

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	RX
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, SCI, SPI
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	50
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f51103adfm-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.4 Pin Functions

 Table 1.4 lists the pin functions.

Table 1.4Pin Functions (1/3)

Classifications	Pin Name	I/O	Description
Power supply	VCC	Input	Power supply pin. Connect it to the system power supply.
	VCL	_	Connect this pin to the VSS pin via the 4.7 μ F smoothing capacitor used to stabilize the internal power supply. Place the capacitor close to the pin.
	VSS	Input	Ground pin. Connect it to the system power supply (0 V).
Analog power supply	AVCC0	Input	Analog voltage supply pin for the 12-bit A/D converter. Connect this pin to VCC when not using the 12-bit A/D converter.
	AVSS0	Input	Analog ground pin for the 12-bit A/D converter. Connect this pin to VSS when not using the 12-bit A/D converter.
	VREFH0	Input	Analog reference voltage supply pin for the 12-bit A/D converter. Connect this pin to VCC when not using the 12-bit A/D converter.
	VREFL0	Input	Analog reference ground pin for the 12-bit A/D converter. Connect this pin to VSS when not using the 12-bit A/D converter.
Clock	XTAL	Output/ Input *1	Pins for connecting a crystal resonator. An external clock can be input through the XTAL pin.
	EXTAL	Input	-
	XCIN	Input	Input/output pins for the sub-clock oscillator. Connect a crystal resonator
	XCOUT	Output	between XCIN and XCOUI.
	CLKOUT	Output	Clock output pin.
Operating mode control	MD	Input	Pin for setting the operating mode. The signal levels on this pin must not be changed during operation.
System control	RES#	Input	Reset pin. This LSI enters the reset state when this signal goes low.
CAC	CACREF	Input	Input pin for the clock frequency accuracy measurement circuit.
On-chip emulator	FINED	I/O	FINE interface pin.
LVD	CMPA2	Input	Detection target voltage pin for voltage detection 2.
Interrupts	NMI	Input	Non-maskable interrupt request pin.
	IRQ0 to IRQ7	Input	Interrupt request pins.
Multi-function timer pulse unit 2	MTIOC0A, MTIOC0B MTIOC0C, MTIOC0D	I/O	The TGRA0 to TGRD0 input capture input/output compare output/PWM output pins.
	MTIOC1A, MTIOC1B	I/O	The TGRA1 and TGRB1 input capture input/output compare output/PWM output pins.
	MTIOC2A, MTIOC2B	I/O	The TGRA2 and TGRB2 input capture input/output compare output/PWM output pins.
	MTIC5U, MTIC5V, MTIC5W	Input	The TGRU5, TGRV5, and TGRW5 input capture input/external pulse input pins.
	MTCLKA, MTCLKB, MTCLKC, MTCLKD	Input	Input pins for the external clock.
Realtime clock	RTCOUT	Output	Output pin for the 1-Hz/64-Hz clock.
Serial	Asynchronous mode/clock	synchron	ous mode
communications interface (SCIe)	SCK1, SCK5	I/O	Input/output pins for the clock.
()	RXD1, RXD5	Input	Input pins for receiving data.
	TXD1, TXD5	Output	Output pins for transmitting data.
	CTS1#, CTS5#	Input	Input pins for controlling the start of transmission and reception.
	RTS1#, RTS5#	Output	Output pins for controlling the start of transmission and reception.

Figure 1.5Pin Assignments of the 48-Pin LFQFP/HWQFN

RENESAS

Figure 5.2 Voltage Dependency in Middle-Speed Operating Mode (Reference Data)

Figure 5.3 Voltage Dependency in Low-Speed Operating Mode (Reference Data)

RENESAS

Table 5.8DC Characteristics (6)

Conditions: $1.8 \text{ V} \le \text{VCC} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

	Item		Symbol	Typ.* ³	Max.	Unit	Test Conditions
Supply	Software standby	$T_a = 25^{\circ}C$	I _{CC}	0.35	0.53	μA	
current*1	$T_a = 55^{\circ}C$	$T_a = 55^{\circ}C$		0.54	1.17		
$T_a = 85^{\circ}C$			1.38	5.2			
		$T_a = 105^{\circ}C$		2.8	11.4		
	Increment for RTC or	peration*4		0.31	_		RCR3.RTCDV[2:0] = 010b
				1.09			RCR3.RTCDV[2:0] = 100b
	Increment for IWDT	operation		0.37	_		

Note 1. Supply current values are with all output pins unloaded and all input pull-up MOSs in the off state.

