E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	100MHz
Connectivity	EBI/EMI, SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	64
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8.25K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f130-gq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Figures

1.	System Overview	
	Figure 1.1. C8051F120/124 Block Diagram	21
	Figure 1.2. C8051F121/125 Block Diagram	22
	Figure 1.3. C8051F122/126 Block Diagram	23
	Figure 1.4. C8051F123/127 Block Diagram	24
	Figure 1.5. C8051F130/132 Block Diagram	25
	Figure 1.6. C8051F131/133 Block Diagram	26
	Figure 1.7. On-Board Clock and Reset	28
	Figure 1.8. On-Chip Memory Map	29
	Figure 1.9. Development/In-System Debug Diagram	30
	Figure 1.10. MAC0 Block Diagram	31
	Figure 1.11. Digital Crossbar Diagram	32
	Figure 1.12. PCA Block Diagram	33
	Figure 1.13. 12-Bit ADC Block Diagram	34
	Figure 1.14. 8-Bit ADC Diagram	35
	Figure 1.15. DAC System Block Diagram	36
	Figure 1.16. Comparator Block Diagram	37
2.	Absolute Maximum Ratings	
3.	Global DC Electrical Characteristics	
4.	Pinout and Package Definitions	
	Figure 4.1. C8051F120/2/4/6 Pinout Diagram (TQFP-100)	49
	Figure 4.2. C8051F130/2 Pinout Diagram (TQFP-100)	50
	Figure 4.3. TQFP-100 Package Drawing	51
	Figure 4.4. C8051F121/3/5/7 Pinout Diagram (TQFP-64)	52
	Figure 4.5. C8051F131/3 Pinout Diagram (TQFP-64)	53
	Figure 4.6. TQFP-64 Package Drawing	54
5.	ADC0 (12-Bit ADC, C8051F120/1/4/5 Only)	
	Figure 5.1. 12-Bit ADC0 Functional Block Diagram	55
	Figure 5.2. Typical Temperature Sensor Transfer Function	56
	Figure 5.3. ADC0 Track and Conversion Example Timing	58
	Figure 5.4. ADC0 Equivalent Input Circuits	59
	Figure 5.5. ADC0 Data Word Example	65
	Figure 5.6. 12-Bit ADC0 Window Interrupt Example:	
	Right Justified Single-Ended Data	68
	Figure 5.7. 12-Bit ADC0 Window Interrupt Example:	
	Right Justified Differential Data	69
	Figure 5.8. 12-Bit ADC0 Window Interrupt Example:	
	Left Justified Single-Ended Data	70
	Figure 5.9. 12-Bit ADC0 Window Interrupt Example:	
	Left Justified Differential Data	71

13. Reset Sources	
Figure 13.1. Reset Sources	177
Figure 13.2. Reset Timing	178
14. Oscillators	
Figure 14.1. Oscillator Diagram	185
Figure 14.2. PLL Block Diagram	191
15. Flash Memory	
Figure 15.1. Flash Memory Map for MOVC Read and MOVX Write Operations	201
Figure 15.2. 128 kB Flash Memory Map and Security Bytes	204
Figure 15.3. 64 kB Flash Memory Map and Security Bytes	205
16. Branch Target Cache	
Figure 16.1. Branch Target Cache Data Flow	211
Figure 16.2. Branch Target Cache Organiztion	212
Figure 16.3. Cache Lock Operation	214
17. External Data Memory Interface and On-Chip XRAM	
Figure 17.1. Multiplexed Configuration Example	222
Figure 17.2. Non-multiplexed Configuration Example	223
Figure 17.3. EMIF Operating Modes	224
Figure 17.4. Non-multiplexed 16-bit MOVX Timing	227
Figure 17.5. Non-multiplexed 8-bit MOVX without Bank Select Timing	228
Figure 17.6. Non-multiplexed 8-bit MOVX with Bank Select Timing	229
Figure 17.7. Multiplexed 16-bit MOVX Timing	230
Figure 17.8. Multiplexed 8-bit MOVX without Bank Select Timing	231
Figure 17.9. Multiplexed 8-bit MOVX with Bank Select Timing	232
18. Port Input/Output	
Figure 18.1. Port I/O Cell Block Diagram	235
Figure 18.2. Port I/O Functional Block Diagram	237
Figure 18.3. Priority Crossbar Decode Table (EMIFLE = 0; P1MDIN = 0xFF)	238
Figure 18.4. Priority Crossbar Decode Table	
(EMIFLE = 1; EMIF in Multiplexed Mode; P1MDIN = 0xFF)	241
Figure 18.5. Priority Crossbar Decode Table	
(EMIFLE = 1; EMIF in Non-Multiplexed Mode; P1MDIN = 0xFF)	242
Figure 18.6. Crossbar Example	244
19. System Management Bus / I2C Bus (SMBus0)	
Figure 19.1. SMBus0 Block Diagram	259
Figure 19.2. Typical SMBus Configuration	260
Figure 19.3. SMBus Transaction	261
Figure 19.4. Typical Master Transmitter Sequence	262
Figure 19.5. Typical Master Receiver Sequence	262
Figure 19.6. Typical Slave Transmitter Sequence	263
Figure 19.7. Typical Slave Receiver Sequence	263
20. Ennanced Serial Peripheral Interface (SPI0)	070
Figure 20.1. SPI Block Diagram	2/3
Figure 20.2. Multiple-Master Mode Connection Diagram	2/6
Figure 20.3. 3-Wire Single Master and Slave Mode Connection Diagram	2/6

