Silicon Labs - C8051F126 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete					
Core Processor	8051					
Core Size	8-Bit					
Speed	50MHz					
Connectivity	EBI/EMI, SMBus (2-Wire/I ² C), SPI, UART/USART					
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT					
Number of I/O	64					
Program Memory Size	128KB (128K x 8)					
Program Memory Type	FLASH					
EEPROM Size	-					
RAM Size	8.25K x 8					
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V					
Data Converters	A/D 8x8b, 8x10b; D/A 2x12b					
Oscillator Type	Internal					
Operating Temperature	-40°C ~ 85°C (TA)					
Mounting Type	Surface Mount					
Package / Case	100-TQFP					
Supplier Device Package	100-TQFP (14x14)					
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f126					

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

SFR Definition 5.9. ADC0LTH: ADC0 Less-Than Data High Byte

SFR Definition 5.10. ADC0LTL: ADC0 Less-Than Data Low Byte

Figure 5.9. 12-Bit ADC0 Window Interrupt Example: Left Justified Differential Data

7.3. ADC2 Programmable Window Detector

The ADC2 Programmable Window Detector continuously compares the ADC2 output to user-programmed limits, and notifies the system when a desired condition is detected. This is especially effective in an interrupt-driven system, saving code space and CPU bandwidth while delivering faster system response times. The window detector interrupt flag (AD2WINT in register ADC2CN) can also be used in polled mode. The ADC2 Greater-Than (ADC2GT) and Less-Than (ADC2LT) registers hold the comparison values. Example comparisons for Differential and Single-ended modes are shown in Figure 7.6 and Figure 7.5, respectively. Notice that the window detector flag can be programmed to indicate when measured data is inside or outside of the user-programmed limits, depending on the contents of the ADC2LT and ADC2GT registers.

7.3.1. Window Detector In Single-Ended Mode

Figure 7.5 shows two example window comparisons for Single-ended mode, with ADC2LT = 0x20 and ADC2GT = 0x10. Notice that in Single-ended mode, the codes vary from 0 to VREF*(255/256) and are represented as 8-bit unsigned integers. In the left example, an AD2WINT interrupt will be generated if the ADC2 conversion word (ADC2) is within the range defined by ADC2GT and ADC2LT (if 0x10 < ADC2 < 0x20). In the right example, and AD2WINT interrupt will be generated if ADC2 is outside of the range defined by ADC2GT and ADC2LT (if ADC2 < 0x10 or ADC2 > 0x20).

Figure 7.5. ADC2 Window Compare Examples, Single-Ended Mode

10. Comparators

Two on-chip programmable voltage comparators are included, as shown in Figure 10.1. The inputs of each comparator are available at dedicated pins. The output of each comparator is optionally available at the package pins via the I/O crossbar. When assigned to package pins, each comparator output can be programmed to operate in open drain or push-pull modes. See Section "18.1. Ports 0 through 3 and the Priority Crossbar Decoder" on page 238 for Crossbar and port initialization details.

Figure 10.1. Comparator Functional Block Diagram

11.3.2. External Interrupts

Two of the external interrupt sources (/INT0 and /INT1) are configurable as active-low level-sensitive or active-low edge-sensitive inputs depending on the setting of bits IT0 (TCON.0) and IT1 (TCON.2). IE0 (TCON.1) and IE1 (TCON.3) serve as the interrupt-pending flag for the /INT0 and /INT1 external interrupts, respectively. If an /INT0 or /INT1 external interrupt is configured as edge-sensitive, the corresponding interrupt-pending flag is automatically cleared by the hardware when the CPU vectors to the ISR. When configured as level sensitive, the interrupt-pending flag follows the state of the external interrupt's input pin. The external interrupt source must hold the input active until the interrupt request is recognized. It must then deactivate the interrupt request before execution of the ISR completes or another interrupt request will be generated.