Note 2. The IWDT and LVD are stopped.

Note 3. VCC = 3.3 V.

Note 4. Includes the oscillation circuit.

Figure 5.4 Voltage Dependency in Software Standby Mode (Reference Data)

Table 5.10DC Characteristics (8)

Conditions: $1.8 \text{ V} \le \text{VCC} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Item			Min.	Typ.*2	Max.	Unit	Test Conditions
Analog power	During A/D conversion (at high-speed conversion)	I _{AVCC}	—	0.7	1.2	mA	
supply current	Waiting for A/D conversion (all units)		—	_	0.3	μA	
Reference power	During A/D conversion (at high-speed conversion)	I _{REFH0}	_	25	52	μA	
supply current	Waiting for A/D conversion (all units)		—	_	60	nA	
Temperature sensor*1		I _{TEMP}	—	75	—	μA	
LDV1, 2	Per channel	I _{LVD}	—	0.15	—	μA	

Note 1. Current consumed by the power supply (VCC).

Note 2. When VCC = AVCC0 = 3.3 V.

Table 5.11DC Characteristics (9)

Conditions: $1.8 \text{ V} \le \text{VCC} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVCCO} \le 3.6 \text{ V}, \text{VSS} = \text{AVSSO} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Item	Symbol	Min. Typ.		Max.	Unit	Test Conditions
RAM standby voltage	V _{RAM}	1.8			V	

Table 5.12DC Characteristics (10)

Conditions: $0 V \le VCC \le 3.6 V$, VSS = AVSS0 = 0 V, $T_a = -40$ to $+105^{\circ}C$

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Power-on VCC rising	At normal startup*1	SrVCC	0.02	—	20	ms/V	
gradient	During fast startup time*2		0.02	—	2		
	Voltage monitoring 1 reset enabled at startup* ^{3, *4}		0.02	—	_		

Note: When powering on AVCC0 and VCC, power them on at the same time or VCC first.

Note 1. When OFS1.(STUPLVD1REN, FASTSTUP) = 11b.

Note 2. When OFS1.(STUPLVD1REN, FASTSTUP) = 10b.

Note 3. When OFS1.STUPLVD1REN = 0.

Note 4. Turn on the power supply voltage according to the normal startup rising gradient because the register settings set by OFS1 are not read in boot mode.

Table 5.13 DC Characteristics (11)

Conditions: $1.8 \text{ V} \le \text{VCC} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{T}_a = -40 \text{ to } +105^{\circ}\text{C}$

The ripple voltage must meet the allowable ripple frequency $f_{r(VCC)}$ within the range between the VCC upper limit (3.6 V) and lower limit (1.8 V).

When VCC change exceeds VCC ±10%, the allowable voltage change rising/falling gradient dt/dVCC must be met.

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Allowable ripple frequency	f _{r (VCC)}	_	_	10	kHz	Figure 5.6 V _{r (VCC)} ≤ VCC × 0.2
			-	1	MHz	Figure 5.6 V _{r (VCC)} ≤ VCC × 0.08
			-	10	MHz	Figure 5.6 V _{r (VCC)} ≤ VCC × 0.06
Allowable voltage change rising/ falling gradient	dt/dVCC	1.0	_	—	ms/V	When VCC change exceeds VCC ±10%

Table 5.14 DC Characteristics (12)

Conditions: $1.8 \text{ V} \le \text{VCC} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Permissible error of VCL pin external capacitance	C _{VCL}	1.4	4.7	7.0	μF	

Note: The recommended capacitance is 4.7 µF. Variations in connected capacitors should be within the above range.

