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VREF 12 7 12 7 A I/O Bandgap Voltage Reference Output 
(all devices).
DAC Voltage Reference Input 
(C8051F121/3/5/7 only).

VREFA 8 A In ADC0 and ADC2 Voltage Reference Input.

VREF0 16 16 8 A In ADC0 Voltage Reference Input.

VREF2 17 17 A In ADC2 Voltage Reference Input.

VREFD 15 15 A In DAC Voltage Reference Input.

AIN0.0 18 9 18 9 A In ADC0 Input Channel 0 (See ADC0 Specification 
for complete description).

AIN0.1 19 10 19 10 A In ADC0 Input Channel 1 (See ADC0 Specification 
for complete description).

AIN0.2 20 11 20 11 A In ADC0 Input Channel 2 (See ADC0 Specification 
for complete description).

AIN0.3 21 12 21 12 A In ADC0 Input Channel 3 (See ADC0 Specification 
for complete description).

AIN0.4 22 13 22 13 A In ADC0 Input Channel 4 (See ADC0 Specification 
for complete description).

AIN0.5 23 14 23 14 A In ADC0 Input Channel 5 (See ADC0 Specification 
for complete description).

AIN0.6 24 15 24 15 A In ADC0 Input Channel 6 (See ADC0 Specification 
for complete description).

AIN0.7 25 16 25 16 A In ADC0 Input Channel 7 (See ADC0 Specification 
for complete description).

CP0+ 9 4 9 4 A In Comparator 0 Non-Inverting Input.

CP0- 8 3 8 3 A In Comparator 0 Inverting Input.

CP1+ 7 2 7 2 A In Comparator 1 Non-Inverting Input.

CP1– 6 1 6 1 A In Comparator 1 Inverting Input.

DAC0 100 64 A Out Digital to Analog Converter 0 Voltage Output. 
(See DAC Specification for complete descrip-
tion).

Table 4.1. Pin Definitions (Continued)

Name

Pin Numbers

Type Description
‘F120
‘F122
‘F124
‘F126

‘F121
‘F123
‘F125
‘F127

‘F130
‘F132

‘F131
‘F133
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Figure 4.6. TQFP-64 Package Drawing
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SFR Definition 5.3. ADC0CF: ADC0 Configuration

Bits7–3: AD0SC4–0: ADC0 SAR Conversion Clock Period Bits.
The SAR Conversion clock is derived from system clock by the following equation, where 
AD0SC refers to the 5-bit value held in AD0SC4-0, and CLKSAR0 refers to the desired ADC0 
SAR clock (Note: the ADC0 SAR Conversion Clock should be less than or equal to 
2.5 MHz).

When the AD0SC bits are equal to 00000b, the SAR Conversion clock is equal to SYSCLK 
to facilitate faster ADC conversions at slower SYSCLK speeds.

Bits2–0: AMP0GN2–0: ADC0 Internal Amplifier Gain (PGA).
000: Gain = 1
001: Gain = 2
010: Gain = 4
011: Gain = 8
10x: Gain = 16
11x: Gain = 0.5

SFR Page:
SFR Address:

0
0xBC

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

AD0SC4 AD0SC3 AD0SC2 AD0SC1 AD0SC0 AMP0GN2 AMP0GN1 AMP0GN0 11111000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

AD0SC
SYSCLK

2 C× LKSAR0
-------------------------------- 1–= AD0SC 00000b>( )
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Figure 6.5. ADC0 Data Word Example

10-bit ADC0 Data Word appears in the ADC0 Data Word Registers as follows:
ADC0H[1:0]:ADC0L[7:0], if AD0LJST = 0

(ADC0H[7:2] will be sign-extension of ADC0H.1 for a differential reading, otherwise 
=

000000b).

ADC0H[7:0]:ADC0L[7:6], if AD0LJST = 1
(ADC0L[5:0] = 00b).