Figure 1.6. C8051F131/133 Block Diagram

1.4. 16 x 16 MAC (Multiply and Accumulate) Engine

The C8051F120/1/2/3 and C8051F130/1/2/3 devices include a multiply and accumulate engine which can be used to speed up many mathematical operations. MAC0 contains a 16-by-16 bit multiplier and a 40-bit adder, which can perform integer or fractional multiply-accumulate and multiply operations on signed input values in two SYSCLK cycles. A rounding engine provides a rounded 16-bit fractional result after an additional (third) SYSCLK cycle. MAC0 also contains a 1-bit arithmetic shifter that will left or right-shift the contents of the 40-bit accumulator in a single SYSCLK cycle.

Figure 1.10. MAC0 Block Diagram

1.8. 12 or 10-Bit Analog to Digital Converter

All devices include either a 12 or 10-bit SAR ADC (ADC0) with a 9-channel input multiplexer and programmable gain amplifier. With a maximum throughput of 100 ksps, the 12 and 10-bit ADCs offer true 12-bit linearity with an INL of \pm 1LSB. The ADC0 voltage reference can be selected from an external VREF pin, or (on the C8051F12x devices) the DAC0 output. On the 100-pin TQFP devices, ADC0 has its own dedicated Voltage Reference input pin; on the 64-pin TQFP devices, the ADC0 shares a Voltage Reference input pin with the 8-bit ADC2. The on-chip voltage reference may generate the voltage reference for other system components or the on-chip ADCs via the VREF output pin.

The ADC is under full control of the CIP-51 microcontroller via its associated Special Function Registers. One input channel is tied to an internal temperature sensor, while the other eight channels are available externally. Each pair of the eight external input channels can be configured as either two single-ended inputs or a single differential input. The system controller can also put the ADC into shutdown mode to save power.

A programmable gain amplifier follows the analog multiplexer. The gain can be set in software from 0.5 to 16 in powers of 2. The gain stage can be especially useful when different ADC input channels have widely varied input voltage signals, or when it is necessary to "zoom in" on a signal with a large DC offset (in differential mode, a DAC could be used to provide the DC offset).

Conversions can be started in four ways; a software command, an overflow of Timer 2, an overflow of Timer 3, or an external signal input. This flexibility allows the start of conversion to be triggered by software events, external HW signals, or a periodic timer overflow signal. Conversion completions are indicated by a status bit and an interrupt (if enabled). The resulting 10 or 12-bit data word is latched into two SFRs upon completion of a conversion. The data can be right or left justified in these registers under software control.

Window Compare registers for the ADC data can be configured to interrupt the controller when ADC data is within or outside of a specified range. The ADC can monitor a key voltage continuously in background mode, but not interrupt the controller unless the converted data is within the specified window.