Table 5.15 Permissible Output Currents (1)

Conditions: $1.8 \text{ V} \le \text{VCC} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V},$

 $T_a = -40$ to +85°C (D version)

	Item	Symbol	Max.	Unit
Permissible output low current	Ports P40 to P44, P46, ports PJ6, PJ7	I _{OL}	0.4	mA
(average value per pin)	Ports other than above		8.0	
Permissible output low current	Ports P40 to P44, P46, ports PJ6, PJ7		0.4	
(maximum value per pin)	Ports other than above		8.0	
Permissible output low current	Total of ports P40 to P44, P46, ports PJ6, PJ7	Σl _{OL}	2.4	
	Total of ports P03, P05, ports P26, P27, ports P30, P31		30	
	Total of ports P14 to P17, port P32, ports P54, P55, ports PB0, PB1, PB3, PB5 to PB7, ports PC2 to PC7, ports PH0 to PH3		30	
	Total of ports PA0, PA1, PA3, PA4, PA6, ports PE0 to PE7		30	
	Total of all output pins		60	
Permissible output high current	Ports P40 to P44, P46, ports PJ6, PJ7	I _{ОН}	-0.1	
(average value per pin)	Ports other than above		-4.0	
Permissible output high current	Ports P40 to P44, P46, ports PJ6, PJ7		-0.1	
(maximum value per pin)	Ports other than above		-4.0	
Permissible output high current	Total of ports P40 to P44, P46, ports PJ6, PJ7	Σl _{OH}	-0.6	
	Total of ports P03, P05, ports P26, P27, ports P30, P31		-10	
	Total of ports P14 to P17, port P32, ports P54, P55, ports PB0, PB1, PB3, PB5 to PB7, ports PC2 to PC7, ports PH0 to PH3		-15	
	Total of ports PA0, PA1, PA3, PA4, PA6, ports PE0 to PE7		-15	
	Total of all output pins		-40	

Note: Do not exceed the permissible total supply current.

Table 5.17Output Voltage (1)

Conditions: $2.7 \text{ V} \le \text{VCC} \le 3.6 \text{ V}, 2.7 \text{ V} \le \text{AVCCO} \le 3.6 \text{ V}, \text{VSS} = \text{AVSSO} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +10^{\circ}\text{C}$

Item			Symbol	Min.	Max.	Unit	Test Conditions
Low-level All output ports		V _{OL}	—	0.6	V	I _{OL} = 3.0 mA	
output voltage	put voltage (except for RIIC, ports P40 to P44, P46, ports PJ6, PJ7) Ports P40 to P44, P46, ports PJ6, PJ7 RIIC pins Standard mode			_	0.4		I _{OL} = 1.5 mA
				—	0.4		I _{OL} = 0.4 mA
					0.4		I _{OL} = 3.0 mA
		Fast mode		—	0.6		I _{OL} = 6.0 mA
High-level output voltage	All output ports (except for ports P40 to P44, P46, ports PJ6, PJ7) Ports P40 to P44, P46, ports PJ6, PJ7		V _{OH}	VCC - 0.5		V	I _{OH} = -2.0 mA
				AVCC0 - 0.5	_		I _{OH} = -0.1 mA

Table 5.18Output Voltage (2)

Conditions: $1.8 \text{ V} \le \text{VCC} \le 2.7 \text{ V}, 1.8 \text{ V} \le \text{AVCC0} \le 2.7 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{T}_a = -40 \text{ to } +105^{\circ}\text{C}$

	Item	Symbol	Min.	Max.	Unit	Test Conditions
Low-level output voltage	All output ports (except for ports P40 to P44, P46, ports PJ6, PJ7)	V _{OL}	_	0.6	V	I _{OL} = 1.5 mA
	Ports P40 to P44, P46, ports PJ6, PJ7		_	0.4		I _{OL} = 0.4 mA
High-level output voltage	All output ports (except for ports P40 to P44, P46, ports PJ6, PJ7)	V _{OH}	VCC - 0.5	—	V	I _{OH} = -1.0 mA
	Ports P40 to P44, P46, ports PJ6, PJ7		AVCC0 - 0.5			I _{OH} = -0.1 mA

Table 5.26 Timing of Recovery from Low Power Consumption Modes (3)

Conditions: $1.8 \text{ V} \le \text{VCC} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Item			Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Recovery time from software standby mode*1	Low-speed mode	Sub-clock oscillator operating	t _{SBYSC}	_	600	750	μs	Figure 5.28

Note: When the division ratios of PCLKB, PCLKD, FCLK, and ICLK are all set to 1.

