E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	50MHz
Connectivity	EBI/EMI, SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	64
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x8b, 8x10b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f126-gqr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

SFR Definition 16.5. FLSTAT: Flash Status	217
SFR Definition 17.1. EMIOCN: External Memory Interface Control	220
SFR Definition 17.2. EMI0CF: External Memory Configuration	
SFR Definition 17.3. EMIOTC: External Memory Timing Control	
SFR Definition 18.1. XBR0: Port I/O Crossbar Register 0	
SFR Definition 18.2. XBR1: Port I/O Crossbar Register 1	
SFR Definition 18.3. XBR2: Port I/O Crossbar Register 2	
SFR Definition 18.4. P0: Port0 Data	
SFR Definition 18.5. P0MDOUT: Port0 Output Mode	248
SFR Definition 18.6. P1: Port1 Data	249
SFR Definition 18.7. P1MDIN: Port1 Input Mode	249
SFR Definition 18.8. P1MDOUT: Port1 Output Mode	250
SFR Definition 18.9. P2: Port2 Data	250
SFR Definition 18.10. P2MDOUT: Port2 Output Mode	251
SFR Definition 18.11. P3: Port3 Data	251
SFR Definition 18.12. P3MDOUT: Port3 Output Mode	252
SFR Definition 18.13. P4: Port4 Data	
SFR Definition 18.14. P4MDOUT: Port4 Output Mode	254
SFR Definition 18.15. P5: Port5 Data	255
SFR Definition 18.16. P5MDOUT: Port5 Output Mode	255
SFR Definition 18.17. P6: Port6 Data	
SFR Definition 18.18. P6MDOUT: Port6 Output Mode	
SFR Definition 18.19. P7: Port7 Data	
SFR Definition 18.20. P7MDOUT: Port7 Output Mode	257
SFR Definition 19.1. SMB0CN: SMBus0 Control	266
SFR Definition 19.2. SMB0CR: SMBus0 Clock Rate	267
SFR Definition 19.3. SMB0DAT: SMBus0 Data	
SFR Definition 19.4. SMB0ADR: SMBus0 Address	269
SFR Definition 19.5. SMB0STA: SMBus0 Status	
SFR Definition 20.1. SPI0CFG: SPI0 Configuration	
SFR Definition 20.2. SPI0CN: SPI0 Control	
SFR Definition 20.3. SPI0CKR: SPI0 Clock Rate	
SFR Definition 20.4. SPI0DAT: SPI0 Data	
SFR Definition 21.1. SCON0: UART0 Control	
SFR Definition 21.2. SSTA0: UART0 Status and Clock Selection	
SFR Definition 21.3. SBUF0: UART0 Data Buffer	
SFR Definition 21.4. SADDR0: UART0 Slave Address	
SFR Definition 21.5. SADEN0: UARTO Slave Address Enable	298
SFR Definition 22.1. SCON1: Serial Port 1 Control	
SFR Definition 22.2. SBUF1: Serial (UART1) Port Data Buffer	
SFR Definition 23.1. TCON: Timer Control	
SFR Definition 23.2. TMOD: Timer Mode	
SFR Definition 23.3. CKCON: Clock Control	
SFR Definition 23.4. TL0: Timer 0 Low Byte	
SFR Definition 23.5. TL1: Timer 1 Low Byte	316

1.9. 8-Bit Analog to Digital Converter

The C8051F12x devices have an on-board 8-bit SAR ADC (ADC2) with an 8-channel input multiplexer and programmable gain amplifier. This ADC features a 500 ksps maximum throughput and true 8-bit linearity with an INL of ±1LSB. Eight input pins are available for measurement. The ADC is under full control of the CIP-51 microcontroller via the Special Function Registers. The ADC2 voltage reference is selected between the analog power supply (AV+) and an external VREF pin. On the 100-pin TQFP devices, ADC2 has its own dedicated Voltage Reference input pin; on the 64-pin TQFP devices, ADC2 shares a Voltage Reference input pin with ADC0. User software may put ADC2 into shutdown mode to save power.

A programmable gain amplifier follows the analog multiplexer. The gain stage can be especially useful when different ADC input channels have widely varied input voltage signals, or when it is necessary to "zoom in" on a signal with a large DC offset (in differential mode, a DAC could be used to provide the DC offset). The PGA gain can be set in software to 0.5, 1, 2, or 4.