Interrupt Source	Interru pt Vector	Priority Order	Pending Flags	Bit addressable?	Cleared by HW?	SFRPAGE (SFRPGEN = 1)	Enable Flag	Priority Control
Reset	0x0000	Тор	None	N/A	N/A	0	Always Enabled	Always Highest
External Interrupt 0 (/INT0)	0x0003	0	IE0 (TCON.1)	Y	Y	0	EX0 (IE.0)	PX0 (IP.0)
Timer 0 Overflow	0x000B	1	TF0 (TCON.5)	Y	Y	0	ET0 (IE.1)	PT0 (IP.1)
External Interrupt 1 (/INT1)	0x0013	2	IE1 (TCON.3)	Y	Y	0	EX1 (IE.2)	PX1 (IP.2)
Timer 1 Overflow	0x001B	3	TF1 (TCON.7)	Y	Y	0	ET1 (IE.3)	PT1 (IP.3)
UART0	0x0023	4	RI0 (SCON0.0) TI0 (SCON0.1)	Y		0	ES0 (IE.4)	PS0 (IP.4)
Timer 2	0x002B	5	TF2 (TMR2CN.7) EXF2 (TMR2CN.6)	Y		0	ET2 (IE.5)	PT2 (IP.5)
Serial Peripheral Interface	0x0033	6	SPIF (SPI0CN.7) WCOL (SPI0CN.6) MODF (SPI0CN.5) RXOVRN (SPI0CN.4)	Y		0	ESPI0 (EIE1.0)	PSPI0 (EIP1.0)
SMBus Interface	0x003B	7	SI (SMB0CN.3)	Y		0	ESMB0 (EIE1.1)	PSMB0 (EIP1.1)
ADC0 Window Comparator	0x0043	8	ADOWINT (ADC0CN.1)	Y		0	EWADC0 (EIE1.2)	PWADC0 (EIP1.2)
Programmable Counter Array	0x004B	9	CF (PCA0CN.7) CCFn (PCA0CN.n)	Y		0	EPCA0 (EIE1.3)	PPCA0 (EIP1.3)
Comparator 0 Falling Edge	0x0053	10	CP0FIF (CPT0CN.4)	Y		1	ECP0F (EIE1.4)	PCP0F (EIP1.4)
Comparator 0 Rising Edge	0x005B	11	CP0RIF (CPT0CN.5)	Y		1	ECP0R (EIE1.5)	PCP0R (EIP1.5)
Comparator 1 Falling Edge	0x0063	12	CP1FIF (CPT1CN.4)	Y		2	ECP1F (EIE1.6)	PCP1F (EIP1.6)

Table 11.4. Interrupt Summary

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
-	-	PT2	PS0	PT1	PX1	PT0	PX0	11000000				
Bit7	Bit6	Bit5	Bit1	Bit0	Bit Addressable							
		SFR Address: 0xB8 SFR Page: All Pages										
							SERFAY	e. All Fages				
Bits7–6:	UNUSED. R	ead = 11b,	Write = dor	't care.								
Bit5:	PT2: Timer 2	2 Interrupt F	Priority Cont	rol.								
	This bit sets	the priority	of the Time	r 2 interrup	t.							
	0: Timer 2 in	terrupt set	to low priori	ty.								
D:+ 4 -		terrupt set	to high prior	Tty.								
DIL4.	This hit sate	the priority	of the LIAR	TO interrunt	ŀ							
	0. UARTO int	terrunt set f		to interrup lv								
	1: UART0 int	terrupts set	to high price	pritv.								
Bit3:	PT1: Timer 1	Interrupt F	Priority Cont	rol.								
	This bit sets	the priority	of the Time	r 1 interrup	t.							
	0: Timer 1 in	terrupt set	to low priori	ty.								
	1: Timer 1 in	terrupts set	to high prio	ority.								
Bit2:	PX1: Externa	al Interrupt	1 Priority C	ontrol.								
	This bit sets	the priority	of the Exte	rnal Interru	ot 1 interrup	t.						
	0: External In	nterrupt 1 s	et to low pr	ority.								
D:+1 -	1: External II	nterrupt 1 s	et to nign p	riority.								
DILI.	This bit sets	the priority	of the Time	IOI. Ir O interrun	+							
	0. Timer 0 in	terrunt set	to low priori	tv	ι.							
	1: Timer 0 in	terrunt set t	to high prior	itv								
Bit0:	PX0: Externa	al Interrupt	0 Priority C	ontrol.								
	This bit sets	the priority	of the Exte	rnal Interru	ot 0 interrup	t.						
	0: External Ir	nterrupt 0 s	et to low pri	ority.								
	1: External li	nterrupt 0 s	et to high p	riority.								