Figure 1.13. 12-Bit ADC Block Diagram

		Pin Nu	mbers							
Name	ʻF120 ʻF122 ʻF124 ʻF126	'F121 'F123 'F125 'F127	'F130 'F132	'F131 'F133	Туре	Description				
ALE/P4.5	93		93		D I/O	ALE Strobe for External Memory Address bus (multiplexed mode) Port 4.5 See Port Input/Output section for complete description.				
RD/P4.6	92		92		D I/O	/RD Strobe for External Memory Address bus Port 4.6 See Port Input/Output section for complete description.				
WR/P4.7	91		91		D I/O	/WR Strobe for External Memory Address bus Port 4.7 See Port Input/Output section for complete description.				
A8/P5.0	88		88		D I/O	Bit 8 External Memory Address bus (Non-multi- plexed mode) Port 5.0 See Port Input/Output section for complete description.				
A9/P5.1	87		87		D I/O	Port 5.1. See Port Input/Output section for complete description.				
A10/P5.2	86		86		D I/O	Port 5.2. See Port Input/Output section for complete description.				
A11/P5.3	85		85		D I/O	Port 5.3. See Port Input/Output section for complete description.				
A12/P5.4	84		84		D I/O	Port 5.4. See Port Input/Output section for complete description.				
A13/P5.5	83		83		D I/O	Port 5.5. See Port Input/Output section for com- plete description.				
A14/P5.6	82		82		D I/O	Port 5.6. See Port Input/Output section for complete description.				
A15/P5.7	81		81		D I/O	Port 5.7. See Port Input/Output section for complete description.				

Table 4.1. Pin Definitions (Continued)

5.2. ADC Modes of Operation

ADC0 has a maximum conversion speed of 100 ksps. The ADC0 conversion clock is derived from the system clock divided by the value held in the ADCSC bits of register ADC0CF.

5.2.1. Starting a Conversion

A conversion can be initiated in one of four ways, depending on the programmed states of the ADC0 Start of Conversion Mode bits (AD0CM1, AD0CM0) in ADC0CN. Conversions may be initiated by:

- 1. Writing a '1' to the AD0BUSY bit of ADC0CN;
- 2. A Timer 3 overflow (i.e. timed continuous conversions);
- 3. A rising edge detected on the external ADC convert start signal, CNVSTR0;
- 4. A Timer 2 overflow (i.e. timed continuous conversions).

The AD0BUSY bit is set to logic 1 during conversion and restored to logic 0 when conversion is complete. The falling edge of AD0BUSY triggers an interrupt (when enabled) and sets the AD0INT interrupt flag (ADC0CN.5). Converted data is available in the ADC0 data word MSB and LSB registers, ADC0H, ADC0L. Converted data can be either left or right justified in the ADC0H:ADC0L register pair (see example in Figure 5.5) depending on the programmed state of the AD0LJST bit in the ADC0CN register.

When initiating conversions by writing a '1' to AD0BUSY, the AD0INT bit should be polled to determine when a conversion has completed (ADC0 interrupts may also be used). The recommended polling procedure is shown below.

Step 1. Write a '0' to AD0INT; Step 2. Write a '1' to AD0BUSY; Step 3. Poll AD0INT for '1'; Step 4. Process ADC0 data.

When CNVSTR0 is used as a conversion start source, it must be enabled in the crossbar, and the corresponding pin must be set to open-drain, high-impedance mode (see **Section "18. Port Input/Output" on page 235** for more details on Port I/O configuration).

Figure 5.9. 12-Bit ADC0 Window Interrupt Example: Left Justified Differential Data

11.2.6.3.SFR Page Stack Example

The following is an example that shows the operation of the SFR Page Stack during interrupts.

In this example, the SFR Page Control is left in the default enabled state (i.e., SFRPGEN = 1), and the CIP-51 is executing in-line code that is writing values to Port 5 (SFR "P5", located at address 0xD8 on SFR Page 0x0F). The device is also using the Programmable Counter Array (PCA) and the 10-bit ADC (ADC2) window comparator to monitor a voltage. The PCA is timing a critical control function in its interrupt service routine (ISR), so its interrupt is enabled and is set to *high* priority. The ADC2 is monitoring a voltage that is less important, but to minimize the software overhead its window comparator is being used with an associated ISR that is set to *low* priority. At this point, the SFR page is set to access the Port 5 SFR (SFRPAGE = 0x0F). See Figure 11.5 below.

