

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	50MHz
Connectivity	EBI/EMI, SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	32
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x8b, 8x10b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f127-gq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.10. 12-bit Digital to Analog Converters

The C8051F12x devices have two integrated 12-bit Digital to Analog Converters (DACs). The MCU data and control interface to each DAC is via the Special Function Registers. The MCU can place either or both of the DACs in a low power shutdown mode.

The DACs are voltage output mode and include a flexible output scheduling mechanism. This scheduling mechanism allows DAC output updates to be forced by a software write or scheduled on a Timer 2, 3, or 4 overflow. The DAC voltage reference is supplied from the dedicated VREFD input pin on the 100-pin TQFP devices or via the internal Voltage reference on the 64-pin TQFP devices. The DACs are especially useful as references for the comparators or offsets for the differential inputs of the ADCs.

Figure 1.15. DAC System Block Diagram

Table 6.1. 10-Bit ADC0 Electrical Characteristics (C8051F122/3/6/7 and C8051F13x)

V_{DD} = 3.0 V, AV+ = 3.0 V, VREF = 2.40 V (REFBE = 0), PGA Gain = 1, -40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
	DC Accuracy				
Resolution		T	10		bits
Integral Nonlinearity		<u> </u>	—	±1	LSB
Differential Nonlinearity	Guaranteed Monotonic	1 —		±1	LSB
Offset Error		1 —	±0.5	—	LSB
Full Scale Error	Differential mode	<u> </u>	-1.5±0.5	—	LSB
Offset Temperature Coefficient		<u> </u>	±0.25	—	ppm/°C
Dynamic Performance (1	0 kHz sine-wave input, 0 to 1	dB below	Full Scale	e, 100 ks	ps
Signal-to-Noise Plus Distortion		59	—		dB
Total Harmonic Distortion	Up to the 5 th harmonic		-70	—	dB
Spurious-Free Dynamic Range		<u> </u>	80	—	dB
	Conversion Rate				
SAR Clock Frequency		\top	_	2.5	MHz
Conversion Time in SAR Clocks		16	—		clocks
Track/Hold Acquisition Time		1.5	—	—	μs
Throughput Rate		<u> </u>	—	100	ksps
	Analog Inputs				
Input Voltage Range	Single-ended operation	0	—	VREF	V
*Common-mode Voltage Range	Differential operation	AGND		AV+	V
Input Capacitance		1 —	10	—	pF
	Temperature Sensor				
Linearity ¹			±0.2	「 <u> </u>	°C
Offset	(Temp = 0 °C)	<u> </u>	776		mV
Offset Error ^{1,2}	(Temp = 0 °C)	<u> </u>	±8.5	—	mV
Slope		<u> </u>	2.86	—	mV/°C
Slope Error ²		<u> </u>	±0.034	—	mV/°C
	Power Specifications				
Power Supply Current (AV+ supplied to ADC)	Operating Mode, 100 ksps	-	450	900	μA
Power Supply Rejection		—	±0.3	—	mV/V
Notes:			·		

