E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	68000
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	16.67MHz
Co-Processors/DSP	-
RAM Controllers	-
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	5.0V
Operating Temperature	-40°C ~ 85°C (TC)
Security Features	· ·
Package / Case	114-BCPGA
Supplier Device Package	114-CPGA (34.54x34.54)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ts68020vr1-16

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 4. Functional Signal Groups

Signal Description

Figure 4 illustrates the functional signal groups and Table 1 lists the signals and their function.

The V_{CC} and GND pins are separated into four groups to provide individual power supply connections for the address bus buffers, data bus buffers, and all other output buffers and internal logic.

Group	V _{cc}	GND
Address Bus	A9, D3	A10, B9,C3, F12
Data Bus	M8, N8, N13	L7, L11, N7, K3
Logic	D1, D2, E3, G11, G13	G12, H13, J3, K1
Clock	—	B1

4

Table 1. Signal Index

Signal Name	Mnemonic	Function
Address Bus	A0-A31	32-bit Address Bus Used to address any of 4, 294, 967, 296 bytes.
Data Bus	D0-D31	32-bit Data Bus Used to Transfer 8, 16, 24 or 32 bits of Data Per Bus Cycle.
Function Codes	FC0-FC2	3-bit Function Case Used to Identify the Address Space of Each Bus Cycle.
Size	SIZ0/SIZ1	Indicates the Number of Bytes Remaining to be Transferred for this Cycle. These Signals, Together with A0 And A1, Define the Active Sections of the Data Bus.
Read-Modify-Write Cycle	RMC	Provides an Indicator that the Current Bus Cycle is Part of an Indivisible modify-write Operation.
External Cycle Start	ECS	Provides an Indication that a Bus Cycle is Beginning.
Operand Cycle Start	OCS	Identical Operation to that of ECS Except that OCS Is Asserted Only During the First Bus Cycle of an Operand Transfer.
Address Strobe	ĀS	Indicates that a Valid Address is on The Bus.
Data Strobe	DS	Indicates that Valid Data is to be Placed on the Data Bus by an External Device or has been Laced on the Data Bus by the TS68020.
Read/Write	R/W	Defines the Bus Transfer as an MPU Read or Write.
Data Buffer Enable	DBEN	Provides an Enable Signal for External Data Buffers.
Data Transfer and Size Acknowledge	DSACK0/DSACK1	Bus Response Signals that Indicate the Requested Data Transfer Operation is Completed. In Addition, these Two Lines Indicate the Size of the External Bus Port on a Cycle-by-cycle Basis.
Cache Disable	CDIS	Dynamically Disables the On-chip Cache to Assist Emulator Support.
Interrupt Priority Level	IPL0-IPL2	Provides an Encoded Interrupt Level to the Processor.
Autovector	AVEC	Requests an Autovector During an Interrupt Acknowledge Cycle.
Interrupt Pending	IPEND	Indicates that an Interrupt is Pending.
Bus Request	BR	Indicates that an External Device Requires Bus Mastership.
Bus Grant	BG	Indicates that an External Device may Assume Bus Mastership.
Bus Grant Acknowledge	BGACK	Indicates that an External Device has Assumed Bus Mastership.
Reset	RESET	System Reset.
Halt	HALT	Indicates that the Processor Should Suspend Bus Activity.
Bus Error	BERR	Indicates an Invalid or Illegal Bus Operation is Being Attempted.
Clock	CLK	Clock Input to the Processor.
Power Supply	V _{cc}	+5-volt ± 10% Power Supply.
Ground	GND	Ground Connection.

The total thermal resistance of a package (θ_{JA}) can be separated into two components, θ_{JC} and θ_{CA} , representing the barrier to heat flow from the semiconductor junction to the package (case), surface (θ_{JC}) and from the case to the outside ambient (θ_{CA}) . These terms are related by the equation:

 $\theta_{JA} = \theta_{JC} = \theta_{CA}$

(4)

 θ_{JC} is device related and cannot be influenced by the user. However, θ_{CA} is user dependent and can be minimized by such thermal management techniques as heat sinks, ambient air cooling and thermal convection. Thus, good thermal management on the part of the user can significantly reduce θ_{CA} so that θ_{JA} approximately equals θ_{JC} . Substitution of θ_{JC} for θ_{JA} in equation (1) will result in a lower semiconductor junction temperature.

Mechanical andThe microcircuits shall meet all mechanical environmental requirements of MIL-STD-
883 for class B devices.