A flexible conversion scheduling system allows ADC2 conversions to be initiated by software commands, timer overflows, or an external input signal. ADC2 conversions may also be synchronized with ADC0 software-commanded conversions. Conversion completions are indicated by a status bit and an interrupt (if enabled), and the resulting 8-bit data word is latched into an SFR upon completion.

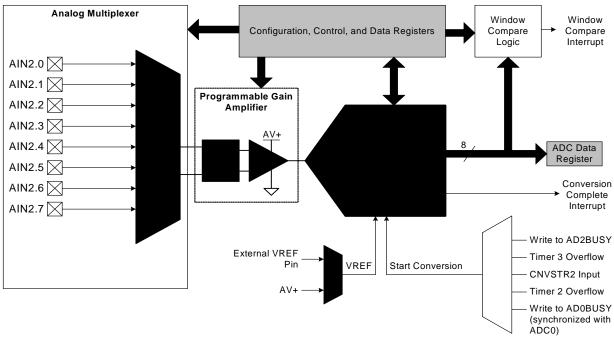


Figure 1.14. 8-Bit ADC Diagram

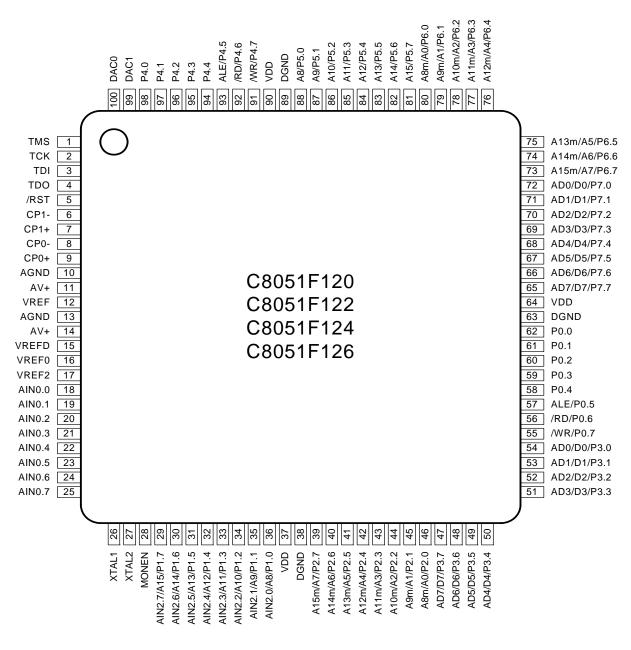


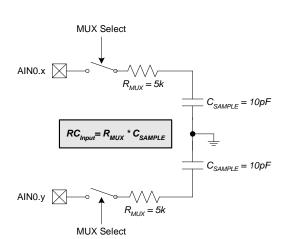
Figure 4.1. C8051F120/2/4/6 Pinout Diagram (TQFP-100)

SFR Definition 5.4. ADC0CN: ADC0 Control

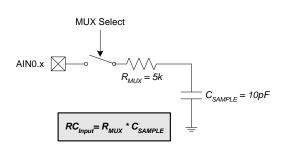
SFR Addre R/W	R/W	(bit addre R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
ADOE	AD0TM	AD0INT	AD0BUSY	AD0CM1	AD0CM0	ADOWINT	AD0LJST	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_			
D:47.		CO Enchia	D:4								
Bit7:	AD0EN: AD			nowor ob	tdown						
	0: ADC0 Dis 1: ADC0 En					versions					
Bit6:	ADOTM: AD			anu reauy		versions.					
Dito.				kina is cont	inuous unles	ss a convers	ion is in pro	Cess			
	1: Tracking							0000.			
Bit5:	AD0INT: AD				ot Flag.						
	This flag mu										
					n since the l	ast time this	flag was clo	eared.			
	1: ADC0 has						U				
Bit4:	AD0BUSY:	ADC0 Bus	y Bit.								
	Read:										
	0: ADC0 Conversion is complete or a conversion is not currently in progress. AD0INT is set										
	to logic 1 on the falling edge of AD0BUSY.										
	1: ADC0 Conversion is in progress.										
	Write:										
	0: No Effect				0.01						
Dite? 2	1: Initiates A AD0CM1–0										
Bits3–2:	If AD0CMT=0		an of Conve		Select.						
			nitiated on (ovorv writo	of '1' to AD(BUSY					
	00: ADC0 conversion initiated on every write of '1' to AD0BUSY. 01: ADC0 conversion initiated on overflow of Timer 3.										
	10: ADC0 conversion initiated on overnow of nimer 3.										
	11: ADC0 conversion initiated on overflow of Timer 2.										
	If $ADOTM = 1$:										
	00: Tracking starts with the write of '1' to AD0BUSY and lasts for 3 SAR clocks, followed by										
	conversion.										
	-	started by	the overflo	w of Timer	3 and lasts	for 3 SAR cl	ocks, follow	ed by con-			
	version.										
			when CNVS	TR0 input	is logic low;	conversion s	starts on risi	ng			
	CNVSTR0 e		(I								
		started by	the overflo	w of Timer	2 and lasts	for 3 SAR clo	DCKS, TOIIOW	ed by con-			
Di+1.	version. AD0WINT: A		low Compo	ro Intorrunt	Flog						
Bit1:	This bit mus				Flag.						
					s not occur	ed since this	s flag was la	est cleared			
	1: ADC0 Wi						s nay was lo				
Bit0:	ADOLJST: A		•								
2.00.	0: Data in A				iustified.						