1. Includes ADC offset, gain, and linearity variations.

2. Represents one standard deviation from the mean.

SFR Page: SFR Addre	2 ss: 0xE8	(bit addres	sable)					
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
AD2EN	AD2TM	AD2INT	AD2BUSY	AD2CM2	AD2CM1	AD2CM0	AD2WINT	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Bit7 [.]								
Ditr.	0: ADC2 Dis	abled. AD	C2 is in low-	power shu	tdown.			
	1: ADC2 En	abled. AD0	C2 is active	and ready	for data co	nversions.		
Bit6:	AD2TM: AD	C2 Track M	/lode Bit.					
	0: Normal Tr	rack Mode	When ADC	2 is enabl	ed, tracking	g is continuou	us unless a	conversion
	is in process	S.						
	1: Low-powe	er Track M	ode: Trackin	g Defined	by AD2CN	12-0 bits (see	below).	
Bit5:	AD2INT: AD	C2 Conve	sion Compl	ete Interru	pt Flag.			
	This flag mu	ist be clear	ed by softw	are.		Less Corrected		
	0: ADC2 has	s not comp	leted a data	conversion	n since the	e last time this	s flag was c	leared.
Bit/			u a uala cor / Rit	iversion.				
DIL4.	Read:		y Dit.					
	0: ADC2 Co	nversion is	complete o	r a conver	sion is not	currently in p	roaress. AD	2INT is set
	to logic 1 on	the falling	edge of AD	2BUSY.			- 0	
	1: ADC2 Co	nversion is	in progress					
	Write:							
	0: No Effect.							
	1: Initiates A	DC2 Conv	ersion if AD	2CM2-0 =	000b			
Bits3–1:	AD2CM2-0:	ADC2 Sta	rt of Conver	sion Mode	Select.			
	AD2IM = 0:				6 (4) + - 1	DODUOV		
	000: ADC2 (conversion	initiated on	every writ	e of "I to A f Timor 2	D2BUSY.		
	001. ADC2 0	conversion	initiated on	rising edg	of ovtorn			
	011: ADC2 (conversion	initiated on	overflow c	f Timer 2		•	
	1xx: ADC2 c	conversion	initiated on	write of '1'	to AD0BU	SY (svnchro	nized with A	DC0 soft-
	ware-comma	anded con	versions).					
	AD2TM = 1:		,					
	000: Trackin	g initiated	on write of '	1' to AD2E	USY for 3	SAR2 clocks	, followed b	y conver-
	sion.							
	001: Trackin	g initiated	on overflow	of Timer 3	for 3 SAR	2 clocks, follo	owed by cor	version.
	010: ADC2 t	racks only	when CNVS	STR2 inpu	t is logic lov	w; conversio	n starts on r	ising
	CNVSTR2 e	edge.	on overflow	of Times 2		O ala aka falk		
	1xx: Trackin	g initiated	on write of "	l' to AD0B	USY and la	\sim clocks, follows as 3 SAR2	clocks, follo	wed by con-
	version.							
Bit0:	AD2WINT: A	ADC2 Wind	low Compar	e Interrupt	Flag.			
		t be cleare	d by softwa	re. Dimotoh ha	o not occi	rrad ainca th	ia flag was l	oot oloorod
		ndow Com	parison Data	a match ha		inea since th I	is hag was l	ast cleared.

SFR Definition 7.4. ADC2CN: ADC2 Control

SFR Definition 7.6. ADC2GT: ADC2 Greater-Than Data Byte

SFR Definition 7.7. ADC2LT: ADC2 Less-Than Data Byte

NOTES:

11.2.6.3.SFR Page Stack Example

The following is an example that shows the operation of the SFR Page Stack during interrupts.

In this example, the SFR Page Control is left in the default enabled state (i.e., SFRPGEN = 1), and the CIP-51 is executing in-line code that is writing values to Port 5 (SFR "P5", located at address 0xD8 on SFR Page 0x0F). The device is also using the Programmable Counter Array (PCA) and the 10-bit ADC (ADC2) window comparator to monitor a voltage. The PCA is timing a critical control function in its interrupt service routine (ISR), so its interrupt is enabled and is set to *high* priority. The ADC2 is monitoring a voltage that is less important, but to minimize the software overhead its window comparator is being used with an associated ISR that is set to *low* priority. At this point, the SFR page is set to access the Port 5 SFR (SFRPAGE = 0x0F). See Figure 11.5 below.

Figure 11.5. SFR Page Stack While Using SFR Page 0x0F To Access Port 5

While CIP-51 executes in-line code (writing values to Port 5 in this example), ADC2 Window Comparator Interrupt occurs. The CIP-51 vectors to the ADC2 Window Comparator ISR and pushes the current SFR Page value (SFR Page 0x0F) into SFRNEXT in the SFR Page Stack. The SFR page needed to access ADC2's SFR's is then automatically placed in the SFRPAGE register (SFR Page 0x02). SFRPAGE is considered the "top" of the SFR Page Stack. Software can now access the ADC2 SFR's. Software may switch to any SFR Page by writing a new value to the SFRPAGE register at any time during the ADC2 ISR to access SFR's that are not on SFR Page 0x02. See Figure 11.6 below.