Example: ADC0 Data Word Conversion Map, AIN0.0 Input in Single-Ended Mode
(AMX0CF = 0x00, AMX0SL = 0x00)

Example: ADC0 Data Word Conversion Map, AIN0.0-AIN0.1 Differential Input Pair
(AMX0CF = 0x01, AMX0SL = 0x00)

For AD0LJST = 0:

; ‘n’ = 10 for Single-Ended; ‘n’= 9 for Differential.

AIN0.0–AGND 
(Volts)

ADC0H:ADC0L
(AD0LJST = 0)

ADC0H:ADC0L
(AD0LJST = 1)

VREF x (1023/1024) 0x03FF 0xFFC0

VREF / 2 0x0200 0x8000

VREF x (511/1024) 0x01FF 0x7FC0

0 0x0000 0x0000

AIN0.0–AIN0.1 
(Volts)

ADC0H:ADC0L
(AD0LJST = 0)

ADC0H:ADC0L
(AD0LJST = 1)

VREF x (511/512) 0x01FF 0x7FC0

VREF / 2 0x0100 0x4000

VREF x (1/512) 0x0001 0x0040

0 0x0000 0x0000

–VREF x (1/512) 0xFFFF (–1d) 0xFFC0

–VREF / 2 0xFF00 (–256d) 0xC000

–VREF 0xFE00 (–512d) 0x8000

Code Vin
Gain
VREF
---------------× 2n×=
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SFR Definition 6.9. ADC0LTH: ADC0 Less-Than Data High Byte

SFR Definition 6.10. ADC0LTL: ADC0 Less-Than Data Low Byte

Bits7–0: High byte of ADC0 Less-Than Data Word.

SFR Page:
SFR Address:

0
0xC7

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bits7–0: Low byte of ADC0 Less-Than Data Word.

SFR Page:
SFR Address:

0
0xC6

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
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SFR Definition 7.6. ADC2GT: ADC2 Greater-Than Data Byte

SFR Definition 7.7. ADC2LT: ADC2 Less-Than Data Byte 

Bits7–0: ADC2 Greater-Than Data Word.

SFR Page:
SFR Address:

2
0xC4

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

11111111
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bits7–0: ADC2 Less-Than Data Word.

SFR Page:
SFR Address:

2
0xC6

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
102 Rev. 1.4
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11.2. Memory Organization

The memory organization of the CIP-51 System Controller is similar to that of a standard 8051. There are
two separate memory spaces: program memory and data memory. Program and data memory share the
same address space but are accessed via different instruction types. There are 256 bytes of internal data
memory and 128k bytes (C8051F12x and C8051F130/1) or 64k bytes (C8051F132/3) of internal program
memory address space implemented within the CIP-51. The CIP-51 memory organization is shown in
Figure 11.2.

Figure 11.2. Memory Map

11.2.1. Program Memory

The C8051F12x and C8051F130/1 have a 128 kB program memory space. The MCU implements this pro-
gram memory space as in-system re-programmable Flash memory in four 32 kB code banks.  A common
code bank (Bank 0) of 32 kB is always accessible from addresses 0x0000 to 0x7FFF.  The three upper
code banks (Bank 1, Bank 2, and Bank 3) are each mapped to addresses 0x8000 to 0xFFFF, depending
on the selection of bits in the PSBANK register, as described in SFR Definition 11.1.  The IFBANK bits
select which of the upper banks are used for code execution, while the COBANK bits select the bank to be
used for direct writes and reads of the Flash memory.  Note: 1024 bytes of the memory in Bank 3
(0x1FC00 to 0x1FFFF) are reserved and are not available for user program or data storage. The
C8051F132/3 have a 64k byte program memory space implemented as in-system re-programmable Flash
memory, and organized in a contiguous block from address 0x00000 to 0x0FFFF.