Marking

The document where are defined the marking are identified in the related reference documents. Each microcircuit are legible and permanently marked with the following information as minimum:

- ATMEL Logo
- Manufacturer's Part Number
- Class B Identification
- Date-code of Inspection Lot
- ESD Identifier if Available
- Country of Manufacturing

Quality Conformance Inspection	
DESC/MIL-STD-883	Is in accordance with MIL-M-38510 and method 5005 of MIL-STD-883. Group A and B inspections are performed on each production lot. Group C and D inspections are performed on a periodical basis.
Electrical Characteristics	
General Requirements	All static and dynamic electrical characteristics specified and the relevant measurement conditions are given below.
	(last issue on request to our marketing services).
	Table 5: Static electrical characteristics for all electrical variants.
	Table 6: Dynamic electrical characteristics for 68020-16 (16.67 MHz), 68020-20 (20 MHz) and 68020-25 (25 MHz).
	For static characteristics, test methods refer to "Test Conditions Specific to the Device" on page 14 hereafter of this specification (Table 7).

Table 6. Dynamic Electrical Characteristics (Continued)

			68020-16		68020-20		68020-25			
Symbol	Parameter	Number	Min	Max	Min	Max	Min	Max	Unit	Notes
t _{DVSA}	Data Out Valid to $\overline{\text{DS}}$ Asserted (Write) 26	26	15		10		5		ns	(6)
t _{DICL}	Data in Valid to Clock Low (Data Setup)	27	5		5		5		ns	
t _{BELCL}	Late BERR/HALT Asserted to Clock Low Setup Time	27A	20		15		10		ns	
t _{SNDN}	AS, DS Negated to DSACKx/BERR/HALT/AVEC Negated	28	0	80	0	65	0	50	ns	
t _{SNDI}	DS Negated to Data On Invalid (Data in Hold Time)	29	0		0		0		ns	(6)
t _{SNDIZ}	DS Negated to Data in High Impedance	29A		60		50		40	ns	
t _{DADI}	DSACKx Asserted to Data In Valid	31		50		43		32		(2)(11)
t _{DADV}	DSACK Asserted to DSACKx Valid (DSACK Asserted Skew)	31A		15		10		10	ns	(3)(11)
t _{HRrf}	RESET Input Transition Time	32		1.5		1.5		1.5	Clks	
t _{CLBA}	Clock Low to BG Asserted	33	0	30	0	25	0	20	ns	
t _{CLBN}	Clock Low to BG Negated	34	0	30	0	25	0	20	ns	
t _{BRAGA}	\overline{BR} Asserted to \overline{BG} Asserted (RMC Not Asserted)	35	1.5	3.5	1.5	3.5	1.5	3.5	Clks	(11)
t _{GAGN}	BGACK Asserted to BG Negated	37	1.5	3.5	1.5	3.5	1.5	3.5	Clks	(11)
t _{GABRN}	BGACK Asserted to BR Negated	37A	0	1.5	0	1.5	0	1.5	Clks	(11)
t _{GN}	BG Width Negated	39	90		75		60		ns	(11)
t _{GA}	BG Width Asserted	39A	90		75		60		ns	
t _{CHDAR}	Clock High to DBEN Asserted (Read)	40	0	30	0	25	0	20	ns	
t _{CLDNR}	Clock Low to DBEN Negated (Read)	41	0	30	0	25	0	20	ns	
t _{CLDAW}	Clock Low to DBEN Negated (Read)	42	0	30	0	25	0	20	ns	
t _{CHDNW}	Clock High to DBEN Asserted (Read)	43	0	30	0	25	0	20	ns	
t _{RADA}	R/W Low to DBEN Asserted (Write)	44	15		10		10		ns	(6)
t _{DA}	DBEN Width Asserted READ WRITE	45	60 120		50 100		40 80		ns ns	(5) (5)
t _{RWA}	R/\overline{W} Width Asserted (Write or Read)	46	150		125		100		ns	
t _{AIST}	Asynchronous Input Setup Time	47A	5		5		5		ns	(11)
t _{AIHT}	Asynchronous Input Hold Time	47B	15		15		10		ns	(11)
t _{DABA}	DSACKx Asserted to BERR/HALT Asserted	48		30		20		18	ns	(4)(11)
t _{DOCH}	Data Out Hold from Clock High	53	0		0		0		ns	
t _{BNHN}	BERR Negated to HALT Negated (Rerun)		0		0		0		ns	

Test Conditions Specific to the Device

Loading Network

The applicable loading network shall be defined in column "Test conditions" of Table 6, referring to the loading network number as shown in Figure 6, Figure 7, Figure 8 below.