SFR Definition 11.13. IP: Interrupt Priority

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
-	ES1	-	EADC2	EWADC2	ET4	EADC0	ET3	00000000			
Bit7	Bit6	Bit0									
	SFR Address: 0xE7										
	SFR Page: All Pages										
Rit7.	UNUSED. Read = 0b, Write = don't care.										
Bit6	ES1: Enable UART1 Interrupt.										
Bitol	This bit sets the masking of the UART1 interrupt										
	0: Disable U	ART1 inter	rupts.								
	1: Enable U	ART1 interr	upts.								
Bit5:	UNUSED. R	ead = 0b, V	Vrite = don	't care.							
Bit4:	EADC2: Ena	able ADC2	End Of Cor	nversion Inter	rrupt.						
	This bit sets the masking of the ADC2 End of Conversion interrupt.										
	0: Disable ADC2 End of Conversion interrupts.										
D'10	1: Enable Al	DC2 End of	Conversio	n Interrupts.							
Bit3:	EWADC2: E	hable wind	iow Compa	Irison ADC2	Interrupt.	4.0.000					
	1 his bit sets	DC2 Windo	IG OF ADCZ	vvindow Cor	nparison in	iterrupt.					
		DC2 Windo	w Compari	son Interrunt	.ə. e						
Bit2 [.]	FT4: Enable	Timer 4 In	terrupt	son menupa	5.						
DILL.	This bit sets	the maskin	a of the Tir	ner 4 interru	ot.						
	0: Disable Ti	imer 4 inter	rupts.								
	1: Enable Ti	mer 4 interr	upts.								
Bit1:	EADC0: Ena	able ADC0	End of Con	version Inter	rupt.						
	This bit sets	the maskin	ig of the AD	DC0 End of C	onversion	Interrupt.					
	0: Disable A	DC0 End o	f Conversic	on Interrupts.							
	1: Enable Al	DC0 End of	Conversio	n Interrupts.							
Bit0:	ET3: Enable	Timer 3 In	terrupt.	a : <i>i</i>							
	I NIS DIT SETS	the maskin	ig of the Tir	ner 3 interrup	ot.						
	0. Disable Ti	mer 3 inter	rupis. Tupte								
			upis.								

SFR Definition 11.15. EIE2: Extended Interrupt Enable 2

SFR Definition 12.10. MAC0ACC0: MAC0 Accumulator Byte 0

SFR Definition 12.11. MAC0OVR: MAC0 Accumulator Overflow

SFR Definition 12.12. MAC0RNDH: MAC0 Rounding Register High Byte

SFR Definition 14.6. PLL0DIV: PLL P	Pre-divider
-------------------------------------	-------------

PLLNBit7Bit6Bit5Bit4	A4 PLLM3 Bit3	Bit2	PLLM1	PLLM0	00000001			
Bit7 Bit6 Bit5 Bit4	Bit3	Bit2						
		DILL	Bit1	Bit0	_			
SFR Address: 0x8D SFR Page: F Bits 7–5: UNUSED: Read = 000b; Write = don't care. Bits 4–0: PLLM4–0: PLL Reference Clock Pre-divider. These bits select the pre-divide value of the PLL reference clock. When set to any non-zero value, the reference clock will be divided by the value in PLLM4–0. When set to '00000b',								

SFR Definition 14.7. PLL0MUL: PLL Clock Scaler

-40 to +85 °C unless otherwise specified									
Input	Multiplier	PII0flt	Output	Min	Тур	Max	Units		
Frequency	(Pll0mul)	Setting	Frequency						
	20	0x0F	100 MHz		202		μs		
	13	0x0F	65 MHz		115		μs		
	16	0x1F	80 MHz		241		μs		
5 MH7	9	0x1F	45 MHz		116		μs		
5 1011 12	12	0x2F	60 MHz		258		μs		
	6	0x2F	30 MHz		112		μs		
	10	0x3F	50 MHz		263		μs		
	5	0x3F	25 MHz		113		μs		
	4	0x01	100 MHz		42		μs		
	2	0x01	50 MHz		33		μs		
	3	0x11	75 MHz		48		μs		
25 MHz	2	0x11	50 MHz		17		μs		
23 1011 12	2	0x21	50 MHz		42		μs		
	1	0x21	25 MHz		33		μs		
	2	0x31	50 MHz		60		μs		
	1	0x31	25 MHz		25		μs		

Table 14.3. PLL Lock Timing Characteristics

15.2.1. Summary of Flash Security Options

There are three Flash access methods supported on the C8051F12x and C8051F13x devices; 1) Accessing Flash through the JTAG debug interface, 2) Accessing Flash from firmware residing below the Flash Access Limit, and 3) Accessing Flash from firmware residing at or above the Flash Access Limit.