6.2.3. Settling Time Requirements

A minimum tracking time is required before an accurate conversion can be performed. This tracking time is determined by the ADC0 MUX resistance, the ADC0 sampling capacitance, any external source resistance, and the accuracy required for the conversion. Figure 6.4 shows the equivalent ADC0 input circuits for both Differential and Single-ended modes. Notice that the equivalent time constant for both input circuits is the same. The required settling time for a given settling accuracy (*SA*) may be approximated by Equation 6.1. When measuring the Temperature Sensor output, R_{TOTAL} reduces to R_{MUX} . An absolute minimum settling time of 1.5 µs is required after any MUX or PGA selection. Note that in low-power tracking mode, three SAR clocks are used for tracking at the start of every conversion. For most applications, these three SAR clocks will meet the tracking requirements.

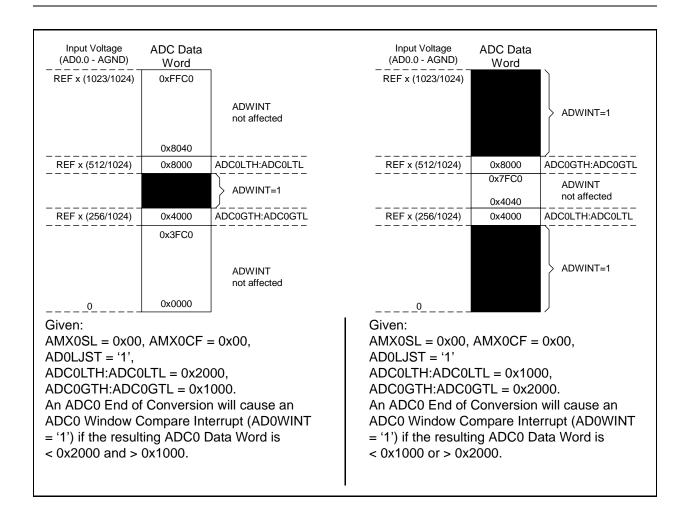

$$t = \ln\left(\frac{2^n}{SA}\right) \times R_{TOTAL} C_{SAMPLE}$$

Equation 6.1. ADC0 Settling Time Requirements


Where:

SA is the settling accuracy, given as a fraction of an LSB (for example, 0.25 to settle within 1/4 LSB) *t* is the required settling time in seconds

 R_{TOTAL} is the sum of the ADC0 MUX resistance and any external source resistance. *n* is the ADC resolution in bits (10).


Differential Mode

Single-Ended Mode

Figure 6.4. ADC0 Equivalent Input Circuits

Figure 6.8. 10-Bit ADC0 Window Interrupt Example: Left Justified Single-Ended Data

7.2. ADC2 Modes of Operation

ADC2 has a maximum conversion speed of 500 ksps. The ADC2 conversion clock (SAR2 clock) is a divided version of the system clock, determined by the AD2SC bits in the ADC2CF register. The maximum ADC2 conversion clock is 6 MHz.