Figure 11.5. SFR Page Stack While Using SFR Page 0x0F To Access Port 5

While CIP-51 executes in-line code (writing values to Port 5 in this example), ADC2 Window Comparator Interrupt occurs. The CIP-51 vectors to the ADC2 Window Comparator ISR and pushes the current SFR Page value (SFR Page 0x0F) into SFRNEXT in the SFR Page Stack. The SFR page needed to access ADC2's SFR's is then automatically placed in the SFRPAGE register (SFR Page 0x02). SFRPAGE is considered the "top" of the SFR Page Stack. Software can now access the ADC2 SFR's. Software may switch to any SFR Page by writing a new value to the SFRPAGE register at any time during the ADC2 ISR to access SFR's that are not on SFR Page 0x02. See Figure 11.6 below.

11.2.7. Register Descriptions

Following are descriptions of SFRs related to the operation of the CIP-51 System Controller. Reserved bits should not be set to logic I. Future product versions may use these bits to implement new features in which case the reset value of the bit will be logic 0, selecting the feature's default state. Detailed descriptions of the remaining SFRs are included in the sections of the datasheet associated with their corresponding system function.

SFR Definition 11.7. DPL: Data Pointer Low Byte

SFR Definition 11.8. DPH: Data Pointer High Byte

SFR Definition 17.2. EMI0CF: External Memory Configuration

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value						
-	-	PRTSEL	EMD2	EMD1	EMD0	EALE1	EALE0	00000011						
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0							
	SFR Address: 0xA													
	SFR Page: 0													
Bits7_6.	Unused. Read = 00b. Write = don't care.													
Bit5:	PRTSEL: EMIF Port Select.													
	0: EMIF active on P0–P3.													
	1: EMIF active on P4–P7.													
Bit4:	EMD2: EMIF	EMD2: EMIF Multiplex Mode Select.												
	0: EMIF ope	rates in mu	Itiplexed ad	dress/data	mode.									
	1: EMIF ope	rates in nor	n-multiplexe	d mode (se	parate addr	ess and da	ta pins).							
Bits3-2:	EMD1-0: EN	IIF Operatir	ng Mode Se	elect.	vtornal Mar	non (Intorfo								
	00: Internal (Ontrol the 0 Only: MOV	Accesses	on-chin XR	ΔM only ΔI	l offective a	iddresses a	lias to on-						
	chip memory	/ space.	1 00003003											
	01: Split Mod	de without E	Bank Select	: Accesses	below the 8	k boundar	v are direct	ed on-chip.						
	Accesses ab	ove the 8 k	boundary a	are directed	off-chip. 8-	bit off-chip	, MOVX ope	rations use						
	the current c	ontents of t	he Address	High port l	atches to re	solve uppe	r address b	yte. Note						
	that in order	to access o	ff-chip spac	e, EMI0CN	must be se	t to a page	that is not o	contained in						
	the on-chip a	address spa	ace.											
	10: Split Mod	de with Ban	k Select: A	ccesses bel	ow the 8 k l	boundary a	re directed	on-chip.						
	Accesses at		boundary a	re directed	OTT-Chip. 8-	oit oπ-chip i addrose	viOvx oper	ations use						
	11. External	Only: MOV		off-chin XE	2 AM only O	auuress. In-chin XRA	M is not vi	sible to the						
	CPU		A 0000300											
Bits1–0:	EALE1–0: A	LE Pulse-W	/idth Select	Bits (only h	as effect w	hen EMD2	= 0).							
	00: ALE high	n and ALE l	ow pulse wi	idth = 1 SYS	SCLK cycle.		,							
	01: ALE high	n and ALE I	ow pulse wi	idth = 2 SYS	SCLK cycles	S.								
	10: ALE high	n and ALE I	ow pulse w	dth = 3 SYS	SCLK cycle	S.								
	11: ALE high	and ALE lo	ow pulse wi	dth = 4 SYS	SCLK cycles	S.								

ple, to assign TX0 to a Port pin without assigning RX0 as well. Each combination of enabled peripherals results in a unique device pinout.

All Port pins on Ports 0 through 3 that are not allocated by the Crossbar can be accessed as General-Purpose I/O (GPIO) pins by reading and writing the associated Port Data registers (See SFR Definition 18.4, SFR Definition 18.6, SFR Definition 18.9, and SFR Definition 18.11), a set of SFR's which are both byteand bit-addressable. The output states of Port pins that are allocated by the Crossbar are controlled by the digital peripheral that is mapped to those pins. Writes to the Port Data registers (or associated Port bits) will have no effect on the states of these pins.