Program memory is normally assumed to be read-only. However, the CIP-51 can write to program memory
by setting the Program Store Write Enable bit (PSCTL.0) and using the MOVX instruction. This feature pro-
vides a mechanism for the CIP-51 to update program code and use the program memory space for non-
volatile data storage. Refer to Section “15. Flash Memory” on page 199 for further details.
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General Purpose 
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Bit Addressable 
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INTERNAL DATA  ADDRESS SPACE
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C8051F132/3
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11.2.2. Data Memory

The CIP-51 implements 256 bytes of internal RAM mapped into the data memory space from 0x00 through
0xFF. The lower 128 bytes of data memory are used for general purpose registers and memory. Either
direct or indirect addressing may be used to access the lower 128 bytes of data memory. Locations 0x00
through 0x1F are addressable as four banks of general purpose registers, each bank consisting of eight
byte-wide registers. The next 16 bytes, locations 0x20 through 0x2F, may either be addressed as bytes or
as 128 bit locations accessible with the direct addressing mode.

The upper 128 bytes of data memory are accessible only by indirect addressing. This region occupies the
same address space as the Special Function Registers (SFR) but is physically separate from the SFR
space. The addressing mode used by an instruction when accessing locations above 0x7F determines
whether the CPU accesses the upper 128 bytes of data memory space or the SFR’s. Instructions that use
direct addressing will access the SFR space. Instructions using indirect addressing above 0x7F access the
upper 128 bytes of data memory. Figure 11.2 illustrates the data memory organization of the CIP-51.

11.2.3. General Purpose Registers

The lower 32 bytes of data memory, locations 0x00 through 0x1F, may be addressed as four banks of gen-
eral-purpose registers. Each bank consists of eight byte-wide registers designated R0 through R7. Only
one of these banks may be enabled at a time. Two bits in the program status word, RS0 (PSW.3) and RS1
(PSW.4), select the active register bank (see description of the PSW in SFR Definition 11.9). This allows
fast context switching when entering subroutines and interrupt service routines. Indirect addressing modes
use registers R0 and R1 as index registers.

11.2.4. Bit Addressable Locations

In addition to direct access to data memory organized as bytes, the sixteen data memory locations at 0x20
through 0x2F are also accessible as 128 individually addressable bits. Each bit has a bit address from
0x00 to 0x7F. Bit 0 of the byte at 0x20 has bit address 0x00 while bit 7 of the byte at 0x20 has bit address
0x07. Bit 7 of the byte at 0x2F has bit address 0x7F. A bit access is distinguished from a full byte access by
the type of instruction used (bit source or destination operands as opposed to a byte source or destina-
tion). The MCS-51™ assembly language allows an alternate notation for bit addressing of the form XX.B
where XX is the byte address and B is the bit position within the byte.

For example, the instruction:

MOV C, 22.3h 
moves the Boolean value at 0x13 (bit 3 of the byte at location 0x22) into the Carry flag.

11.2.5. Stack

A programmer's stack can be located anywhere in the 256 byte data memory. The stack area is designated
using the Stack Pointer (SP, address 0x81) SFR. The SP will point to the last location used. The next value
pushed on the stack is placed at SP+1 and then SP is incremented. A reset initializes the stack pointer to
location 0x07; therefore, the first value pushed on the stack is placed at location 0x08, which is also the
first register (R0) of register bank 1. Thus, if more than one register bank is to be used, the SP should be
initialized to a location in the data memory not being used for data storage. The stack depth can extend up
to 256 bytes. 

The MCUs also have built-in hardware for a stack record which is accessed by the debug logic. The stack
record is a 32-bit shift register, where each PUSH or increment SP pushes one record bit onto the register,
and each CALL pushes two record bits onto the register. (A POP or decrement SP pops one record bit,
Rev. 1.4 135
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Figure 11.4. SFR Page Stack

Automatic hardware switching of the SFR Page on interrupts may be enabled or disabled as desired using
the SFR Automatic Page Control Enable Bit located in the SFR Page Control Register (SFRPGCN). This
function defaults to ‘enabled’ upon reset. In this way, the autoswitching function will be enabled unless dis-
abled in software.

A summary of the SFR locations (address and SFR page) is provided in Table 11.2. in the form of an SFR
memory map. Each memory location in the map has an SFR page row, denoting the page in which that
SFR resides. Note that certain SFR’s are accessible from ALL SFR pages, and are denoted by the “(ALL
PAGES)” designation. For example, the Port I/O registers P0, P1, P2, and P3 all have the “(ALL PAGES)”
designation, indicating these SFR’s are accessible from all SFR pages regardless of the SFRPAGE regis-
ter value.