	0	15	SADEN0	AMX0CF	AMX0SL	ADC0CF		ADC0L	ADC0H
B8	1			AMX2CE					
00	3	PAGES)		7 11/1/201	/ WIXZOL	100201		ND02	
	F								
	0								FLSCL
ΒO	1	P3	PSBANK						
BU	2	(ALL PAGES)	(ALL PAGES)						
	F	TAOLO)	TAOLO)						FLACL
	0		SADDR0						
	1	IE							
A8	2								
	з F	PAGES)					P1MDIN		
	0		EMI0TC	EMI0CN	EMI0CF				
	1	P2							
A0	2	(ALL							
	3 Г	PAGES)	CCHOCN	CCHOTN					
	F 0	SCONO		SPINCEG		PUMDOUT	SDIOCKD	PZINDOUT	P3IVIDOUT
	1	SCON0 SCON1	SBUF1	511001 0	SPIUDAI		OF IOUNIX		
98	2								
	3								
	F			CCH0MA		P4MDOUT	P5MDOUT	P6MDOUT	P7MDOUT
	0	D4	SSTA0						
90	1 2	ΓΙ (ΔΙΙ							
50	3	PAGES)	MAC0BL	MAC0BH	MACOACCO	MAC0ACC1	MAC0ACC2	MAC0ACC3	MAC0OVR
	F	,						SFRPGCN	CLKSEL
	0	TCON	TMOD	TL0	TL1	TH0	TH1	CKCON	PSCTL
~~	1	CPT0CN	CPT0MD						
88	2	CP11CN	CP11MD						
	F	FLSTAT	PLL0CN	OSCICN	OSCICL	OSCXCN	PLL0DIV	PLLOMUL	PLL0FLT
	0								,
	1	P0	SP	DPL	DPH	SFRPAGE	SFRNEXT	SFRLAST	PCON
80	2	(ALL	(ALL	(ALL	(ALL	(ALL	(ALL	(ALL	(ALL
	3 F	PAGES)	PAGES)	PAGES)	PAGES)	PAGES)	PAGES)	PAGES)	PAGES)
	•	0(8)	1(9)	2(A)	3(B)	4(C)	5(D)	6(E)	7(F)

Table 11.2. Special Function Register (SFR) Memory Map (Continued)

11.2.7. Register Descriptions

Following are descriptions of SFRs related to the operation of the CIP-51 System Controller. Reserved bits should not be set to logic I. Future product versions may use these bits to implement new features in which case the reset value of the bit will be logic 0, selecting the feature's default state. Detailed descriptions of the remaining SFRs are included in the sections of the datasheet associated with their corresponding system function.

SFR Definition 11.7. DPL: Data Pointer Low Byte

SFR Definition 11.8. DPH: Data Pointer High Byte

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	Reset Value				
CY	AC	F0	RS1	RS0	OV	F1	PARITY	00000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable				
		SFR Address: 0xD0										
							SFR Page	: All Pages				
Bit7:	CY: Carry F	-lag.										
	This bit is set when the last arithmetic operation resulted in a carry (addition) or a borrow											
	(subtraction	n). It is cle	ared to 0 by all	other arith	metic ope	rations.						
Bit6:	AC: Auxilia	ry Carry F	lag			,	() P.C.)					
	I his bit is s	et when th	e last arithmeti	c operation	n resulted i	in a carry into	o (addition)	or a borrow				
Rit5.	FO: Liser Fi	action) the ad 0	e nign order nib		eared to 0	by all other a	anunneuc	operations.				
Dito.	This is a bi	t-addressa	able, general pu	urpose flac	for use ur	nder software	e control.					
Bits4–3:	RS1-RS0:	Register I	Bank Select.									
	These bits	select whi	ch register ban	k is used o	luring regi	ster accesse	S.					
	RS1	RS0	Register Bank	Addı	ess							
	0	0	0	0x00-	0x07							
	0	1	1	0x08-	0x0F							
	1	0	2	0x10-	0x17							
	1	1	3	0x18–	0x1F							
Bit2 [.]	OV: Overflo	w Flag										
BRE.	This bit is s	set to 1 un	der the followin	a circumst	ances:							
	• An ADD,	ADDC, or	SUBB instructi	on causes	a sign-cha	ange overflov	Ν.					
	• A MUL in:	struction r	esults in an ove	erflow (resu	ult is greate	er than 255).						
	• A DIV ins	truction ca	uses a divide-l	oy-zero col	ndition.							
	The OV bit	is cleared	to 0 by the AD	D, ADDC,	SUBB, MI	JL, and DIV	instructions	s in all other				
Rit1 ·	Cases.	20.1										
DICT.	This is a hi	t-address	able, general n	urpose flag	for use ur	nder software	e control.					
Bit0:	PARITY: Pa	arity Flag.	-, gp									
	This bit is s	et to 1 if th	ne sum of the ei	ight bits in	the accum	ulator is odd	and cleare	d if the sum				
	is even.											