7.2.1. Starting a Conversion

A conversion can be initiated in one of five ways, depending on the programmed states of the ADC2 Start of Conversion Mode bits (AD2CM2-0) in ADC2CN. Conversions may be initiated by:

- 1. Writing a '1' to the AD2BUSY bit of ADC2CN;
- 2. A Timer 3 overflow (i.e. timed continuous conversions);
- 3. A rising edge detected on the external ADC convert start signal, CNVSTR2;
- 4. A Timer 2 overflow (i.e. timed continuous conversions);
- 5. Writing a '1' to the AD0BUSY of register ADC0CN (initiate conversion of ADC2 and ADC0 with a single software command).

During conversion, the AD2BUSY bit is set to logic 1 and restored to 0 when conversion is complete. The falling edge of AD2BUSY triggers an interrupt (when enabled) and sets the interrupt flag in ADC2CN. Converted data is available in the ADC2 data word, ADC2.

When a conversion is initiated by writing a '1' to AD2BUSY, it is recommended to poll AD2INT to determine when the conversion is complete. The recommended procedure is:

Step 1. Write a '0' to AD2INT; Step 2. Write a '1' to AD2BUSY; Step 3. Poll AD2INT for '1'; Step 4. Process ADC2 data.

When CNVSTR2 is used as a conversion start source, it must be enabled in the crossbar, and the corresponding pin must be set to open-drain, high-impedance mode (see **Section "18. Port Input/Output" on page 235** for more details on Port I/O configuration).

7.2.2. Tracking Modes

The AD2TM bit in register ADC2CN controls the ADC2 track-and-hold mode. In its default state, the ADC2 input is continuously tracked, except when a conversion is in progress. When the AD2TM bit is logic 1, ADC2 operates in low-power track-and-hold mode. In this mode, each conversion is preceded by a track-ing period of 3 SAR clocks (after the start-of-conversion signal). When the CNVSTR2 signal is used to initiate conversions in low-power tracking mode, ADC2 tracks only when CNVSTR2 is low; conversion begins on the rising edge of CNVSTR2 (see Figure 7.2). Tracking can also be disabled (shutdown) when the entire chip is in low power standby or sleep modes. Low-power Track-and-Hold mode is also useful when AMUX or PGA settings are frequently changed, due to the settling time requirements described in **Section "7.2.3. Settling Time Requirements" on page 94**.

SFR Definition 10.4. CPT1MD: Comparator1 Mode Selection

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
-	-	CP1RIE	CP1FIE	-	-	CP1MD1	CP1MD0	00000010		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	1		
Bits7–6:	UNUSED. Re	ad = 00b. V	/rite = don't	care.						
Bit 5:	CP1RIE: Con				nable Bit.					
	0: Comparato									
	1: Comparato	•	•							
Bit 4:	CP1FIE: Con	nparator 0 F	alling-Edge	Interrupt E	nable Bit.					
	0: Comparator 1 falling-edge interrupt disabled.									
	1: Comparato	or 1 falling-e	dge interrup	t enabled.						
Bits3–2:	UNUSED. Re	ad = 00b, V	/rite = don't	care.						
Bits1–0:	CP1MD1–CF	1MD0: Com	nparator1 M	ode Select						
	These bits se	lect the resp	oonse time	for Compar	ator1.					
	Mode	CP0MD1	CP0MD0		Notes					
	0	0	0	Faste	Fastest Response Time					
	1	0	1		_					
	2	1	0		_					
	3	1	1	1	Power Con					