Figure 6. RESET Test Loads

Table 7. Load Network

Load NBR	Figure	R	RL	CL	Output Application
1	7	2 k	6.0 k	50 pF	OCS, ECS
2	7	1.22 k	6.0 k	130 pF	A0-A31, D0-D31, BG, FC0-FC2, SIZ0-SIZ1
3	7	0.74 k	6.0 k	130 pF	AS, DS, R/W, RMC, DBEN, IPEND

Note: 1. Equivalent loading may be simulated by the tester.

Note: Timing measurements are referenced to and from a low voltage of 0.8V and a high voltage of 2.0V, unless otherwise noted. The voltage swing thorough this range should start outside and pass through the range such that the rise or fall will be linear between 0.8V and 2.0V.

Figure 11. Bus Arbitration Timing Diagram

Note: Timing measurements are referenced to and from a low voltage of 0.8V and a high voltage of 2.0V, unless otherwise noted. The voltage swing thorough this range should start outside and pass through the range such that the rise or fall will be linear between 0.8V and 2.0V.

Input and Output Signals for Dynamic Measurements

AC Electrical Specifications Definitions

The AC specifications presented consist of output delays, input setup and hold times, and signal skew times. All signals are specified relative to an appropriate edge of the TS68020 clock input and, possibly, relative to one or more other signals.

The measurement of the AC specifications is defined by the waveforms in Figure 12. In order to test the parameters guaranteed by Atmel, inputs must be driven to the voltage levels specified in Figure 12. Outputs of the TS68020 are specified with minimum and/or maximum limits, as appropriate, and are measured as shown. Inputs to the TS68020 are specified with minimum and, as appropriate, maximum setup and hold times, and are measurement as shown. Finally, the measurements for signal-to-signal specification are also shown.

Note that the testing levels used to verify conformance of the TS68020 to the AC specifications does not affect the guaranteed DC operation of the device as specified in the DC electrical characteristics.

Legend:

A) Maximum Output Delay Specification

- B) Minimum Output Hold Time
- C) Minimum Input Setup Time Specification
- D) Minimum Input Hold Time Specification
- E) Signal Valid to Signal Valid Specification (Maximum or Minimum)
- F) Signal Valid to Signal Invalid Specification (Maximum or Minimum)
- Notes: 1. This output timing is applicable to all parameters specified relative to the rising edge of the clock.
 - 2. This out put timing is applicable to all parameters specified relative to the falling edge of the clock.
 - 3. This input timing is applicable to all parameters specified relative to the falling edge of the clock.
 - 4. This input timing is applicable to all parameters specified relative to the falling edge of the clock.
 - 5. This timing is applicable to all parameters specified relative to the assertion/negation of another signal.

Additional Information

Additional information shall not be for any inspection purposes.

Power Consideration

See Table 4.

Capacitance (Not for Inspection Purposes

Symbol	Parameter	Test Conditions	Min	Unit
C _{in}	Input Capacitance	$V_{in} = 0V T_{amb} = 25^{\circ}C$ f = 1 MHz	20	pF

Capacitance Derating Curves

Figure 13 to Figure 18 inclusive show the typical derating conditions which apply. The capacitance includes any stray capacitance. The graphs may not be linear outside the range shown.

The TS68000 Family processors distinguish address spaces as supervisor / used and program/data. These four combinations are specified by the function code pins (FC0/FC1/FC2) during bus cycles, indication the particular address space. Using the function codes, the memory sub-system can distinguish between authorized access (supervisor mode is privileged access) and unauthorized access (user mode may not have access to supervisor program or data areas). To support the full privileges of the supervisor, the alternate function code registers allow the supervisor to specify an access to user program or data areas by preloading the SFC/DFC registers appropriately.

The cache registers (control — CACR, address — CAAR) allow software manipulation of the on-chip instruction cache. Control and status accesses to the instruction cache are provided by the cache control register (CACR), while the cache address register (CAAR) holds the address for those cache control functions that require an address.