Note 1. The sub-clock continues oscillating in software standby mode during low-speed mode.

Figure 5.28 Software Standby Mode Cancellation Timing

Control Signal Timing 5.3.4

Table 5.29 **Control Signal Timing**

Conditions: $1.8 \text{ V} \le \text{VCC} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{ T}_{a} = -40 \text{ to } +105^{\circ}\text{C}$

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions		
NMI pulse width	t _{NMIW}	200		—	ns	NMI digital filter disabled	t _{Pcyc} × 2 ≤ 200 ns	
		t _{Pcyc} × 2*1	_	_		(NMIFLTE.NFLTEN = 0)	t _{Pcyc} × 2 > 200 ns	
		200	_	_		NMI digital filter enabled	t _{NMICK} × 3 ≤ 200 ns	
		t _{NMICK} × 3.5* ²				(NMIFLTE.NFLTEN = 1)	t _{NMICK} × 3 > 200 ns	
IRQ pulse width	t _{IRQW}	200			ns	IRQ digital filter disabled	t _{Pcyc} × 2 ≤ 200 ns	
		t _{Pcyc} × 2* ¹	—			(IRQFLTE0.FLTENi = 0)	t _{Pcyc} × 2 > 200 ns	
		200				IRQ digital filter enabled	t _{IRQCK} × 3 ≤ 200 ns	
		t _{IRQCK} × 3.5 ^{∗3}	_	_		(IRQFLTE0.FLTENi = 1)	t _{IRQCK} × 3 > 200 ns	

Note: 200 ns minimum in software standby mode.

Note 1. t_{Pcyc} indicates the cycle of PCLKB.

Note 2. t_{NMICK} indicates the cycle of the NMI digital filter sampling clock. Note 3. t_{IRQCK} indicates the cycle of the IRQi digital filter sampling clock (i = 0 to 7).

Figure 5.30 **NMI Interrupt Input Timing**

Figure 5.31 **IRQ Interrupt Input Timing**

Table 5.32Timing of On-Chip Peripheral Modules (3)Conditions: $1.8 \vee \leq VCC \leq 3.6 \vee, 1.8 \vee \leq AVCC0 \leq 3.6 \vee, VSS = AVSS0 = 0 \vee, T_a = -40 \text{ to } +105^{\circ}C, C = 30 \text{ pF}$

	Item	Symbol	Min.	Max.	Unit*1	Test Conditions	
Simple	SCK clock cycle output (master)	t _{SPcyc}	4	65536	t _{Pcyc}	Figure 5.39	
SPI	SCK clock cycle input (slave)		6	65536			
	SCK clock high pulse width	t _{SPCKWH}	0.4	0.6	t _{SPcyc}		
	SCK clock low pulse width	t _{SPCKWL}	0.4	0.6	t _{SPcyc}		
	SCK clock rise/fall time	t _{SPCKr} , t _{SPCKf}	_	20	ns		
	Data input setup time (master)	2.7 V or above	t _{SU}	65	_	ns	Figure 5.40, Figure 5.42
		1.8 V or above		95	_		
	Data input setup time (slave)		-	40	-		
	Data input hold time		t _H	40	_	ns	
	SS input setup time	t _{LEAD}	3	_	t _{Pcyc}		
	SS input hold time	t _{LAG}	3	_	t _{Pcyc}		
	Data output delay time (master)	t _{OD}	_	40	ns		
	Data output delay time (slave)	2.7 V or above			65		-
		1.8 V or above		_	85		
	Data output hold time (master)	2.7 V or above	t _{OH}	-10	_	ns	
		1.8 V or above		-20	_		
	Data output hold time (slave)		-10	_			
	Data rise/fall time		t _{Dr,} t _{Df}	_	20	ns	
	SS input rise/fall time	t _{SSLr} , t _{SSLf}	_	20	ns		
	Slave access time	t _{SA}	—	6	t _{Pcyc}	Figure 5.44,	
	Slave output release time		t _{REL}	_	6	t _{Pcyc}	Figure 5.45