Mnemonic	Description	Bytes	Ciock							
MOV direct, @Ri	Move indirect RAM to direct byte	2	2							
MOV direct, #data	Move immediate to direct byte	3	3							
MOV @Ri, A	Move A to indirect RAM	1	2							
MOV @Ri, direct	Move direct byte to indirect RAM	2	2							
MOV @Ri, #data	Move immediate to indirect RAM	2	2							
MOV DPTR, #data16	Load DPTR with 16-bit constant	3	3							
MOVC A, @A+DPTR	Move code byte relative DPTR to A	1	3							
MOVC A, @A+PC	Move code byte relative PC to A	1	3							
MOVX A, @Ri	Move external data (8-bit address) to A	1	3							
MOVX @Ri, A	Move A to external data (8-bit address)	1	3							
MOVX A, @DPTR	Move external data (16-bit address) to A	1	3							
MOVX @DPTR, A	Move A to external data (16-bit address)	1	3							
PUSH direct	Push direct byte onto stack	2	2							
POP direct	Pop direct byte from stack	2	2							
XCH A, Rn	Exchange Register with A	1	1							
XCH A, direct	Exchange direct byte with A	2	2							
XCH A, @Ri	Exchange indirect RAM with A	1	2							
XCHD A, @Ri	Exchange low nibble of indirect RAM with A	1	2							
- , -	Boolean Manipulation									
CLR C	Clear Carry	1	1							
CLR bit	Clear direct bit	2	2							
SETB C	Set Carry	1	1							
SETB bit	Set direct bit	2	2							
CPL C	Complement Carry	1	1							
CPL bit	Complement direct bit	2	2							
ANL C, bit	AND direct bit to Carry	2	2							
ANL C, /bit	AND complement of direct bit to Carry	2	2							
ORL C, bit	OR direct bit to carry	2	2							
ORL C, /bit	OR complement of direct bit to Carry	2	2							
MOV C, bit	Move direct bit to Carry	2	2							
MOV bit, C	Move Carry to direct bit	2	2							
JC rel	Jump if Carry is set	2	2/3*							
JNC rel	Jump if Carry is not set	2	2/3*							
JB bit, rel	Jump if direct bit is set	3	3/4*							
JNB bit, rel	Jump if direct bit is not set	3	3/4*							
JBC bit, rel	Jump if direct bit is set and clear bit	3	3/4*							
	Program Branching	5	0/7							
ACALL addr11	Absolute subroutine call	2	3*							
LCALL addr16	Long subroutine call	3	3 4*							
RET	Return from subroutine	1	4 5*							
RETI	Return from interrupt	1	5 5*							
AJMP addr11	Absolute jump	2	3*							
LJMP addr16		3	3* 4*							
SJMP rel	Long jump	2	4^ 3*							
	Short jump (relative address)		-							
JMP @A+DPTR	Jump indirect relative to DPTR	1	3*							

Table 11.1. CIP-51 Instruction Set Summary (Continued)

14. Oscillators

The devices include a programmable internal oscillator and an external oscillator drive circuit. The internal oscillator can be enabled, disabled, and calibrated using the OSCICN and OSCICL registers, as shown in Figure 14.1. The system clock can be sourced by the external oscillator circuit, the internal oscillator, or the on-chip phase-locked loop (PLL). The internal oscillator's electrical specifications are given in Table 14.1 on page 185.

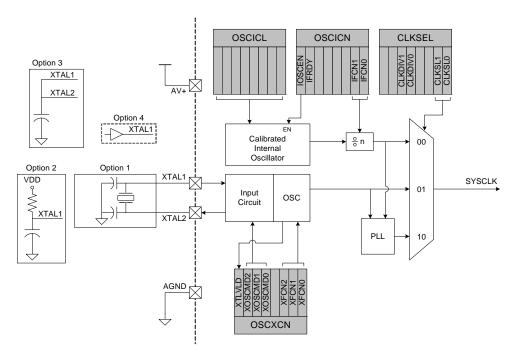


Figure 14.1. Oscillator Diagram

Table 14.1. Oscillator Electrical Characteristics

-40°C to +85°C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Calibrated Internal Oscillator Frequency		24	24.5	25	MHz
Internal Oscillator Supply Current (from V _{DD})	OSCICN.7 = 1	_	400	_	μA
External Clock Frequency		0		30	MHz
T _{XCH} (External Clock High Time)		15	_	_	ns
T _{XCL} (External Clock Low Time)		15	—	_	ns

14.1. Internal Calibrated Oscillator

All devices include a calibrated internal oscillator that defaults as the system clock after a system reset. The internal oscillator period can be adjusted via the OSCICL register as defined by SFR Definition 14.1. OSCICL is factory calibrated to obtain a 24.5 MHz frequency.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
-	-	FLF	RT	Reserved	Reserved	Reserved	FLWE	10000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
						S	SFR Address SFR Page	
Bits 7-6:	Unused.							
Bits 5-4:	FLRT: Flash	Read Time.						
	These bits sh	nould be pro	grammed	to the small	est allowed	l value, acco	ording to th	ie system
	clock speed.							
	00: SYSCLK							
	01: SYSCLK							
	10: SYSCLK							
	11: SYSCLK	_						
Bits 3–1: Bit 0:	RESERVED. FLWE: Flash			vrite uuud.				
BILU.	This bit must			writes/erasi	ires from us	sor software		
	0: Flash write			writes/crast		Ser Sonware.	•	
	1: Flash write							
Importan	t Note: Wher value of 11b disabled us	to 00b), ca	che reads	s, cache wr	ites, and th	ne prefetch	-	-