Figure 21. Status Register

Data Types and Addressing Modes Seven basic types are supported. These data types are:

- Bits
- Bits Flieds (String of consecutive bits, 1-32 bits long)
- BCD Digits (Packed: 2 digits/byte, Unpacked: 1 digit/byte)
- Byte Integers (8-bit)
- Word Integers (16-bit)
- Long Word Integers (32-bit)
- Quad Word Integers (64-bit)

In addition, operations on other data types, such as memory addresses, status word data, etc...., are provided in the instruction set. The co-processor mechanism allows direct support of floating-point data type with the TS68881 and TS68882 floating-point co-processors, as well as specialized user-defined data types and functions.

The 18 addressing modes, shown in Table 8, include nine basic types:

- Register Direct
- Register Indirect
- Register Indirect with Index
- Memory Indirect
- Program Counter Indirect with Displacement
- Program Counter Indirect with Index
- Program Counter Memory Indirect
- Absolute
- Immediate

The register indirect addressing modes support postincrement, predecrement, offset, and indexing. Programmers find these capabilities particularly useful for handling advanced data structures common to sophisticated applications and high level languages. The program counter relative mode also has index and offset capabilities; programmers find that this addressing mode is required to support position-independent software. In addition to these addressing modes, the TS68020 provides data operand sizing and scaling; these features provide performance enhancements to the programmer.

Table 8. TS68020 Addressing Modes

Addressing Modes	Syntax
Register Direct	
Data Register Direct	Dn
Address Register Direct	An
Register Indirect	
Address Register Indirect	(An)
Address Register Indirect with Post Increment	(An) +
Address Register Indirect with Predecrement	– (An)
Address Register Indirect with Displacement	(d ₁₆ An)
Register Indirect with Index	
Address Register Indirect with Index (8-bit Displacement)	(d ₈ , An, Xn)
Address Register Indirect with Index (Base Displacement)	(bd, An, Xn)
Memory Indirect	
Memory Indirect Post-Indexed	([bd, An], Xn, od)
Memory Indirect Pre-Indexed	([bd, An, Xn], od)
Program Counter Indirect with Displacement	(d ₁₆ , PC)
Program Counter Indirect with Index	
PC Indirect with Index (8-bit Displacement)	(d ₈ , PC, Xn)
PC Indirect with Index (Base Displacement)	(bd, PC, Xn)
Program Counter Memory Indirect	
PC Memory Indirect Post-Indexed	([bd, PC], Xn, od)
PC Memory Indirect Pre-Indexed	([bd, PC, Xn]), od)

able 9. Instruction Set (Continued)			
Mnemonic	Description		
CALLM			
CAS	Call Module		
CAS2	Compare and Swap Operands		
СНК	Compare and Swap Dual Operands		
CHK2	Check Register Against Bound		
	Check Register Against Upper and Lower Bounds		
CLR	Clear		
СМР	Compare		
СМРА	Compare Address		
CMPI	Compare Immediate		
СМРМ	Compare Memory to Memory		
CMP2	Compare Register Against Upper and Lower Bounds		
DBcc	Test Condition, Decrement and Branch Signed Divide		
DIVS, DIVSL DIVU, DIVUL	Unsigned Divide		
EOR	Logical Exclusive OR		
EORI	Logical Exclusive OR Immediate		
EXG	Exchange Registers		
EXT, EXTB	Sign Extend		
ILLEGAL	Take Illegal Instruction Tape		
JMP	Jump		
JSR	Jump to Subroutine		
LEA	Load Effective Address		
LINK	Link and Allocate		
LSL, LSR	Logical Shift Left and Right		
MOVE	Move		
MOVEA	Move Address		
MOVE CCR	Move Condition Code Register		
MOVE SR	Move Status Register		
MOVE USP	Move User Stack Pointer		
MOVEC	Move Control Register		
MOVEM	Move Multiple Registers		
MOVEP	Move Peripheral		
MOVEQ	Move Quick		
MOVES	Move Alternate Address Space		
MULS	Signed Multiply		
MULU	Unsigned Multiply		
NBCD	Negate Decimal with Extend		
NEG	Negate		
NEGX	Negate with Extend		
NOP	No Operation		