Note 1. t_{Pcyc}: PCLK cycle

Table 5.33 Timing of On-Chip Peripheral Modules (4)

Conditions: $2.7 \text{ V} \le \text{VCC} \le 3.6 \text{ V}, 2.7 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{ fPCLKB} \le 32 \text{ MHz}, \text{ T}_{a} = -40 \text{ to } +105^{\circ}\text{C}$

	ltem	Symbol	Min.*1	Max.	Unit	Test Conditions
RIIC	SCL0 input cycle time	t _{SCL}	6 (12) × t _{IICcyc} + 1300	_	ns	Figure 5.46
(Standard mode, SMBus)	SCL0 input high pulse width	t _{SCLH}	3 (6) × t _{IICcyc} + 300		ns	
Cimbuoy	SCL0 input low pulse width	t _{SCLL}	3 (6) × t _{IICcyc} + 300	_	ns	
	SCL0, SDA0 input rise time	t _{Sr}	—	1000	ns	-
	SCL0, SDA0 input fall time	t _{Sf}		300	ns	
	SCL0, SDA0 input spike pulse removal time	t _{SP}	0	1 (4) × t _{IICcyc}	ns	-
	SDA0 input bus free time	t _{BUF}	3 (6) × t _{IICcyc} + 300	—	ns	-
	START condition input hold time	t _{STAH}	t _{IICcyc} + 300	—	ns	-
	Repeated START condition input setup time	t _{STAS}	1000	—	ns	
	STOP condition input setup time	t _{STOS}	1000	—	ns	-
	Data input setup time	t _{SDAS}	t _{IICcyc} + 50	—	ns	-
	Data input hold time	t _{SDAH}	0	—	ns	-
	SCL0, SDA0 capacitive load	Cb	—	400	pF	
RIIC	SCL0 input cycle time	t _{SCL}	6 (12) × t _{IICcyc} + 600	—	ns	Figure 5.46
(Fast mode)	SCL0 input high pulse width	t _{SCLH}	3 (6) × t_{IICcyc} + 300	—	ns	
	SCL0 input low pulse width	t _{SCLL}	3 (6) × t_{IICcyc} + 300	—	ns	
	SCL0, SDA0 input rise time	t _{Sr}	*2	300	ns	
	SCL0, SDA0 input fall time	t _{Sf}	*2	300	ns	-
	SCL0, SDA0 input spike pulse removal time	t _{SP}	0	1 (4) × t _{IICcyc}	ns	
	SDA0 input bus free time	t _{BUF}	3 (6) × t_{IICcyc} + 300	—	ns	
	START condition input hold time	t _{STAH}	t _{IICcyc} + 300	—	ns	
	Repeated START condition input setup time	t _{STAS}	300	—	ns	
	STOP condition input setup time	t _{STOS}	300		ns	
	Data input setup time	t _{SDAS}	t _{IICcyc} + 50	—	ns	
	Data input hold time	t _{SDAH}	0	—	ns	
	SCL0, SDA0 capacitive load	Cb	—	400	pF	

 Note:
 t_{IICcyc}: RIIC internal reference count clock (IICφ) cycle

 Note 1.
 The value in parentheses is used when the ICMR3.NF[1:0] bits are set to 11b while a digital filter is enabled with the ICFER.NFE
 bit = 1.

Note 2. The minimum tsr and tsf specifications for fast mode are not set.