SFRNEXT

SFRPAGE

SFRLAST

CIP-51

Interrupt
Logic

SFRPGCN Bit
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11.3.2. External Interrupts

Two of the external interrupt sources (/INT0 and /INT1) are configurable as active-low level-sensitive or
active-low edge-sensitive inputs depending on the setting of bits IT0 (TCON.0) and IT1 (TCON.2). IE0
(TCON.1) and IE1 (TCON.3) serve as the interrupt-pending flag for the /INT0 and /INT1 external interrupts,
respectively. If an /INT0 or /INT1 external interrupt is configured as edge-sensitive, the corresponding
interrupt-pending flag is automatically cleared by the hardware when the CPU vectors to the ISR. When
configured as level sensitive, the interrupt-pending flag follows the state of the external interrupt's input pin.
The external interrupt source must hold the input active until the interrupt request is recognized. It must
then deactivate the interrupt request before execution of the ISR completes or another interrupt request
will be generated.

Table 11.4. Interrupt Summary 

Interrupt Source
Interru

pt 
Vector

Priority 
Order

Pending Flags

B
it

 a
d

d
re

s
sa

b
le

?

C
le

a
re

d
 b

y 
H

W
?

S
F

R
P

A
G

E
 (

S
F

R
P

G
E

N
 =

 1
)

Enable 
Flag

Priority 
Control

Reset 0x0000 Top None N/A N/A 0
Always 
Enabled

Always 
Highest

External Interrupt 0 (/INT0) 0x0003 0 IE0 (TCON.1) Y Y 0 EX0 (IE.0) PX0 (IP.0)
Timer 0 Overflow 0x000B 1 TF0 (TCON.5) Y Y 0 ET0 (IE.1) PT0 (IP.1)
External Interrupt 1 (/INT1) 0x0013 2 IE1 (TCON.3) Y Y 0 EX1 (IE.2) PX1 (IP.2)
Timer 1 Overflow 0x001B 3 TF1 (TCON.7) Y Y 0 ET1 (IE.3) PT1 (IP.3)

UART0 0x0023 4
RI0 (SCON0.0)
TI0 (SCON0.1)

Y 0 ES0 (IE.4) PS0 (IP.4)

Timer 2 0x002B 5
TF2 (TMR2CN.7)
EXF2 (TMR2CN.6)

Y 0 ET2 (IE.5) PT2 (IP.5)

Serial Peripheral Interface 0x0033 6

SPIF (SPI0CN.7)
WCOL (SPI0CN.6)
MODF (SPI0CN.5)
RXOVRN (SPI0CN.4)

Y 0
ESPI0 
(EIE1.0)

PSPI0 
(EIP1.0)

SMBus Interface 0x003B 7 SI (SMB0CN.3) Y 0
ESMB0 
(EIE1.1)

PSMB0 
(EIP1.1)

ADC0 Window Comparator 0x0043 8
AD0WINT 
(ADC0CN.1)

Y 0
EWADC0 
(EIE1.2)

PWADC0 
(EIP1.2)

Programmable Counter 
Array

0x004B 9
CF (PCA0CN.7)
CCFn (PCA0CN.n)

Y 0
EPCA0 
(EIE1.3)

PPCA0 
(EIP1.3)

Comparator 0 Falling Edge 0x0053 10 CP0FIF (CPT0CN.4) Y 1
ECP0F 
(EIE1.4)

PCP0F 
(EIP1.4)

Comparator 0 Rising Edge 0x005B 11 CP0RIF (CPT0CN.5) Y 1
ECP0R 
(EIE1.5)

PCP0R 
(EIP1.5)

Comparator 1 Falling Edge 0x0063 12 CP1FIF (CPT1CN.4) Y 2
ECP1F 
(EIE1.6)

PCP1F 
(EIP1.6)
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11.4. Power Management Modes

The CIP-51 core has two software programmable power management modes: Idle and Stop. Idle mode
halts the CPU while leaving the external peripherals and internal clocks active. In Stop mode, the CPU is
halted, all interrupts and timers (except the Missing Clock Detector) are inactive, and the system clock is
stopped. Since clocks are running in Idle mode, power consumption is dependent upon the system clock
frequency and the number of peripherals left in active mode before entering Idle. Stop mode consumes the
least power. SFR Definition 11.18 describes the Power Control Register (PCON) used to control the CIP-
51's power management modes.