Logical Complement

T

NOT

Multi-processing	To further support multi-processing with the TS68020, a compare and swap instruction, CAS, has been added. This instruction makes use of the read-modify-write cycle to compare two operands and swap a third operand pending the results of the compare. A variant of this instruction, CAS2, performs similarly comparing dual operand pairs, and updating two operands.
	These multi-processing operations are useful when using common memory to share or pass data between multiple processing elements. The read-modify-write cycle is an indivisible operand that allows reading and updating a "lock" operand used to control access to the common memory elements. The CAS2 instruction is more powerful since dual operands allow the "lock" to the checked and two values (i.e., both pointers in a doubly-linked list) to be updated according to the lock's status, all in a single operation.
Module Support	The TS68020 includes support for modules with the call module (CALLM) and return from module (RTM) instructions. The CALLM instruction references a module descrip- tor. This descriptor contains control information for entry into the associated module. The CALLM instruction creates a module stack frame and stores the module state in that frame. The RTM instruction recovers the previous module state from the stack frame and returns to the calling module.
	The module interface also provides a mechanism for finer resolution of access control by external hardware. Although the TS68020 does not interrupt the access control infor- mation, it does communicate with external hardware when the access control is to be changed, and relies on the external hardware to verify that the changes are legal.
	CALLM and RTM, when used as subroutine calls and returns with proper descriptor for- mats, cause the TS68020 to perform the necessary actions to verify legitimate access to modules.
Virtual Memory/Machine Concepts	The full addressing range of the TS68020 is 4-Gbyte (4, 294, 967, 296). However, most TS68020 systems implement a smaller physical memory. Nonetheless, by using virtual memory techniques, the system can be made to appear to have a full 4-Gbyte of physical memory available to each user program. These techniques have been used for many years in large mainframe computers and minicomputers. With the TS68020 (as with the TS68010 and TS68012), virtual memory can be fully supported in microprocessor-based systems.
	In a virtual memory system, a user program can be written as though it has a large amount of memory available to it when actually only a smaller amount of memory is physically present in the system. In a similar fashion, a system provides user programs access to other devices that are not physically present in the system, such as tape drives, disk drives, printers, or terminals. With proper software emulation, a physical system can be made to appear to a user program as any other 68000 computer system and the program may be given full access to all of the resources of that emulated sys- tem. Such an emulator system is called a virtual machine.
Virtual Memory	The basic mechanism for supporting virtual memory is to provides a limited amount of high-speed physical memory that can be accessed directly by the processor while main- taining of a much larger "virtual" memory on secondary storage devices such as large capacity disk drives. When the processor attempts to access a location in the virtual memory map that is not resident in the physical memory (referred to as a page fault), the access to that location is temporarily suspended while the necessary data is fetched from secondary storage and placed in physical memory; the suspended access is then either restarted or continued.

The TS68020 will always transfer the maximum amount of data on all bus cycles; i.e., it always assumes the port is 32-bit wide when beginning the bus cycle. In addition, the TS68020 has no restrictions concerning alignment of operands in memory; long word operands need not be aligned on long word address boundaries. When misaligned data requires multiple bus cycles, the TS68020 aligned data requires multiple bus cycles, the TS68020 aligned data requires multiple bus cycles, the TS68020 automatically runs the minimum number of bus cycles.

The Co-processorThe co-processor interface is a mechanism for extending the instruction set of the
TS68000 Family. Examples of these extensions are the addition of specialized data
operands for the existing data types or, for the case of the floating point, the inclusion of
new data types and operations for them as implemented by the TS68881 and TS68882
floating point co-processors.

The programmer's model for the TS68000 Family of microprocessors is based on sequential, non-concurrent instruction execution. This means each instruction is completely executed prior to the beginning of the next instruction. Hence, instructions do not operate concurrently in the programmer's model. Most microprocessors implement the sequential model which greatly simplifies the programmer responsibilities since sequencing control is automatic and discrete.

The TS68000 co-processor interface is designed to extend the programmer's model and it provides full support for the sequential, non-concurrent instruction execution model. Hence, instruction execution by the co-processor is assumed to not overlap with instruction execution with the main microprocessor. Yet, the TS68000 co-processor interface does allow concurrent operation when concurrency can be properly accommodated. For example, the TS68881 or TS68882 floating-point co-processor will allow the TS68020 to proceed executing instruction while the co-processor continues a floating-point operation, up to the point that the TS68020 sends another request to the co-processor. Adhering to the sequential execution model, the request to the co-processor continues a floating-point operation, up to the co-processor completes each TS68881 and TS68882 instruction before it starts the next, and the TS68020 is allowed to proceed as it can in a concurrent fashion.

co-processors are divided into two types by their bus utilization characteristics. A coprocessor is a DMA co-processor if it can control the bus independent of the main processor. A co-processor is a non-DMA co-processor if it does not have the capability of controlling the bus. Both co-processor types utilize the same protocol and main processor resources. Implementation of a co-processor as a DMA or non-DMA type is based primarily on bus bandwidth of the co-processor, performance, and cost issues.