Figure 5.43 RSPI Timing (Master, CPHA = 1) (Bit Rate: PCLKB Set to Divided by 2)

Figure 5.44 RSPI Timing (Slave, CPHA = 0) and Simple SPI Timing (Slave, CKPH = 1)

Figure 5.45 RSPI Timing (Slave, CPHA = 1) and Simple SPI Timing (Slave, CKPH = 0)

RENESAS

Figure 5.47 AVCC0 to AVREFH Voltage Range

Figure 5.48 Illustration of A/D Converter Characteristic Terms

Absolute accuracy

Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics, and the actual A/D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of analog input voltage (1-LSB width), that can meet the expectation of outputting an equal code based on the theoretical A/D conversion characteristics, is used as an analog input voltage. For example, if 12-bit resolution is used and if reference voltage (VREFH0 = 3.072 V), then 1-LSB width becomes 0.75 mV, and 0 mV, 0.75 mV, 1.5 mV, ... are used as analog input voltages.

If analog input voltage is 6 mV, absolute accuracy = ± 5 LSB means that the actual A/D conversion result is in the range of 003h to 00Dh though an output code, 008h, can be expected from the theoretical A/D conversion characteristics.

Integral nonlinearity error (INL)

Integral nonlinearity error is the maximum deviation between the ideal line when the measured offset and full-scale errors are zeroed, and the actual output code.

Differential nonlinearity error (DNL)

Differential nonlinearity error is the difference between 1-LSB width based on the ideal A/D conversion characteristics and the width of the actually output code.

Offset error

Offset error is the difference between a transition point of the ideal first output code and the actual first output code.

Full-scale error

Full-scale error is the difference between a transition point of the ideal last output code and the actual last output code.

5.5 Temperature Sensor Characteristics

Table 5.40 Temperature Sensor Characteristics

Conditions: 2.0 V \leq VCC \leq 3.6 V, 2.0 V \leq AVCC0 \leq 3.6 V, VSS = AVSS0 = 0 V, T_a = -40 to +105°C

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Relative accuracy	_	_	±1.5	—	°C	2.4 V or above
		—	±2.0	—		Below 2.4 V
Temperature slope	-	—	-3.65	—	mV/°C	
Output voltage (at 25°C)	-	—	1.05	—	V	VCC = 3.3 V
Temperature sensor start time	t _{START}	_	—	5	μs	
Sampling time		5	—	—	μs	

5.7 Oscillation Stop Detection Timing

Table 5.43 Oscillation Stop Detection Circuit Characteristics

Conditions: $1.8 \text{ V} \le \text{VCC} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Detection time	t _{dr}			1	ms	Figure 5.53

Figure 5.53 Oscillation Stop Detection Timing

Figure F 40-Pin HWQFN (PWQN0040KC-A)

Classifications

- Items with Technical Update document number: Changes according to the corresponding issued Technical Update

- Items without Technical Update document number: Minor changes that do not require Technical Update to be issued

Rev Date		Description		Classification			
Nev.	Dale	Page Summary		Classification			
1.20	Jul 29, 2016	1. Overview					
		18 to 25	18 to 25 Table 1.5 to 1.9 Note 1 regarding I/O power source is AVCC0 for the ports				
			(P4, PJ6, and PJ7), added				
		5. Electrical (
		45 Table 5.1 Absolute Maximum Ratings, Analog power supply voltage added					
		45	Table 5.2 Recommended Operating Conditions, VREFH0 / VREFL0 added				
		51 Table 5.8 DC Characteristics (6), Increment for IWDT operation added					
		52 Table 5.9 DC Characteristics (7) Permissible total consumption power		TN-RX*-A135A/E			
			added				
		53 Table 5.10 DC Characteristics (8), LDV1,2 added					
		54, 55 Table 5.15 Permissible Output Currents is divided into D version and G					
			version				
		93	Table 5.45 ROM (Flash Memory for Code Storage) Characteristics (2),	TN-RX*-A132A/E			
		Erasure time - 128-Kbyte added					
		94 Table 5.46 ROM (Flash Memory for Code Storage) Characteristics (3),		TN-RX*-A132A/E			
		95, 96 5.9 Usage Notes added					

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual.

- ³⁄₄ The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- ³⁄₄ The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.
- 3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- ³⁄₄ The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

³⁄4 The characteristics of Microprocessing unit or Microcontroller unit products in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.