Although the CIP-51 has Idle and Stop modes built in (as with any standard 8051 architecture), power
management of the entire MCU is better accomplished by enabling/disabling individual peripherals as
needed. Each analog peripheral can be disabled when not in use and put into low power mode. Digital
peripherals, such as timers or serial buses, draw little power whenever they are not in use. Turning off the
Flash memory saves power, similar to entering Idle mode. Turning off the oscillator saves even more
power, but requires a reset to restart the MCU.

11.4.1. Idle Mode

Setting the Idle Mode Select bit (PCON.0) causes the CIP-51 to halt the CPU and enter Idle mode as soon
as the instruction that sets the bit completes.   All internal registers and memory maintain their original
data. All analog and digital peripherals can remain active during Idle mode.

Idle mode is terminated when an enabled interrupt or RST is asserted. The assertion of an enabled inter-
rupt will cause the Idle Mode Selection bit (PCON.0) to be cleared and the CPU to resume operation. The
pending interrupt will be serviced and the next instruction to be executed after the return from interrupt
(RETI) will be the instruction immediately following the one that set the Idle Mode Select bit. If Idle mode is
terminated by an internal or external reset, the CIP-51 performs a normal reset sequence and begins pro-
gram execution at address 0x00000.

If enabled, the WDT will eventually cause an internal watchdog reset and thereby terminate the Idle mode.
This feature protects the system from an unintended permanent shutdown in the event of an inadvertent
write to the PCON register. If this behavior is not desired, the WDT may be disabled by software prior to
entering the Idle mode if the WDT was initially configured to allow this operation. This provides the oppor-
tunity for additional power savings, allowing the system to remain in the Idle mode indefinitely, waiting for
an external stimulus to wake up the system. Refer to Section 13 for more information on the use and con-
figuration of the WDT.

Note: Any instruction which sets the IDLE bit should be immediately followed by an instruction which has
two or more opcode bytes. For example:

// in ‘C’:
PCON |= 0x01;    // Set IDLE bit
PCON = PCON;     // ... Followed by a 3-cycle Dummy Instruction

; in assembly:
ORL PCON, #01h   ; Set IDLE bit
MOV PCON, PCON   ; ... Followed by a 3-cycle Dummy Instruction

If the instruction following the write to the IDLE bit is a single-byte instruction and an interrupt occurs during
the execution of the instruction of the instruction which sets the IDLE bit, the CPU may not wake from IDLE
mode when a future interrupt occurs.
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12. Multiply And Accumulate (MAC0)
The C8051F120/1/2/3 and C8051F130/1/2/3 devices include a multiply and accumulate engine which can
be used to speed up many mathematical operations. MAC0 contains a 16-by-16 bit multiplier and a 40-bit
adder, which can perform integer or fractional multiply-accumulate and multiply operations on signed input
values in two SYSCLK cycles. A rounding engine provides a rounded 16-bit fractional result after an addi-
tional (third) SYSCLK cycle. MAC0 also contains a 1-bit arithmetic shifter that will left or right-shift the con-
tents of the 40-bit accumulator in a single SYSCLK cycle.  Figure 12.1 shows a block diagram of the MAC0
unit and its associated Special Function Registers.