SFR Definition 11.9. PSW: Program Status Word

SFR Definition 12.10. MAC0ACC0: MAC0 Accumulator Byte 0

SFR Definition 12.11. MAC0OVR: MAC0 Accumulator Overflow

SFR Definition 12.12. MAC0RNDH: MAC0 Rounding Register High Byte

SFR Definition 14.6. PLL0DIV: PLL Pre-divid

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
-	-	-	PLLM4	PLLM3	PLLM2	PLLM1	PLLM0	0000001
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
Bits 7–5: UI Bits 4–0: PL Th va	NUSED: Re LLM4–0: Pl nese bits se alue, the ref	ead = 000b LL Referen elect the pro- ference clo	; Write = do ce Clock Pr e-divide valu ck will be di	on't care. re-divider. ue of the PL vided by the	L reference e value in P	e clock. Wh LLM4–0. W	SFR Address SFR Page en set to ai /hen set to	:: 0x8D :: F ny non-zero '00000b',

SFR Definition 14.7. PLL0MUL: PLL Clock Scaler

15.1.3. Writing Flash Memory From Software

Bytes in Flash memory can be written one byte at a time, or in small blocks. The CHBLKW bit in register CCH0CN (SFR Definition 16.1) controls whether a single byte or a block of bytes is written to Flash during a write operation. When CHBLKW is cleared to '0', the Flash will be written one byte at a time. When CHBLKW is set to '1', the Flash will be written in blocks of four bytes for addresses in code space, or blocks of two bytes for addresses in the Scratchpad area. Block writes are performed in the same amount of time as single byte writes, which can save time when storing large amounts of data to Flash memory.

For single-byte writes to Flash, bytes are written individually, and the Flash write is performed after each MOVX write instruction. The recommended procedure for writing Flash in single bytes is as follows:

- Step 1. Disable interrupts.
- Step 2. Clear CHBLKW (CCH0CN.0) to select single-byte write mode.
- Step 3. If writing to bytes in Bank 1, Bank 2, or Bank 3, set the COBANK bits (PSBANK.5-4) for the appropriate bank.
- Step 4. If writing to bytes in the Scratchpad area, set the SFLE bit (PSCTL.2).
- Step 5. Set FLWE (FLSCL.0) to enable Flash writes/erases via user software.
- Step 6. Set PSWE (PSCTL.0) to redirect MOVX commands to write to Flash.
- Step 7. Use the MOVX instruction to write a data byte to the desired location (repeat as necessary).
- Step 8. Clear the PSWE bit to redirect MOVX commands to the XRAM data space.
- Step 9. Clear the FLWE bit, to disable Flash writes/erases.
- Step 10. If writing to bytes in the Scratchpad area, clear the SFLE bit.
- Step 11. Re-enable interrupts.

For block Flash writes, the Flash write procedure is only performed after the last byte of each block is written with the MOVX write instruction. When writing to addresses located in any of the four code banks, a Flash write block is four bytes long, from addresses ending in 00b to addresses ending in 11b. Writes must be performed sequentially (i.e. addresses ending in 00b, 01b, 10b, and 11b must be written in order). The Flash write will be performed following the MOVX write that targets the address ending in 11b. When writing to addresses located in the Flash Scratchpad area, a Flash block is two bytes long, from addresses ending in 0b to addresses ending in 1b. The Flash write will be performed following the MOVX write that targets the address ending in 1b. If any bytes in the block do not need to be updated in Flash, they should be written to 0xFF. The recommended procedure for writing Flash in blocks is as follows:

- Step 1. Disable interrupts.
- Step 2. Set CHBLKW (CCH0CN.0) to select block write mode.
- Step 3. If writing to bytes in Bank 1, Bank 2, or Bank 3, set the COBANK bits (PSBANK.5-4) for the appropriate bank.
- Step 4. If writing to bytes in the Scratchpad area, set the SFLE bit (PSCTL.2).
- Step 5. Set FLWE (FLSCL.0) to enable Flash writes/erases via user software.
- Step 6. Set PSWE (PSCTL.0) to redirect MOVX commands to write to Flash.
- Step 7. Use the MOVX instruction to write data bytes to the desired block. The data bytes must be written sequentially, and the last byte written must be the high byte of the block (see text for details, repeat as necessary).
- Step 8. Clear the PSWE bit to redirect MOVX commands to the XRAM data space.
- Step 9. Clear the FLWE bit, to disable Flash writes/erases.
- Step 10. If writing to bytes in the Scratchpad area, clear the SFLE bit.
- Step 11. Re-enable interrupts.

The Flash Access Limit security feature (see SFR Definition 15.1) protects proprietary program code and data from being read by software running on the device. This feature provides support for OEMs that wish to program the MCU with proprietary value-added firmware before distribution. The value-added firmware can be protected while allowing additional code to be programmed in remaining program memory space later.

The Flash Access Limit (FAL) is a 17-bit address that establishes two logical partitions in the program memory space. The first is an upper partition consisting of all the program memory locations at or above the FAL address, and the second is a lower partition consisting of all the program memory locations starting at 0x00000 up to (but excluding) the FAL address. Software in the upper partition can execute code in the lower partition, but is prohibited from reading locations in the lower partition using the MOVC instruction. (Executing a MOVC instruction from the upper partition with a source address in the lower partition will return indeterminate data.) Software running in the lower partition can access locations in both the upper and lower partition without restriction.

The Value-added firmware should be placed in the lower partition. On reset, control is passed to the valueadded firmware via the reset vector. Once the value-added firmware completes its initial execution, it branches to a predetermined location in the upper partition. If entry points are published, software running in the upper partition may execute program code in the lower partition, but it cannot read or change the contents of the lower partition. Parameters may be passed to the program code running in the lower partition either through the typical method of placing them on the stack or in registers before the call or by placing them in prescribed memory locations in the upper partition.

The FAL address is specified using the contents of the Flash Access Limit Register. The 8 MSBs of the 17bit FAL address are determined by the setting of the FLACL register. Thus, the FAL can be located on 512byte boundaries anywhere in program memory space. However, the 1024-byte erase sector size essentially requires that a 1024 boundary be used. The contents of a non-initialized FLACL security byte are 0x00, thereby setting the FAL address to 0x00000 and allowing read access to all locations in program memory space by default.

SFR Definition 15.1. FLACL: Flash Access Limit

17.6.1.2.8-bit MOVX without Bank Select: EMI0CF[4:2] = '101' or '111'.

Nonmuxed 8-bit WRITE without Bank Select

Figure 17.5. Non-multiplexed 8-bit MOVX without Bank Select Timing

Parameter	Description	Min	Max	Units
T _{ACS}	Address/Control Setup Time	0	3 x T _{SYSCLK}	ns
T _{ACW}	Address/Control Pulse Width	1 x T _{SYSCLK}	16 x T _{SYSCLK}	ns
T _{ACH}	Address/Control Hold Time	0	3 x T _{SYSCLK}	ns
T _{ALEH}	Address Latch Enable High Time	1 x T _{SYSCLK}	4 x T _{SYSCLK}	ns
T _{ALEL}	Address Latch Enable Low Time	1 x T _{SYSCLK}	4 x T _{SYSCLK}	ns
T _{WDS}	Write Data Setup Time	1 x T _{SYSCLK}	19 x T _{SYSCLK}	ns
T _{WDH}	Write Data Hold Time	0	3 x T _{SYSCLK}	ns
T _{RDS}	Read Data Setup Time	20	_	ns
T _{RDH}	Read Data Hold Time	0	—	ns
Note: T _{SYSCLK} is	equal to one period of the device system clock (SYSC	CLK).		