Accessing Flash through the JTAG debug interface:

- 1. The Read and Write/Erase Lock bytes (security bytes) provide security for Flash access through the JTAG interface.
- 2. Any unlocked page may be read from, written to, or erased.
- 3. Locked pages cannot be read from, written to, or erased.
- 4. Reading the security bytes is always permitted.
- 5. Locking additional pages by writing to the security bytes is always permitted.
- 6. If the page containing the security bytes is **unlocked**, it can be directly erased. **Doing so will** reset the security bytes and unlock all pages of Flash.
- 7. If the page containing the security bytes is **locked**, it cannot be directly erased. **To unlock the page containing the security bytes**, a **full JTAG device erase is required**. A full JTAG device erase will erase all Flash pages, including the page containing the security bytes and the security bytes themselves.
- 8. The Reserved Area cannot be read from, written to, or erased at any time.

Accessing Flash from firmware residing below the Flash Access Limit:

- 1. The Read and Write/Erase Lock bytes (security bytes) do not restrict Flash access from user firmware.
- 2. Any page of Flash except the page containing the security bytes may be read from, written to, or erased.
- 3. The page containing the security bytes cannot be erased. Unlocking pages of Flash can only be performed via the JTAG interface.
- 4. The page containing the security bytes may be read from or written to. Pages of Flash can be locked from JTAG access by writing to the security bytes.
- 5. The Reserved Area cannot be read from, written to, or erased at any time.

Accessing Flash from firmware residing at or above the Flash Access Limit:

- 1. The Read and Write/Erase Lock bytes (security bytes) do not restrict Flash access from user firmware.
- 2. Any page of Flash at or above the Flash Access Limit except the page containing the security bytes may be read from, written to, or erased.
- 3. Any page of Flash below the Flash Access Limit cannot be read from, written to, or erased.
- 4. Code branches to locations below the Flash Access Limit are permitted.
- 5. **The page containing the security bytes cannot be erased.** Unlocking pages of Flash can only be performed via the JTAG interface.
- 6. The page containing the security bytes may be read from or written to. Pages of Flash can be locked from JTAG access by writing to the security bytes.
- 7. The Reserved Area cannot be read from, written to, or erased at any time.

17.6.1.2.8-bit MOVX without Bank Select: EMI0CF[4:2] = '101' or '111'.

Nonmuxed 8-bit WRITE without Bank Select

Figure 17.5. Non-multiplexed 8-bit MOVX without Bank Select Timing

R/W		R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value	
P7.7		P7.6	P7.5	P7.4	P7.3	P7.2	P7.1	P7.0	11111111	
Bit7	·	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable	
								SFR Address: SFR Page:	0xF8 F	
Bits7–0:	 ts7–0: P7.[7:0]: Port7 Output Latch Bits. Write - Output appears on I/O pins. 0: Logic Low Output. 1: Logic High Output (Open-Drain if corresponding P7MDOUT bit = 0). See SFR Definition 18.20. Read - Returns states of I/O pins. 0: P7.n pin is logic low. 1: P7.n pin is logic high. 									
Note:	P7.[mod Inte	7:0] can b le, or as [rface and rface.	be driven b D[7:0] in N I On-Chip	by the Exter on-multiple XRAM" or	rnal Data M xed mode). 1 page 219	emory Inter See Sectic for more inf	face (as AD on "17. Ext ormation at	D[7:0] in Mu ernal Data bout the Ext	ltiplexed Memory ernal Memory	