A Read of a Port Data register (or Port bit) will always return the logic state present at the pin itself, regardless of whether the Crossbar has allocated the pin for peripheral use or not. An exception to this occurs during the execution of a *read-modify-write* instruction (ANL, ORL, XRL, CPL, INC, DEC, DJNZ, JBC, CLR, SETB, and the bitwise MOV write operation). During the *read* cycle of the *read-modify-write* instruction, it is the contents of the Port Data register, not the state of the Port pins themselves, which is read. Note that at clock rates above 50 MHz, when a pin is written and then immediately read (i.e. a write instruction followed immediately by a read instruction), the propagation delay of the port drivers may cause the read instruction to return the previous logic level of the pin.

Because the Crossbar registers affect the pinout of the peripherals of the device, they are typically configured in the initialization code of the system before the peripherals themselves are configured. Once configured, the Crossbar registers are typically left alone.

Once the Crossbar registers have been properly configured, the Crossbar is enabled by setting XBARE (XBR2.4) to a logic 1. Until XBARE is set to a logic 1, the output drivers on Ports 0 through 3 are explicitly disabled in order to prevent possible contention on the Port pins while the Crossbar registers and other registers which can affect the device pinout are being written.

The output drivers on Crossbar-assigned input signals (like RX0, for example) are explicitly disabled; thus the values of the Port Data registers and the PnMDOUT registers have no effect on the states of these pins.

18.1.2. Configuring the Output Modes of the Port Pins

The output drivers on Ports 0 through 3 remain disabled until the Crossbar is enabled by setting XBARE (XBR2.4) to a logic 1.

The output mode of each port pin can be configured to be either Open-Drain or Push-Pull. In the Push-Pull configuration, writing a logic 0 to the associated bit in the Port Data register will cause the Port pin to be driven to GND, and writing a logic 1 will cause the Port pin to be driven to V_{DD} . In the Open-Drain configuration, writing a logic 0 to the associated bit in the Port Data register will cause the Port pin to be driven to GND, and a logic 1 will cause the Port pin to assume a high-impedance state. The Open-Drain configuration is useful to prevent contention between devices in systems where the Port pin participates in a shared interconnection in which multiple outputs are connected to the same physical wire (like the SDA signal on an SMBus connection).

The output modes of the Port pins on Ports 0 through 3 are determined by the bits in the associated PnMDOUT registers (See SFR Definition 18.5, SFR Definition 18.8, SFR Definition 18.10, and SFR Definition 18.12). For example, a logic 1 in P3MDOUT.7 will configure the output mode of P3.7 to Push-Pull; a logic 0 in P3MDOUT.7 will configure the output mode of P3.7 to Open-Drain. All Port pins default to Open-Drain output.

ryo			uuuuu	3	
RXO	~///	////			
SCK					
MISO					
MOSI					
NSS		~~~~~	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
SDA				M M	
sci.					
TX1			11	11 11	-
RX1					///
CEXO			1		
CEX1					
CEX2					
CEX3					
CEX4					
CEXS					
ECI					
CPO			///		
CP1				<u></u>	
TO					
ANTO	<i></i>				
13 				1)) 	
ia Torv				11), 11) 11), 11)	
TANA TA	 ////	 ///	 ////	<u> </u>	
TARY	 	 ////		<u> </u>	
inwa Neveni z	 		 ////		
CNVSTRO	 ////	 ////	 ////		
CNVSTR2	 ////		 ////	<u></u>	

Figure 18.5. Priority Crossbar Decode Table (EMIFLE = 1; EMIF in Non-Multiplexed Mode; P1MDIN = 0xFF)

SFR Definition 18.10. P2MDOUT: Port2 Output Mode

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0					
	SFR Address: 0xA6 SFR Page: F											
Bits7–0:	P2MDOUT.[7 0: Port Pin ou 1: Port Pin ou	:0]: Port2 utput mode utput mode	Output Moc e is configur e is configur	le Bits. ed as Oper ed as Push	n-Drain. -Pull.							
Note:	SDA, SCL, a always config	nd RX0 (w jured as C	/hen UART()pen-Drain) is in Mode when they a	e 0) and RX appear on P	1 (when UA Port pins.	RT1 is in N	/lode 0) are				