Table 17.1. AC Parameters for External Memory Interface

SFR Definition 18.1. XBR0: Port I/O Crossbar Register 0

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
CP0E	ECI0E		PCA0ME		UART0EN	SPI0EN	SMB0EN	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-
							SFR Address SFR Page	:: 0xE1 :: F
Bit7:	CP0E: Comparator 0 Output Enable Bit. 0: CP0 unavailable at Port pin.							
Bit6:	ECIOE: PCA	0 External (Counter Inpu	ut Enable F	Bit.			
2.10.	0: PCA0 Ext	ernal Count	ter Input una	available a	t Port pin.			
	1: PCA0 Ext	ernal Count	ter Input (EC	CIO) routed	to Port pin.			
Bits5–3:	PCA0ME: PO	CA0 Module	e I/O Enable	Bits.				
	000: All PCA	.0 I/O unava	ailable at po	rt pins.				
	001: CEX0 r	Outed to po	rt pin. d to 2 port p	ine				
	010: CEX0, 0		CEX2 route	nns. d to 3 port	nine			
	100° CEX0, 0	CEX1, and	2 and CEX	3 routed to	4 nort pins			
	101: CEX0,	CEX1, CEX	(2, CEX3, ar	nd CEX4 ro	puted to 5 pc	ort pins.		
	110: CEX0, (CEX1, CEX	2, CEX3, CI	EX4, and (CEX5 routed	to 6 port p	oins.	
Bit2:	UART0EN: U	JART0 I/O	Enable Bit.					
	0: UART0 I/0) unavailab	le at Port pi	ns.				
D ://	1: UARTO T	K routed to	P0.0, and R	X routed to	o P0.1.			
Bit1:	SPIOEN: SP	10 Bus I/O E	nable Bit.					
	1. SPI0 1/0 L		ALPOIL PINS.	S routed to	A Port nine	Note that	the NSS e	ianal is not
	assigned to a	a port pin if	the SPI is in	3-wire mo	de. See Sec	tion " 17. E	External Da	ita Memorv
	Interface an	d On-Chip	XRAM" on	page 219	for more info	rmation.		
Bit0:	SMB0EN: SI	MBus0 Bus	I/O Enable	Bit.				
	0: SMBus0 I	/O unavaila	ble at Port p	oins.				
	1: SMBus0 S	SDA and SC	CL routed to	2 Port pin	S.			

R/W		R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
P4.7		P4.6	P4.5	P4.4	P4.3	P4.2	P4.1	P4.0	11111111
Bit7	•	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable
								SFR Address: SFR Page:	0xC8 F
Bits7–0:	 7–0: P4.[7:0]: Port4 Output Latch Bits. Write - Output appears on I/O pins. 0: Logic Low Output. 1: Logic High Output (Open-Drain if corresponding P4MDOUT.n bit = 0). See SFR Definition 18.14. Read - Returns states of I/O pins. 0: P4.n pin is logic low. 1: P4.n pin is logic high. 							R Definition	
Note:	P4. See mor	7 (/WR), F e Section re informa	P4.6 (/RD) " 17. Exte ition.	, and P4.5 (rnal Data N	ALE) can b lemory Int e	e driven by erface and	the Externa On-Chip X	l Data Mem RAM" on p	nory Interface. Dage 219 for

SFR Definition 18.13. P4: Port4 Data

SFR Definition 18.14. P4MDOUT: Port4 Output Mode

NOTES:

19.4. SMBus Special Function Registers

The SMBus0 serial interface is accessed and controlled through five SFR's: SMB0CN Control Register, SMB0CR Clock Rate Register, SMB0ADR Address Register, SMB0DAT Data Register and SMB0STA Status Register. The five special function registers related to the operation of the SMBus0 interface are described in the following sections.

19.4.1. Control Register

The SMBus0 Control register SMB0CN is used to configure and control the SMBus0 interface. All of the bits in the register can be read or written by software. Two of the control bits are also affected by the SMBus0 hardware. The Serial Interrupt flag (SI, SMB0CN.3) is set to logic 1 by the hardware when a valid serial interrupt condition occurs. It can only be cleared by software. The Stop flag (STO, SMB0CN.4) is set to logic 1 by software. It is cleared to logic 0 by hardware when a STOP condition is detected on the bus.

Setting the ENSMB flag to logic 1 enables the SMBus0 interface. Clearing the ENSMB flag to logic 0 disables the SMBus0 interface and removes it from the bus. Momentarily clearing the ENSMB flag and then resetting it to logic 1 will reset SMBus0 communication. However, ENSMB should not be used to temporarily remove a device from the bus since the bus state information will be lost. Instead, the Assert Acknowledge (AA) flag should be used to temporarily remove the device from the bus (see description of AA flag below).