SFR Definition 18.19. P7: Port7 Data

SFR Definition 18.20. P7MDOUT: Port7 Output Mode

R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
BUSY	ENSMB	STA	STO	SI	AA	FTE	TOE	00000000			
Bit7	Bit6	Bit5	Bit1	Bit0	Bit Addressable						
							SFR Addres	s: 0xC0			
							SFR Pag	e: 0			
Bit7:	BUSY: Busy Status Flag.										
	0: SMBus0 is free										
Bit6:	1: SMBus0 is busy ENSMB: SMBus Enable										
Bito	This bit enab	les/disable	es the SMBL	us serial inte	erface.						
	0: SMBus0 c	lisabled.									
DHE	1: SMBus0 e	enabled.									
BIt5:	0 No STAR	Start Flag	is transmitte	ed.							
	1: When ope	rating as a	master, a S	START conc	lition is trar	nsmitted if th	ne bus is fi	ree. (If the			
	bus is not fre	e, the STA	RT is transn	nitted after a	a STOP is r	received.) If	STA is set	after one or			
	more bytes h	nave been t	transmitted	or received	and before	e a STOP is	received,	a repeated			
Rit4·	START CONC	s Ston Flag	ismitted.								
DR4.	0: No STOP	condition is	s transmitte	d.							
	1: Setting ST	TO to logic	1 causes a	STOP cond	ition to be t	transmitted.	When a S	STOP condi-			
	tion is receiv	ed, hardwa	are clears S	TO to logic	0. If both S	TA and STC) are set, a	a STOP con-			
	dition is trans	smitted foll	owed by a S	TOP conditi	lition. In Sia	ave mode, so voived	etting the	STOflag			
Bit3:	SI: SMBus S	Serial Interr	upt Flag.			eiveu.					
	This bit is se	t by hardwa	are when or	e of 27 pos	sible SMBı	us0 states is	entered.	(Status code			
	0xF8 does n	ot cause S	I to be set.)	When the S	SI interrupt	is enabled,	setting this	s bit causes			
	the CPU to V	ector to the ardware ar	e SIVIBUS IN1 nd must be a	errupt servi cleared by s	ce routine. oftware	i nis dit is n	ot automa	atically			
Bit2:	AA: SMBus	Assert Ack	nowledge F	lag.	onware.						
	This bit defin	es the type	e of acknowl	edge return	ed during t	he acknowle	edge cycle	on the SCL			
	line.					2					
	1: A "not ack	nowieage" wiedae" (ia	(nign ievei w level on :	ON SDA) IS SDA) is reti	returnea al Irned durin	uring the acknow	knowleage wledae cv	e cycle.			
Bit1:	FTE: SMBus	Free Time	er Enable Bi	t		g the dolate	mougo oy				
	0: No timeou	it when SC	L is high								
D:40.	1: Timeout w	/hen SCL h	igh time ex	ceeds limit s	specified by	y the SMB00	CR value.				
BITU:	0. No timeou	s Timeout t	L is low								
	1: Timeout w	hen SCL l	ow time exc	eeds limit s	pecified by	Timer 3, if e	enabled.				
						·					

SFR Definition 19.1. SMB0CN: SMBus0 Control

20.1. Signal Descriptions

The four signals used by SPI0 (MOSI, MISO, SCK, NSS) are described below.

20.1.1. Master Out, Slave In (MOSI)

The master-out, slave-in (MOSI) signal is an output from a master device and an input to slave devices. It is used to serially transfer data from the master to the slave. This signal is an output when SPI0 is operating as a master and an input when SPI0 is operating as a slave. Data is transferred most-significant bit first. When configured as a master, MOSI is driven by the MSB of the shift register in both 3- and 4-wire mode.

20.1.2. Master In, Slave Out (MISO)

The master-in, slave-out (MISO) signal is an output from a slave device and an input to the master device. It is used to serially transfer data from the slave to the master. This signal is an input when SPI0 is operating as a master and an output when SPI0 is operating as a slave. Data is transferred most-significant bit first. The MISO pin is placed in a high-impedance state when the SPI module is disabled and when the SPI operates in 4-wire mode as a slave that is not selected. When acting as a slave in 3-wire mode, MISO is always driven by the MSB of the shift register.

20.1.3. Serial Clock (SCK)

The serial clock (SCK) signal is an output from the master device and an input to slave devices. It is used to synchronize the transfer of data between the master and slave on the MOSI and MISO lines. SPI0 generates this signal when operating as a master. The SCK signal is ignored by a SPI slave when the slave is not selected (NSS = 1) in 4-wire slave mode.