 

Figure 12.1. MAC0 Block Diagram

12.1. Special Function Registers

There are thirteen Special Function Register (SFR) locations associated with MAC0. Two of these regis-
ters are related to configuration and operation, while the other eleven are used to store multi-byte input
and output data for MAC0.  The Configuration register MAC0CF (SFR Definition 12.1) is used to configure
and control MAC0.  The Status register MAC0STA (SFR Definition 12.2) contains flags to indicate overflow
conditions, as well as zero and negative results. The 16-bit  MAC0A (MAC0AH:MAC0AL) and MAC0B
(MAC0BH:MAC0BL) registers are used as inputs to the multiplier. The MAC0 Accumulator register is 40
bits long, and consists of five SFRs: MAC0OVR, MAC0ACC3, MAC0ACC2, MAC0ACC1, and
MAC0ACC0. The primary results of a MAC0 operation are stored in the Accumulator registers.  If they are
needed, the rounded results are stored in the 16-bit Rounding Register MAC0RND
(MAC0RNDH:MAC0RNDL).
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SFR Definition 13.1. WDTCN: Watchdog Timer Control 

Bits7–0: WDT Control
Writing 0xA5 both enables and reloads the WDT.
Writing 0xDE followed within 4 system clocks by 0xAD disables the WDT.
Writing 0xFF locks out the disable feature.

Bit4: Watchdog Status Bit (when Read)
Reading the WDTCN.[4] bit indicates the Watchdog Timer Status.
0: WDT is inactive
1: WDT is active

Bits2–0: Watchdog Timeout Interval Bits
The WDTCN.[2:0] bits set the Watchdog Timeout Interval. When writing these bits, 
WDTCN.7 must be set to 0.

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

xxxxx111
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

SFR Address:
SFR Page:

0xFF
All Pages
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SFR Definition 14.3. CLKSEL: System Clock Selection

Bits 7–6: Reserved.
Bits 5–4: CLKDIV1–0: Output SYSCLK Divide Factor.

These bits can be used to pre-divide SYSCLK before it is output to a port pin through the 
crossbar.
00: Output will be SYSCLK.
01: Output will be SYSCLK/2.
10: Output will be SYSCLK/4.
11: Output will be SYSCLK/8.
See Section “18. Port Input/Output” on page 235 for more details about routing this out-
put to a port pin.

Bits 3–2: Reserved.
Bits 1–0: CLKSL1–0: System Clock Source Select Bits.

00: SYSCLK derived from the Internal Oscillator, and scaled as per the IFCN bits in 
OSCICN.
01: SYSCLK derived from the External Oscillator circuit.
10: SYSCLK derived from the PLL.
11: Reserved.

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

- - CLKDIV1 CLKDIV0 - - CLKSL1 CLKSL0 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

SFR Address:
SFR Page:

0x97
F
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SFR Definition 14.8. PLL0FLT: PLL Filter

 

Table 14.2. PLL Frequency Characteristics
–40 to +85 °C unless otherwise specified

Parameter Conditions Min Typ Max Units
Input Frequency

(Divided Reference Frequency)
5 30 MHz

PLL Output Frequency 25 100* MHz

*Note:  The maximum operating frequency of the C8051F124/5/6/7 is 50 MHz

Bits 7–6: UNUSED: Read = 00b; Write = don’t care.
Bits 5–4: PLLICO1-0: PLL Current-Controlled Oscillator Control Bits.

Selection is based on the desired output frequency, according to the following table:

Bits 3–0: PLLLP3-0: PLL Loop Filter Control Bits.
Selection is based on the divided PLL reference clock, according to the following table:

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

- - PLLICO1 PLLICO0 PLLLP3 PLLLP2 PLLLP1 PLLLP0 00110001
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

SFR Address:
SFR Page:

0x8F
F

PLL Output Clock PLLICO1-0
65–100 MHz 00
45–80 MHz 01
30–60 MHz 10
25–50 MHz 11

Divided PLL Reference Clock PLLLP3-0
19–30 MHz 0001

12.2–19.5 MHz 0011
7.8–12.5 MHz 0111

5–8 MHz 1111
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15.1.1. Non-volatile Data Storage

The Flash memory can be used for non-volatile data storage as well as program code. This allows data
such as calibration coefficients to be calculated and stored at run time. Data is written and erased using the
MOVX write instruction (as described in Section 15.1.2 and Section 15.1.3) and read using the MOVC
instruction.  The COBANK bits in register PSBANK (SFR Definition 11.1) control which portion of the Flash
memory is targeted by writes and erases of addresses above 0x07FFF.  For devices with 64 kB of Flash.
the COBANK bits should always remain set to ‘01’ to ensure that Flash write, erase, and read operations
are valid.