SFR Definition 15.2. FLSCL: Flash Memory Control

Parameter	Description	Min	Max	Units
T _{ACS}	Address/Control Setup Time	0	3 x T _{SYSCLK}	ns
T _{ACW}	Address/Control Pulse Width	1 x T _{SYSCLK}	16 x T _{SYSCLK}	ns
T _{ACH}	Address/Control Hold Time	0	3 x T _{SYSCLK}	ns
T _{ALEH}	Address Latch Enable High Time	1 x T _{SYSCLK}	4 x T _{SYSCLK}	ns
T _{ALEL}	Address Latch Enable Low Time	1 x T _{SYSCLK}	4 x T _{SYSCLK}	ns
T _{WDS}	Write Data Setup Time	1 x T _{SYSCLK}	19 x T _{SYSCLK}	ns
T _{WDH}	Write Data Hold Time	0	3 x T _{SYSCLK}	ns
T _{RDS}	Read Data Setup Time	20	—	ns
T _{RDH}	Read Data Hold Time	0	—	ns
√ote: T _{SYSCLK} is	s equal to one period of the device system clock (SYSC	CLK).		

Table 17.1. AC Parameters for External Memory Interface

19.3. SMBus Transfer Modes

The SMBus0 interface may be configured to operate as a master and/or a slave. At any particular time, the interface will be operating in one of the following modes: Master Transmitter, Master Receiver, Slave Transmitter, or Slave Receiver. See Table 19.1 for transfer mode status decoding using the SMB0STA status register. The following mode descriptions illustrate an interrupt-driven SMBus0 application; SMBus0 may alternatively be operated in polled mode.

19.3.1. Master Transmitter Mode

Serial data is transmitted on SDA while the serial clock is output on SCL. SMBus0 generates a START condition and then transmits the first byte containing the address of the target slave device and the data direction bit. In this case the data direction bit (R/W) will be logic 0 to indicate a "WRITE" operation. The SMBus0 interface transmits one or more bytes of serial data, waiting for an acknowledge (ACK) from the slave after each byte. To indicate the end of the serial transfer, SMBus0 generates a STOP condition.

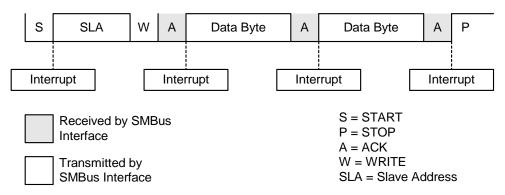
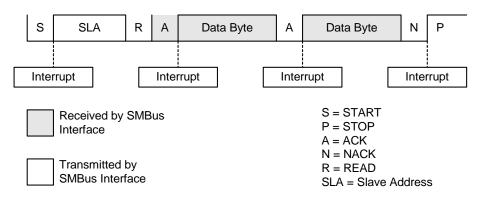



Figure 19.4. Typical Master Transmitter Sequence

19.3.2. Master Receiver Mode

Serial data is received on SDA while the serial clock is output on SCL. The SMBus0 interface generates a START followed by the first data byte containing the address of the target slave and the data direction bit. In this case the data direction bit (R/W) will be logic 1 to indicate a "READ" operation. The SMBus0 interface receives serial data from the slave and generates the clock on SCL. After each byte is received, SMBus0 generates an ACK or NACK depending on the state of the AA bit in register SMB0CN. SMBus0 generates a STOP condition to indicate the end of the serial transfer.

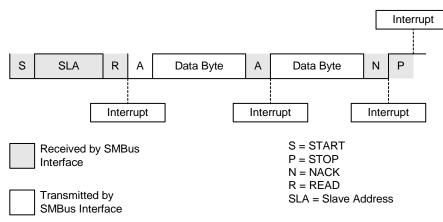
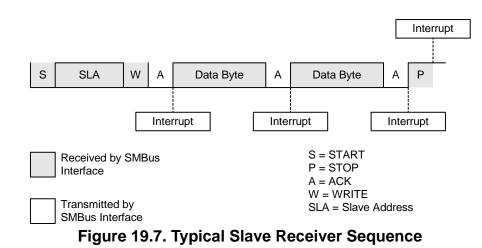