20.1.4. Slave Select (NSS)

The function of the slave-select (NSS) signal is dependent on the setting of the NSSMD1 and NSSMD0 bits in the SPI0CN register. There are three possible modes that can be selected with these bits:

- NSSMD[1:0] = 00: 3-Wire Master or 3-Wire Slave Mode: SPI0 operates in 3-wire mode, and NSS is disabled. When operating as a slave device, SPI0 is always selected in 3-wire mode. Since no select signal is present, SPI0 must be the only slave on the bus in 3-wire mode. This is intended for point-to-point communication between a master and one slave.
- 2. NSSMD[1:0] = 01: 4-Wire Slave or Multi-Master Mode: SPI0 operates in 4-wire mode, and NSS is enabled as an input. When operating as a slave, NSS selects the SPI0 device. When operating as a master, a 1-to-0 transition of the NSS signal disables the master function of SPI0 so that multiple master devices can be used on the same SPI bus.
- NSSMD[1:0] = 1x: 4-Wire Master Mode: SPI0 operates in 4-wire mode, and NSS is enabled as an output. The setting of NSSMD0 determines what logic level the NSS pin will output. This configuration should only be used when operating SPI0 as a master device.

See Figure 20.2, Figure 20.3, and Figure 20.4 for typical connection diagrams of the various operational modes. Note that the setting of NSSMD bits affects the pinout of the device. When in 3-wire master or 3-wire slave mode, the NSS pin will not be mapped by the crossbar. In all other modes, the NSS signal will be mapped to a pin on the device. See Section "18. Port Input/Output" on page 235 for general purpose port I/O and crossbar information.

System Clock Frequency (MHz)	Divide Factor	Timer 1 Reload Value ¹	Timer 2, 3, or 4 Reload Value	Resulting Baud Rate (Hz) ²
100.0	864	0xCA	0xFFCA	115200 (115741)
99.5328	864	0xCA	0xFFCA	115200
50.0	432	0xE5	0xFFE5	115200 (115741)
49.7664	432	0xE5	0xFFE5	115200
24.0	208	0xF3	0xFFF3	115200 (115384)
22.1184	192	0xF4	0xFFF4	115200
18.432	160	0xF6	0xFFF6	115200
11.0592	96	0xFA	0xFFFA	115200
3.6864	32	0xFE	0xFFFE	115200
1.8432	16	0xFF	0xFFFF	115200
100.0	3472	0x27	0xFF27	28800 (28802)
99.5328	3456	0x28	0xFF28	28800
50.0	1744	0x93	0xFF93	28800 (28670)
49.7664	1728	0x94	0xFF94	28800
24.0	832	0xCC	0xFFCC	28800 (28846)
22.1184	768	0xD0	0xFFD0	28800
18.432	640	0xD8	0xFFD8	28800
11.0592	348	0xE8	0xFFE8	28800
3.6864	128	0xF8	0xFFF8	28800
1.8432	64	0xFC	0xFFFC	28800
100.0	10416	-	0xFD75	9600 (9601)
99.5328	10368	-	0xFD78	9600
50.0	5216	-	0xFEBA	9600 (9586)
49.7664	5184	-	0xFEBC	9600
24.0	2496	0x64	0xFF64	9600 (9615)
22.1184	2304	0x70	0xFF70	9600
18.432	1920	0x88	0xFF88	9600
11.0592	1152	0xB8	0xFFB8	9600
3.6864	384	0xE8	0xFFE8	9600
1.8432	192	0xF4	0xFFF4	9600

Table 21.2. Oscillator Frequencies for Standard Baud Rates

Notes:

1. Assumes SMOD0 = 1 and T1M = 1.

2. Numbers in parenthesis show the actual baud rate.

23.2.4. Toggle Output Mode (Timer 2 and Timer 4 Only)

Timers 2 and 4 have the capability to toggle the state of their respective output port pins (T2 or T4) to produce a 50% duty cycle waveform output. The port pin state will change upon the overflow or underflow of the respective timer (depending on whether the timer is counting *up* or *down*). The toggle frequency is determined by the clock source of the timer and the values loaded into RCAPnH and RCAPnL. When counting DOWN, the auto-reload value for the timer is 0xFFFF, and underflow will occur when the value in the timer matches the value stored in RCAPnH:RCAPnL. When counting UP, the auto-reload value for the timer is RCAPnH:RCAPnL, and overflow will occur when the value in the timer transitions from 0xFFFF to the reload value.