SFR Definition 18.11. P3: Port3 Data

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0	11111111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable
							SFR Address SFR Page	: 0xB0 : All Pages
Bits7–0:	P3.[7:0]: Por (Write - Outp 0: Logic Low 1: Logic High (Read - Rega 0: P3.n pin is 1: P3.n pin is	t3 Output I out appears Output. Output (o ardless of 2 s logic low. s logic high	Latch Bits. s on I/O pins pen if corre XBR0, XBR	s per XBR0 sponding P 1, and XBR	, XBR1, and 3MDOUT.n 2 Register	d XBR2 Reg bit = 0). settings).	gisters)	
Note:	P3.[7:0] can mode, or as Interface an Interface.	be driven l D[7:0] in N d On-Chip	by the Exter lon-multiple XRAM" or	rnal Data M xed mode). n page 219	emory Inter See Sectic for more inf	face (as AE on "17. Ext ormation at	D[7:0] in Mu ernal Data bout the Ext	ltiplexed Memory ernal Memory

SFR Definition 21.2. SSTA0: UART0 Status and Clock Selection

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
FE0	RXOV0	TXCOL0 S	MOD0	S0TCLK1	S0TCLK0	S0RCLK1	SORCLK0	0000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0					
							SFR Address: 0	x91				
							SFR Page: 0	1				
Bit7.	FE0: Frame	Frror Flag *										
Bitr.	This flag inc	dicates if an i	invalid (low) STOI	Dit is dete	cted.						
	0: Frame Ei	rror has not b	been de	tected								
	1: Frame Er	rror has beer	n detect	ed.								
Bit6:	RXOV0: Receive Overrun Flag.*											
	This flag indicates new data has been latched into the receive buffer before software has											
	read the previous byte.											
	1: Receive	Overrun has	hoon d	n detected	J.							
Bit5 [.]	TXCOL 0. T	ransmit Collis	sion Fla	a *								
Bitol	This flag inc	dicates user	software	e has writt	en to the SI	BUF0 regist	ter while a tra	nsmission is				
	in progress.					0						
	0: Transmis	sion Collisio	n has n	ot been de	etected.							
	1: Transmis	sion Collision	n has b	een detec	ted.							
Bit4:	SMOD0: UA	ART0 Baud F	Rate Do	ubler Ena	ble.							
	This bit ena	bles/disables	S the div	de-by-two	o function of	f the UAR I	0 baud rate lo	gic for config-				
		scribed in the	do-by-ty	u section.	Ч							
	1: UART0 b	aud rate divi	ide-by-tv	wo disable	ed.							
Bits3-2:	UART0 Tra	nsmit Baud F	Rate Clo	ock Select	ion Bits							
	S0TCLK1	SOTCI KO	Se	rial Tran	smit Baud	Rate Clock	Source					
	0	0	<u>т</u>	imer 1 ge	nerates UAI	RT0 TX Bai	ud Rate					
	0	1	Timer	2 Overflo	w generate	s UARTO T	X baud rate					
	1	0	Timer	3 Overflo	w generate	s UARTO T	X baud rate					
	1	1	Timer	4 Overflo	w generate	s UART0 T	X baud rate					
					0							
Bits1–0:	UART0 Red	eive Baud R	ate Clo	ck Selecti	on Bits							
	S0RCLK1	SORCLKO	S	erial Rece	eive Baud F	Rate Clock	Source					
	0	0	Т	imer 1 gei	nerates UA	RT0 RX Ba	ud Rate					
	0	1	Timer	2 Overflo	w generate	s UART0 R	X baud rate					
	1	0	Timer	3 Overflo	w generate	s UART0 R	X baud rate					
	1	1	Timer	4 Overflo	w generate	s UART0 R	X baud rate					
***				()								
^NOte:	FEU, RXOV	vu, and TXCO	OLU are	itags only	, and no inf	terrupt is ge	enerated by th	ese conditions.				

NOTES:

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value							
TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	00000000							
Bit7	7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0														
	SFR Address: 0x88 SFR Page: 0														
Bit7:	 TF1: Timer 1 Overflow Flag. Set by hardware when Timer 1 overflows. This flag can be cleared by software but is automatically cleared when the CPU vectors to the Timer 1 interrupt service routine. 0: No Timer 1 overflow detected. 1: Timer 1 has overflowed. TR1: Timer 1 Run Control. 														
Bit6:	TR1: Timer 1 Run Control. 0: Timer 1 disabled. 1: Timer 1 enabled.														
Bit5:	TF0: Timer 0 Overflow Flag. Set by hardware when Timer 0 overflows. This flag can be cleared by software but is auto- matically cleared when the CPU vectors to the Timer 0 interrupt service routine. 0: No Timer 0 overflow detected.														
Bit4:	TR0: Timer (0: Timer 0 di 1: Timer 0 e) Run Conti sabled.	rol.												
Bit3:	IE1: Externa This flag is s cleared by s rupt 1 servic	I Interrupt 1 et by hardw oftware but e routine if	vare when a is automati IT1 = 1. Thi	in edge/leve cally cleare is flag is the	el of type de d when the e inverse of	fined by IT ² CPU vector the /INT1 s	1 is detect rs to the E ignal.	ed. It can be external Inter-							
Bit2:	IT1: Interrup This bit select active-low. 0: /INT1 is le	t 1 Type Se cts whether evel triggere	lect. the configued, active-lo	ured /INT1 i w. dae	nterrupt will	be falling-e	edge sens	itive or							
Bit1:	IEO: Externa This flag is s cleared by s rupt 0 servic	I Interrupt 0 et by hardw oftware but e routine if	vare when a is automati IT0 = 1. Thi	in edge/leve cally cleare is flag is the	el of type de d when the e inverse of	fined by IT(CPU vector the /INT0 s) is detect rs to the E ignal.	ed. It can be external Inter-							
Bit0:	IT0: Interrup This bit select active-low. 0: /INT0 is le 1: /INT0 is e	t 0 Type Se cts whether evel triggere dge triggere	lect. the configu ed, active lo ed, falling-e	ıred /INT0 i gic-low. dge.	nterrupt will	be falling-e	edge sens	itive or							

SFR Definition 23.1. TCON: Timer Control

SFR Definition 23.8. TMRnCN: Timer 2, 3, and 4 Control

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value						
TFn	EXFn	-	-	EXENn	TRn	C/Tn	CP/RLn	00000000						
Bit7	Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Add													
SFR Addr	SFR Address: TMR2CN:0xC8;TMR3CN:0xC8;TMR4CN:0xC8													
SFR Pa	SFR Page: TMR2CN: page 0;TMR3CN: page 1;TMR4CN: page 2													
Bit7:	it7: TFn: Timer 2, 3, and 4 Overflow/Underflow Flag.													
	Set by hardware when either the Timer overflows from 0xFFFF to 0x0000, underflows from the value placed in RCAPpH RCAPpL to 0xFEFE (in Auto-reload Mode), or underflows from													
	the value placed in RCAPnH:RCAPnL to 0xFFFF (in Auto-reload Mode), or underflows from 0x0000 to 0xFFFF (in Capture Mode). When the Timer interrupt is enabled setting this bit													
	causes the CPU to vector to the Timer interrupt service routine. This bit is not automatically													
DHC.	cleared by hardware and must be cleared by software.													
BILO:	Set by hardward	z, 3, or 4 ⊑ are when ei	ither a capt	J. ure or reload	d is caused	by a high-to	o-low trans	sition on the						
	TnEX input p	in and EXE	Nn is logic	1. When the	Timer inte	rrupt is ena	bled, settir	ng this bit						
	causes the C	PU to vecto rdware and	or to the Tin	ner Interrupt leared by sc	Service rou	utine. This b	vit is not au	utomatically						
Bit5-4:	Reserved.				ntware.									
Bit3:	EXENn: Time	er 2, 3, and	4 External	Enable.	or conturo	n rolondo d	and contro	l the direc						
	tion of the tim	er/counter	(up or dowi	n count). If E	OCENn = 1,	, TnEX will o	determine	if the timer						
	counts up or	down when	in Auto-rel	oad Mode. I	f EXENn =	1, TnEX sh	ould be co	onfigured as						
	a digital input	on the TnF	-X pin are i	anored										
	1: Transitions	on the The	EX pin caus	se capture, r	eload, or co	ontrol the di	rection of	timer count						
	(up or down)	as follows:	Transition of		COUSOS PC		Pol to ca	nturo timor						
	value.	<u>e</u> . 1-lo-0		л пслрп	causes ne			plure limer						
	Auto-Reload	Mode:	101 (
	DCE	Nn = 0: 17-1 Nn = 1: TnE	O-101 transit EX logic lev	ion causes el controls d	reload of tir lirection of t	ner and set timer (up or	down).	n Flag.						
Bit2:	TRn: Timer 2	, 3, and 4 R	un Control	•		- (-1	- /							
	This bit enabl	les/disables	the respec	ctive Timer.										
	1: Timer enab	oled and rur	nning/count	ing.										
Bit1:	C/Tn: Counte	r/Timer Sel	ect.		dafinad by "		`							
	(TMRnCF.4:T	MRnCF.3).	Incremente		denned by)							
Dire	1: Counter Fu	unction: Tim	ier increme	nted by high	n-to-low trar	nsitions on e	external in	put pin.						
Bit0:	CP/RLn: Cap	ture/Reload	a Select. the Timer fi	unctions in c	apture or a	uto-reload i	mode.							
	0: Timer is in	Auto-Reloa	d Mode.											
	1: Timer is in	Capture Mo	ode.											
Note:	Timer 3 and ⁻	Timer 2 sha	re the T2 a	nd T2EX pir	าร.									
				-										