Setting the Start flag (STA, SMB0CN.5) to logic 1 will put SMBus0 in a master mode. If the bus is free, SMBus0 will generate a START condition. If the bus is not free, SMBus0 waits for a STOP condition to free the bus and then generates a START condition after a 5 µs delay per the SMB0CR value (In accordance with the SMBus protocol, the SMBus0 interface also considers the bus free if the bus is idle for 50 µs and no STOP condition was recognized). If STA is set to logic 1 while SMBus0 is in master mode and one or more bytes have been transferred, a repeated START condition will be generated.

When the Stop flag (STO, SMB0CN.4) is set to logic 1 while the SMBus0 interface is in master mode, the interface generates a STOP condition. In a slave mode, the STO flag may be used to recover from an error condition. In this case, a STOP condition is not generated on the bus, but the SMBus hardware behaves as if a STOP condition has been received and enters the "not addressed" slave receiver mode. Note that this simulated STOP will not cause the bus to appear free to SMBus0. The bus will remain occupied until a STOP appears on the bus or a Bus Free Timeout occurs. Hardware automatically clears the STO flag to logic 0 when a STOP condition is detected on the bus.

The Serial Interrupt flag (SI, SMB0CN.3) is set to logic 1 by hardware when the SMBus0 interface enters one of 27 possible states. If interrupts are enabled for the SMBus0 interface, an interrupt request is generated when the SI flag is set. The SI flag must be cleared by software.

Important Note: If SI is set to logic 1 while the SCL line is low, the clock-low period of the serial clock will be stretched and the serial transfer is suspended until SI is cleared to logic 0. A high level on SCL is not affected by the setting of the SI flag.

The Assert Acknowledge flag (AA, SMB0CN.2) is used to set the level of the SDA line during the acknowledge clock cycle on the SCL line. Setting the AA flag to logic 1 will cause an ACK (low level on SDA) to be sent during the acknowledge cycle if the device has been addressed. Setting the AA flag to logic 0 will cause a NACK (high level on SDA) to be sent during acknowledge cycle. After the transmission of a byte in slave mode, the slave can be temporarily removed from the bus by clearing the AA flag. The slave's own address and general call address will be ignored. To resume operation on the bus, the AA flag must be reset to logic 1 to allow the slave's address to be recognized.

	Frequency: 50.0 MHz						
Target Baud Rate (bps)	Baud Rate % Error	Oscilla- tor Divide Factor	Timer Clock Source	SCA1-SCA0 (pre-scale select)*	T1M*	Timer 1 Reload Value (hex)	
230400	0.45%	218	SYSCLK	XX	1	0x93	
115200	-0.01%	434	SYSCLK	XX	1	0x27	
57600	0.45%	872	SYSCLK / 4	01	0	0x93	
28800	-0.01%	1736	SYSCLK / 4	01	0	0x27	
14400	0.22%	3480	SYSCLK / 12	00	0	0x6F	
9600	-0.01%	5208	SYSCLK / 12	00	0	0x27	
2400	-0.01%	20832	SYSCLK / 48	10	0	0x27	

Fable 22.4. Times Cattings for Standard David Dates Using the DL

X = Don't care

*Note: SCA1-SCA0 and T1M bit definitions can be found in Section 23.1.

Table 22.5.	Timer Settings for Standard Baud Rates Using the PLL
	Erequency: 100.0 MHz

Target Baud Rate (bps)	Baud Rate % Error	Oscilla- tor Divide Factor	Timer Clock Source	SCA1-SCA0 (pre-scale select)*	T1M*	Timer 1 Reload Value (hex)
230400	-0.01%	434	SYSCLK	XX	1	0x27
115200	0.45%	872	SYSCLK/4	01	0	0x93
57600	-0.01%	1736	SYSCLK / 4	01	0	0x27
28800	0.22%	3480	SYSCLK / 12	00	0	0x6F
14400	-0.47%	6912	SYSCLK / 48	10	0	0xB8
9600	0.45%	10464	SYSCLK / 48	10	0	0x93

X = Don't care

*Note: SCA1-SCA0 and T1M bit definitions can be found in Section 23.1.