Two additional 128-byte sectors (256 bytes total) of Flash memory are included for non-volatile data stor-
age. The smaller sector size makes them particularly well suited as general purpose, non-volatile scratch-
pad memory. Even though Flash memory can be written a single byte at a time, an entire sector must be
erased first. In order to change a single byte of a multi-byte data set, the data must be moved to temporary
storage. The 128-byte sector-size facilitates updating data without wasting program memory or RAM
space. The 128-byte sectors are double-mapped over the normal Flash memory for MOVC reads and
MOVX writes only; their addresses range from 0x00 to 0x7F and from 0x80 to 0xFF (see Figure 15.2). To
access the 128-byte sectors, the SFLE bit in PSCTL must be set to logic 1. Code execution from the 128-
byte Scratchpad areas is not permitted.  The 128-byte sectors can be erased individually, or both at the
same time.  To erase both sectors simultaneously, the address 0x0400 should be targeted during the erase
operation with SFLE set to ‘1’. See Figure 15.1 for the memory map under different COBANK and SFLE
settings.

Table 15.1. Flash Electrical Characteristics
VDD = 2.7 to 3.6 V; –40 to +85 °C

Parameter Conditions Min Typ Max Units

Flash Size1 C8051F12x and C8051F130/1 1313282 Bytes

Flash Size1 C8051F132/3 65792 Bytes

Endurance 20k 100k Erase/Write

Erase Cycle Time 10 12 14 ms

Write Cycle Time 40 50 60 µs

Notes:
1. Includes 256-byte Scratch Pad Area
2. 1024 Bytes at location 0x1FC00 to 0x1FFFF are reserved.
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Table 17.1. AC Parameters for External Memory Interface

Parameter Description Min Max Units

TACS Address/Control Setup Time 0 3 x TSYSCLK ns

TACW Address/Control Pulse Width 1 x TSYSCLK 16 x TSYSCLK ns

TACH Address/Control Hold Time 0 3 x TSYSCLK ns

TALEH Address Latch Enable High Time 1 x TSYSCLK 4 x TSYSCLK ns

TALEL Address Latch Enable Low Time 1 x TSYSCLK 4 x TSYSCLK ns

TWDS Write Data Setup Time 1 x TSYSCLK 19 x TSYSCLK ns

TWDH Write Data Hold Time 0 3 x TSYSCLK ns

TRDS Read Data Setup Time 20 — ns

TRDH Read Data Hold Time 0 — ns

Note: TSYSCLK is equal to one period of the device system clock (SYSCLK).
Rev. 1.4 233



C8051F120/1/2/3/4/5/6/7 C8051F130/1/2/3
ple, to assign TX0 to a Port pin without assigning RX0 as well. Each combination of enabled peripherals
results in a unique device pinout.

All Port pins on Ports 0 through 3 that are not allocated by the Crossbar can be accessed as General-Pur-
pose I/O (GPIO) pins by reading and writing the associated Port Data registers (See SFR Definition 18.4,
SFR Definition 18.6, SFR Definition 18.9, and SFR Definition 18.11), a set of SFR’s which are both byte-
and bit-addressable. The output states of Port pins that are allocated by the Crossbar are controlled by the
digital peripheral that is mapped to those pins. Writes to the Port Data registers (or associated Port bits)
will have no effect on the states of these pins.

