256 for this equation.

Where F_{PCA} is the frequency of the clock selected by the CPS2–0 bits in the PCA mode register, PCA0MD. The lower byte of the capture/compare module is compared to the PCA0 counter low byte; on a match, CEXn is toggled and the offset held in the high byte is added to the matched value in PCA0CPLn. Frequency Output Mode is enabled by setting the ECOMn, TOGn, and PWMn bits in the PCA0CPMn register.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/ Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to '0'; writing to PCA0CPHn sets ECOMn to '1'.

Figure 24.7. PCA Frequency Output Mode

SFR Definition 24.3. PCA0CPMn: PCA0 Capture/Compare Mode

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value					
PWM16	in ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMn	ECCFn	00000000					
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-					
S	FR PCA0CPM0:	0xDA, PCA0C	PM1: 0xDB, P	CA0CPM2: 0x	DC, PCA0CP	M3: 0xDD, PC	A0CPM4: 0xI	DE,					
Addre	ss: PCA0CPM5:	0xDF											
SFR Pa	SFR Page: PCAUCPMU: page 0, PCAUCPM1: page 0, PCAUCPM2: page 0, PCAUCPM3: 0, PCAUCPM4: page 0, PCAUCPM4: page 0, PCAUCPM5: page 0												
Bit7:	Bit7: PWM16n: 16-bit Pulse Width Modulation Enable												
	This bit selects 16-bit mode when Pulse Width Modulation mode is enabled (PWMn = 1).												
	0: 8-bit PWM selected.												
	1: 16-bit PWM selected.												
Bit6:	ECOMn: Co	mparator F	unction Ena	able.									
	This bit enal	oles/disable	s the comp	arator funct	ion for PCA	0 module n							
	0: Disabled.												
	1: Enabled.												
Bit5:	CAPPn: Cap	oture Positiv	e Function	Enable.									
	This bit enal	oles/disable	s the positiv	ve edge cap	oture for PC	A0 module	n.						
	0: Disabled.												
D:44.	1: Enabled.	ture Negat	ive Frantin	. Frabla									
DIL4.	This bit on a	olure Negal	s the negation	ivo odgo co	nturo for D		n n						
	0. Disabled	163/0130016	s the negat	ive euge ca			, 11.						
	1: Enabled												
Bit3:	MATn: Matc	h Function I	Enable.										
	This bit enab	oles/disable	s the match	function fo	r PCA0 mod	dule n. Whe	n enabled,	matches of					
	the PCA0 co	ounter with a	a module's d	capture/com	pare regist	er cause the	CCFn bit	in PCA0MD					
	register to b	e set to logi	c 1.										
	0: Disabled.												
	1: Enabled.												
Bit2:	TOGn: Togg	le Function	Enable.		5040								
	This bit enab	bles/disable	s the toggle	e function to	r PCA0 moo	dule n. Whe	n enabled,	matches of					
		togglo If th	a module s	capture/con	to logic 1 t	ter cause th	e logic leve	eroquenev					
		ະບຽງເອ. 11 ແມ ລ		1 15 0150 501			operates in	requeicy					
	0 [.] Disabled												
	1: Enabled.												
Bit1:	PWMn: Puls	e Width Mo	dulation Mo	ode Enable.									
	This bit enal	oles/disable	s the PWM	function for	r PCA0 moo	dule n. Whe	n enabled,	a pulse					
	width modul	ated signal	is output or	n the CEXn	pin. 8-bit P	WM is used	if PWM16	n is logic 0;					
	16-bit mode	is used if P	WM16n log	ic 1. If the T	roGn bit is	also set, the	e module c	perates in					
	Frequency C	Dutput Mode	э.										
	0: Disabled.												
DitO	1: Enabled.	turo/Com-	oro Elea let	orrupt Cash									
BIIU:	This bit coto	the maskin	are Flag Int	errupt Enat	ne. Saro Eloa (C	CEn) intorr	unt						
	0. Disable C	CEn interru	y ui iile Ca	pluie/Comp	are Flay (C		upt.						
	1: Enable a	Capture/Co	mpare Flag	interrupt re	equest when	n CCFn is s	et.						
	u			,	1								

SFR Definition 24.7. PCA0CPHn: PCA0 Capture Module High Byte

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
								00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
SFR Address: PCA0CPH0: 0xFC, PCA0CPH1: 0xFD, PCA0CPH2: 0xEA, PCA0CPH3: 0xEC, PCA0CPH4: 0xEE, PCA0CPH5: 0xE2											
SFR Page	SFR Page: PCA0CPH0: page 0, PCA0CPH1: page 0, PCA0CPH2: page 0, PCA0CPH3: page 0, PCA0CPH4: page 0, PCA0CPH5: page 0										
Bits7–0: F T	PCA0CPHn: The PCA0CF	PCA0 Cap PHn registe	ture Module r holds the	e High Byte high byte (l	MSB) of the	e 16-bit cap	ture module	e n.			