The communication protocol between the main processor and the co-processor necessary to execute a co-processor instruction is based on a group of co-processor interface registers (Table 10) which are defined for the TS68000 Family co-processor interface. The TS68020 hardware uses standard TS68000 asynchronous bus cycles to access the registers. Thus, the co-processor doesn't require a special bus hardware; the bus interface implemented by a co-processor for its interface register set must only satisfy the TS68020 address, data, and control signal timing to guarantee proper communication with the main processor. The TS68020 implements the communication protocol with all co-processors in hardware (and microcode) and handles all operations automatically so the programmer is only concerned with the instructions and data types provided by the co-processor as extensions to the TS68020 instruction set and data types. Other microprocessors in the TS68000 Family can operate any TS68000 co-processor even though they may not have the hardware implementation of the co-processor interface as does the TS68020. Since the co-processor is operated through the coprocessor interface registers which are accessed via normal asynchronous bus cycles, the co-processor may be used as a peripheral device. Software easily emulates the communication protocol by addressing the co-processor interface registers appropriately and passing the necessary commands and operands required by the coprocessor.

The co-processor interface registers are implemented by the co-processor in addition to those registers implemented as extensions to the TS68020 programmer's model. For example, the TS68881 implements the co-processor interface registers shown in Table 10 and the registers in the programming model, including eight 80-bit floating-point data registers and three 32-bit control/status registers used by the TS68881 programmer.

Register	Function	R/W
Response	Requests Action from CPU	R
Control	CPU	W
Save	Initiate Save of Internal State	R
Restore	Initiate Restore of Internal State	R/W
Operation Word	Current Co-processor Instruction	W
Command Word	Co-processor Specific Command	W
Condition Word	Condition to be Evaluated	W
Operand	32-bit Operand	R/W
Register Select	Specifies CPU Register or Mask	R
Instruction Address	Pointer to Co-processor Instruction	R/W
Operand Address	Pointer to Co-processor Operand	R/W

 Table 10.
 Co-processor Interface Registers

Table 11. Co-processor Primitives

Processor Synchronization	
Busy with Current Instruction	
Proceed with Next Instruction, If No Trace	
Service Interrupts and Re-query, If Trace Enable	
Proceed with Execution, Condition True/False	
Instruction Manipulation	
Transfer Operation Word	
Transfer Words from Instruction Stream	
Exception Handling	
Take Privilege Violation if S Bit Not Set	
Take Pre-Instruction Exception	
Take Mid-Instruction Exception	
Take Post-Instruction Exception	

Second, and probably the most important benefit of the cache, is that it allows instruction stream fetches and operand accesses to proceed in parallel. For example, if the TS68020 requires both an instruction stream access and an operand access, and the instruction is resident in the cache, the operand access will proceed unimpeded rather than being queued behind the instruction fetch. Similarly, the TS68020 is fully capable of executing several internal instructions (instructions that do not require the bus) while completing an operand access for another instruction.

The TS68020 instruction cache is a 256-byte direct mapped cache organized as 64 long word entries. Each cache entry consists of a tag field made up of the upper 24 address bits, the FC2 (user/supervisor) value, one valid bit, and 32-bit of instruction data (Figure 22).

The TS68020 employs a 32-bit data bus and fetches instructions on long word address boundaries. Hence, each 32-bit instruction fetch brings in two 16-bit instruction words which are then written into the on-chip cache. When the cache is enabled, the subsequent prefetch will find the next 16-bit instruction word is already present in the cache and the related bus cycle is saved. If the cache were not enabled, the subsequent prefetch will find the bus controller still holds the full 32-bit and can satisfy the prefetch and again save the related bus cycle. So, even when the on-chip instruction cache is not enabled, the bus controller provides an instruction "cache hit" rate up to 50%.

Package Mechanical Data

Figure 24. 132 Pins - Ceramic Quad Flat Pack

Mass

PGA 114 - 6 grams typically CQFP 132 - 14 grams typically

Terminal Connections

114-lead - Ceramic PinSee Figure 2.**Grid Array**

132-lead - Ceramic Quad See Figure 3. Flat Pack