A Read of a Port Data register (or Port bit) will always return the logic state present at the pin itself, regard-
less of whether the Crossbar has allocated the pin for peripheral use or not. An exception to this occurs
during the execution of a read-modify-write instruction (ANL, ORL, XRL, CPL, INC, DEC, DJNZ, JBC,
CLR, SETB, and the bitwise MOV write operation). During the read cycle of the read-modify-write instruc-
tion, it is the contents of the Port Data register, not the state of the Port pins themselves, which is read.
Note that at clock rates above 50 MHz, when a pin is written and then immediately read (i.e. a write instruc-
tion followed immediately by a read instruction), the propagation delay of the port drivers may cause the
read instruction to return the previous logic level of the pin.

Because the Crossbar registers affect the pinout of the peripherals of the device, they are typically config-
ured in the initialization code of the system before the peripherals themselves are configured. Once config-
ured, the Crossbar registers are typically left alone.

Once the Crossbar registers have been properly configured, the Crossbar is enabled by setting XBARE
(XBR2.4) to a logic 1. Until XBARE is set to a logic 1, the output drivers on Ports 0 through 3 are
explicitly disabled in order to prevent possible contention on the Port pins while the Crossbar reg-
isters and other registers which can affect the device pinout are being written.

The output drivers on Crossbar-assigned input signals (like RX0, for example) are explicitly disabled; thus
the values of the Port Data registers and the PnMDOUT registers have no effect on the states of these
pins.

18.1.2. Configuring the Output Modes of the Port Pins

The output drivers on Ports 0 through 3 remain disabled until the Crossbar is enabled by setting XBARE
(XBR2.4) to a logic 1.

The output mode of each port pin can be configured to be either Open-Drain or Push-Pull. In the Push-Pull
configuration, writing a logic 0 to the associated bit in the Port Data register will cause the Port pin to be
driven to GND, and writing a logic 1 will cause the Port pin to be driven to VDD. In the Open-Drain configu-
ration, writing a logic 0 to the associated bit in the Port Data register will cause the Port pin to be driven to
GND, and a logic 1 will cause the Port pin to assume a high-impedance state. The Open-Drain configura-
tion is useful to prevent contention between devices in systems where the Port pin participates in a shared
interconnection in which multiple outputs are connected to the same physical wire (like the SDA signal on
an SMBus connection).

The output modes of the Port pins on Ports 0 through 3 are determined by the bits in the associated
PnMDOUT registers (See SFR Definition 18.5, SFR Definition 18.8, SFR Definition 18.10, and SFR Defini-
tion 18.12). For example, a logic 1 in P3MDOUT.7 will configure the output mode of P3.7 to Push-Pull; a
logic 0 in P3MDOUT.7 will configure the output mode of P3.7 to Open-Drain. All Port pins default to Open-
Drain output.
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Table 20.1. SPI Slave Timing Parameters

Parameter Description Min Max Units

Master Mode Timing* (See Figure 20.8 and Figure 20.9)

TMCKH SCK High Time 1 x TSYSCLK ns

TMCKL SCK Low Time 1 x TSYSCLK ns

TMIS MISO Valid to SCK Shift Edge 1 x TSYSCLK + 20 ns

TMIH SCK Shift Edge to MISO Change 0 ns

Slave Mode Timing* (See Figure 20.10 and Figure 20.11)

TSE NSS Falling to First SCK Edge 2 x TSYSCLK ns

TSD Last SCK Edge to NSS Rising 2 x TSYSCLK ns

TSEZ NSS Falling to MISO Valid 4 x TSYSCLK ns

TSDZ NSS Rising to MISO High-Z 4 x TSYSCLK ns

TCKH SCK High Time 5 x TSYSCLK ns

TCKL SCK Low Time 5 x TSYSCLK ns

TSIS MOSI Valid to SCK Sample Edge 2 x TSYSCLK ns

TSIH SCK Sample Edge to MOSI Change 2 x TSYSCLK ns

TSOH SCK Shift Edge to MISO Change 4 x TSYSCLK ns

TSLH
Last SCK Edge to MISO Change 
(CKPHA = 1 ONLY)

6 x TSYSCLK 8 x TSYSCLK ns

*Note:  TSYSCLK is equal to one period of the device system clock (SYSCLK).
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