Figure 19.5. Typical Master Receiver Sequence

19.3.3. Slave Transmitter Mode


Serial data is transmitted on SDA while the serial clock is received on SCL. The SMBus0 interface receives a START followed by data byte containing the slave address and direction bit. If the received slave address matches the address held in register SMB0ADR, the SMBus0 interface generates an ACK. SMBus0 will also ACK if the general call address (0x00) is received and the General Call Address Enable bit (SMB0ADR.0) is set to logic 1. In this case the data direction bit (R/W) will be logic 1 to indicate a "READ" operation. The SMBus0 interface receives the clock on SCL and transmits one or more bytes of serial data, waiting for an ACK from the master after each byte. SMBus0 exits slave mode after receiving a STOP condition from the master.

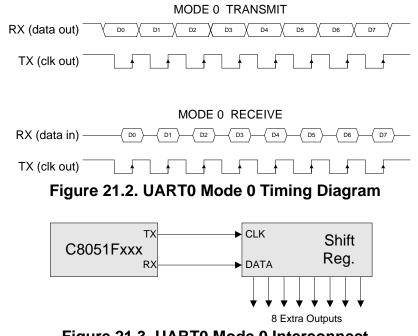
19.3.4. Slave Receiver Mode

Serial data is received on SDA while the serial clock is received on SCL. The SMBus0 interface receives a START followed by data byte containing the slave address and direction bit. If the received slave address matches the address held in register SMB0ADR, the interface generates an ACK. SMBus0 will also ACK if the general call address (0x00) is received and the General Call Address Enable bit (SMB0ADR.0) is set to logic 1. In this case the data direction bit (R/W) will be logic 0 to indicate a "WRITE" operation. The SMBus0 interface receives one or more bytes of serial data; after each byte is received, the interface transmits an ACK or NACK depending on the state of the AA bit in SMB0CN. SMBus0 exits Slave Receiver Mode after receiving a STOP condition from the master.

21.1. UART0 Operational Modes

UART0 provides four operating modes (one synchronous and three asynchronous) selected by setting configuration bits in the SCON0 register. These four modes offer different baud rates and communication protocols. The four modes are summarized in Table 21.1.

Mode	Synchronization	Baud Clock	Data Bits	Start/Stop Bits
0	Synchronous	SYSCLK / 12	8	None
1	Asynchronous	Timer 1, 2, 3, or 4 Overflow	8	1 Start, 1 Stop
2	Asynchronous	SYSCLK / 32 or SYSCLK / 64	9	1 Start, 1 Stop
3	Asynchronous	Timer 1, 2, 3, or 4 Overflow	9	1 Start, 1 Stop

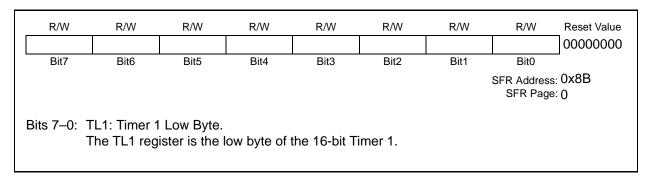

Table 21.1. UART0 Modes

21.1.1. Mode 0: Synchronous Mode

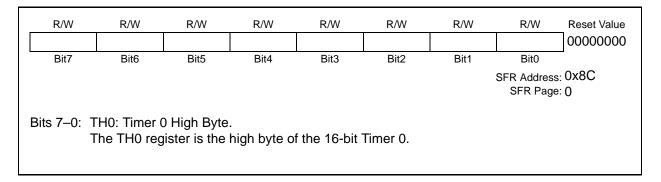
Mode 0 provides synchronous, half-duplex communication. Serial data is transmitted and received on the RX0 pin. The TX0 pin provides the shift clock for both transmit and receive. The MCU must be the master since it generates the shift clock for transmission in both directions (see the interconnect diagram in Figure 21.3).

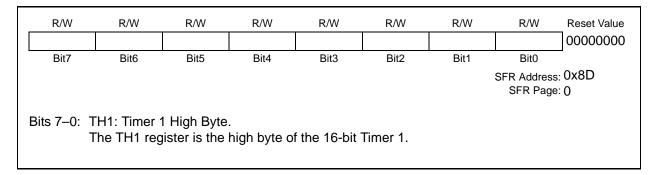
Data transmission begins when an instruction writes a data byte to the SBUF0 register. Eight data bits are transferred LSB first (see the timing diagram in Figure 21.2), and the TIO Transmit Interrupt Flag (SCON0.1) is set at the end of the eighth bit time. Data reception begins when the REN0 Receive Enable bit (SCON0.4) is set to logic 1 and the RI0 Receive Interrupt Flag (SCON0.0) is cleared. One cycle after the eighth bit is shifted in, the RI0 flag is set and reception stops until software clears the RI0 bit. An interrupt will occur if enabled when either TI0 or RI0 are set.