24.2.5. 8-Bit Pulse Width Modulator Mode

Each module can be used independently to generate pulse width modulated (PWM) outputs on its associated CEXn pin. The frequency of the output is dependent on the timebase for the PCA0 counter/timer. The duty cycle of the PWM output signal is varied using the module's PCA0CPLn capture/compare register. When the value in the low byte of the PCA0 counter/timer (PCA0L) is equal to the value in PCA0CPLn, the output on the CEXn pin will be high. When the count value in PCA0L overflows, the CEXn output will be low (see Figure 24.8). Also, when the counter/timer low byte (PCA0L) overflows from 0xFF to 0x00, PCA0CPLn is reloaded automatically with the value stored in the counter/timer's high byte (PCA0H) without software intervention. Setting the ECOMn and PWMn bits in the PCA0CPMn register enables 8-Bit Pulse Width Modulator mode. The duty cycle for 8-Bit PWM Mode is given by Equation 24.2.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/ Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to '0'; writing to PCA0CPHn sets ECOMn to '1'.

Figure 24.8. PCA 8-Bit PWM Mode Diagram

JTAG Register Definition 25.3. FLASHCON: JTAG Flash Control

								Reset Value
SFLE	WRMD2	WRMD1	WRMD0	RDMD3	RDMD2	RDMD1	RDMD0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
This register determines how the Flash interface logic will respond to reads and writes to the FLASH- DAT Register.								
Bit7:	 SFLE: Scratchpad Flash Memory Access Enable When this bit is set, Flash reads and writes are directed to the two 128-byte Scratchpad Flash sectors. When SFLE is set to logic 1, Flash accesses out of the address range 0x00- 0xFF should not be attempted (with the exception of address 0x400, which can be used to simultaneously erase both Scratchpad areas). Reads/Writes out of this range will yield undefined results. 0: Flash access directed to the Program/Data Flash sector. 1: Flash access directed to the two 128 byte Scratchpad sectors. 							
Bits6–4:	 WRMD2–0: Write Mode Select Bits. The Write Mode Select Bits control how the interface logic responds to writes to the FLASH-DAT Register per the following values: 000: A FLASHDAT write replaces the data in the FLASHDAT register, but is otherwise ignored. 001: A FLASHDAT write initiates a write of FLASHDAT into the memory address by the FLASHADR register. FLASHADR is incremented by one when complete. 010: A FLASHDAT write initiates an erasure (sets all bytes to 0xFF) of the Flash page containing the address in FLASHADR. The data written must be 0xA5 for the erase to occur. FLASHADR is not affected. If FLASHADR = 0x1FBFE – 0x1FBFF, the entire user space will be erased (i.e. entire Flash memory except for Reserved area 0x1FC00 – 0x1FFFF). 							
Bits3–0:	 RDMD3–0: Read Mode Select Bits. The Read Mode Select Bits control how the interface logic responds to reads from the FLASHDAT Register per the following values: 0000: A FLASHDAT read provides the data in the FLASHDAT register, but is otherwise ignored. 0001: A FLASHDAT read initiates a read of the byte addressed by the FLASHADR register if no operation is currently active. This mode is used for block reads. 0010: A FLASHDAT read initiates a read of the byte addressed by FLASHADR only if no operation is active and any data from a previous read has already been read from FLASHDAT. This mode allows single bytes to be read (or the last byte of a block) without initiating an extra read. (All other values for RDMD3–0 are reserved.) 							m the herwise DR register only if no read from a block)