To output a square wave, the timer is placed in reload mode (the Capture/Reload Select Bit in TMRnCN and the Timer/Counter Select Bit in TMRnCN are cleared to '0'). The timer output is enabled by setting the Timer Output Enable Bit in TMRnCF to '1'. The timer should be configured via the timer clock source and reload/underflow values such that the timer overflow/underflows at 1/2 the desired output frequency. The port pin assigned by the crossbar as the timer's output pin should be configured as a digital output (see **Section "18. Port Input/Output" on page 235**). Setting the timer's Run Bit (TRn) to '1' will start the toggle of the pin. A Read/Write of the Timer's Toggle Output State Bit (TMRnCF.2) is used to read the state of the toggle output, or to force a value of the output. This is useful when it is desired to start the toggle of a pin in a known state, or to force the pin into a desired state when the toggle mode is halted.

Equation 23.1. Square Wave Frequency (Timer 2 and Timer 4 Only)

$$F_{sq} = \frac{F_{TCLK}}{2 \times (65536 - RCAPn)}$$

Rev. 1.4

PWM16	ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	Operation Mode
Х	Х	1	0	0	0	0	Х	Capture triggered by positive edge on CEXn
Х	Х	0	1	0	0	0	Х	Capture triggered by negative edge on CEXn
Х	Х	1	1	0	0	0	Х	Capture triggered by transition on CEXn
Х	1	0	0	1	0	0	Х	Software Timer
Х	1	0	0	1	1	0	Х	High Speed Output
Х	1	0	0	0	1	1	Х	Frequency Output
0	1	0	0	0	0	1	0	8-Bit Pulse Width Modulator
1	1	0	0	0	0	1	0	16-Bit Pulse Width Modulator

Table 24.2. PCA0CPM Register Settings for PCA Capture/Compare Modules

X = Don't Care

24.2.1. Edge-triggered Capture Mode

In this mode, a valid transition on the CEXn pin causes PCA0 to capture the value of the PCA0 counter/ timer and load it into the corresponding module's 16-bit capture/compare register (PCA0CPLn and PCA0CPHn). The CAPPn and CAPNn bits in the PCA0CPMn register are used to select the type of transition that triggers the capture: low-to-high transition (positive edge), high-to-low transition (negative edge), or either transition (positive or negative edge). When a capture occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1 and an interrupt request is generated if CCF interrupts are enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software.

Figure 24.4. PCA Capture Mode Diagram

Note: The signal at CEXn must be high or low for at least 2 system clock cycles in order to be valid.

24.2.5. 8-Bit Pulse Width Modulator Mode

Each module can be used independently to generate pulse width modulated (PWM) outputs on its associated CEXn pin. The frequency of the output is dependent on the timebase for the PCA0 counter/timer. The duty cycle of the PWM output signal is varied using the module's PCA0CPLn capture/compare register. When the value in the low byte of the PCA0 counter/timer (PCA0L) is equal to the value in PCA0CPLn, the output on the CEXn pin will be high. When the count value in PCA0L overflows, the CEXn output will be low (see Figure 24.8). Also, when the counter/timer low byte (PCA0L) overflows from 0xFF to 0x00, PCA0CPLn is reloaded automatically with the value stored in the counter/timer's high byte (PCA0H) without software intervention. Setting the ECOMn and PWMn bits in the PCA0CPMn register enables 8-Bit Pulse Width Modulator mode. The duty cycle for 8-Bit PWM Mode is given by Equation 24.2.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/ Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to '0'; writing to PCA0CPHn sets ECOMn to '1'.

Figure 24.8. PCA 8-Bit PWM Mode Diagram

25.3. Debug Support

Each MCU has on-chip JTAG and debug logic that provides non-intrusive, full speed, in-circuit debug support using the production part installed in the end application, via the four pin JTAG I/F. Silicon Labs' debug system supports inspection and modification of memory and registers, breakpoints, and single stepping. No additional target RAM, program memory, or communications channels are required. All the digital and analog peripherals are functional and work correctly (remain synchronized) while debugging. The Watch-dog Timer (WDT) is disabled when the MCU is halted during single stepping or at a breakpoint.

The C8051F120DK is a development kit with all the hardware and software necessary to develop application code and perform in-circuit debug with each MCU in the C8051F12x and C8051F13x device families. Each kit includes development software for the PC, a Serial Adapter (for connection to JTAG) and a target application board with a C8051F120 installed. Serial cables and wall-mount power supply are also included.