The Mode 0 baud rate is SYSCLK / 12. RX0 is forced to open-drain in Mode 0, and an external pullup will typically be required.

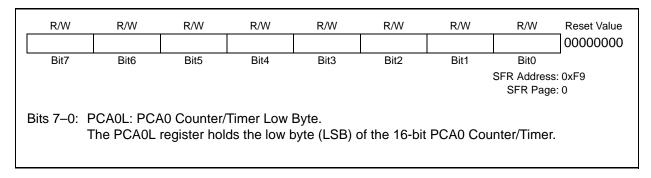


R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
GATE1	C/T1	T1M1	T1M0	GATE0	C/T0	T0M1	T0M0	00000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0					
							SFR Address SFR Page					
Bit7:		enabled w	e Control. hen TR1 = 1 i nly when TR1			•						
Bit6:	C/T1: Counter/Timer 1 Select.											
	0: Timer F	unction: Tir	ner 1 increme	ented by cloo	ck defined	by T1M bit	(CKCON.4).				
		Function:	Timer 1 increi	mented by h	igh-to-low	transitions	on external	input pin				
	(T1).											
Bits5–4:			Mode Select									
	These bits select the Timer 1 operation mode.											
	T1M1	T1M0		Mod	е		7					
	0	0	Мос	le 0: 13-bit o	counter/tim	er						
	0	1	Mode 1: 16-bit counter/timer									
	1	0	Mode 2: 8-b									
	1	1	M	ode 3: Time	r 1 inactive							
Bit3:	GATE0: Ti	mor 0 Cate	Control									
DIIJ.			hen TR0 = 1 i	rrespective	of /INTO Io	nic level						
			nly when TR0									
Bit2:	C/T0: Cou											
	0: Timer F	0: Timer Function: Timer 0 incremented by clock defined by T0M bit (CKCON.3).										
	1: Counter Function: Timer 0 incremented by high-to-low transitions on external input pin											
	(T0).											
Bits1–0:			Mode Select									
	These bits	select the	Timer 0 opera	ation mode.								
	T0M1	T0M0		Mod	е]					
	0	0	Mod	le 0: 13-bit c	ounter/time	er						
	0	1		le 1: 16-bit c]					
	1	0	Mode 2: 8-b									
	1	1	Mode	3: Two 8-bit	counter/tin	ners						

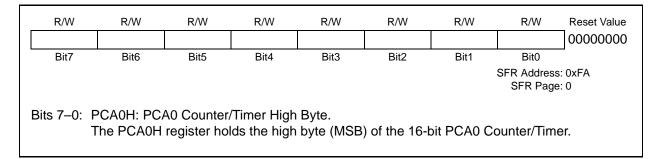

SFR Definition 23.2. TMOD: Timer Mode


SFR Definition 23.5. TL1: Timer 1 Low Byte

SFR Definition 23.6. TH0: Timer 0 High Byte



SFR Definition 23.7. TH1: Timer 1 High Byte



SFR Definition 24.4. PCA0L: PCA0 Counter/Timer Low Byte

SFR Definition 24.5. PCA0H: PCA0 Counter/Timer High Byte

SFR Definition 24.6. PCA0CPLn: PCA0 Capture Module Low Byte

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
								0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
SFR Addre	ess: PCA0CPL0: 0 0xE1	XFB, PCA0CF	PL1: 0xFD, PC	A0CPL2: 0xE9	, PCA0CPL3:	0xEB, PCA0C	PL4: 0xED,	PCA0CPL5:
SFR Pa	ge: PCA0CPL0: p PCA0CPL5: p	age 0, PCA00 age 0	CPL1: page 0,	PCA0CPL2: pa	age 0, PCA0C	PL3: page 0, F	PCA0CPL4: p	bage 0,
Bits7–0:	PCA0CPLn: I The PCA0CP				B) of the 16	-bit capture	module n	

