

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	RX
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, SCI, SPI
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	50
Program Memory Size	64KB (64K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-WFLGA
Supplier Device Package	64-FLGA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f51103adlf-u0

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Overview

1.1 Outline of Specifications

Table 1.1 lists the specifications, and Table 1.2 gives a comparison of the functions of the products in different packages.

Table 1.1 is for products with the greatest number of functions, so the number of peripheral modules and channels will differ in accordance with the package type. For details, see Table 1.2, Comparison of Functions for Different Packages.

Classification	Module/Function	Description • Maximum operating frequency: 32 MHz • 32-bit RX CPU • Minimum instruction execution time: One instruction per one clock cycle • Address space: 4-Gbyte linear • Register set General purpose: Sixteen 32-bit registers Control: Eight 32-bit registers Accumulator: One 64-bit register • Basic instructions: 73 • DSP instructions: 9 • Addressing modes: 10 • Data arrangement Instructions: Little endian • On-chip 32-bit multiplier: 32-bit × 32-bit → 64-bit • On-chip divider: 32-bit → 32 bits • Barrel shifter: 32 bits						
CPU	CPU							
Memory	ROM	 Capacity: 8 K /16 K /32 K /64 K /96 K /128 Kbytes 32 MHz, no-wait memory access Programming/erasing method: Serial programming (asynchronous serial communication), self-programming 						
	RAM	 Capacity: 8 K /10 K /16 Kbytes 32 MHz, no-wait memory access 						
MCU operating mo	ode	Single-chip mode						
Clock	Clock generation circuit	 Main clock oscillator, sub-clock oscillator, low-speed on-chip oscillator, high-speed on-chip oscillator, and IWDT-dedicated on-chip oscillator Oscillation stop detection: Available Clock frequency accuracy measurement circuit (CAC) Independent settings for the system clock (ICLK), peripheral module clock (PCLK), and FlashIF clock (FCLK) The CPU and system sections such as other bus masters run in synchronization with the system clock (ICLK): 32 MHz (at max.) Peripheral modules run in synchronization with the PCLK: 32 MHz (at max.) The ICLK frequency can only be set to FCLK, PCLKB, or PCLKD multiplied by n (n: 1, 2, 4, 8, 16, 32, 64). 						
Resets		RES# pin reset, power-on reset, voltage monitoring reset, independent watchdog timer reset, and software reset						
Voltage detection	Voltage detection circuit (LVDAa)	When the voltage on VCC falls below the voltage detection level, an internal reset or internal interrupt is generated. Voltage detection circuit 1 is capable of selecting the detection voltage from 10 levels Voltage detection circuit 2 is capable of selecting the detection voltage from 4 levels						
Low power consumption	Low power consumption functions	 Module stop function Three low power consumption modes Sleep mode, deep sleep mode, and software standby mode 						
	Function for lower operating power consumption	 Operating power control modes High-speed operating mode, middle-speed operating mode, and low-speed operating mode 						
Interrupt	Interrupt controller (ICUb)	 Interrupt vectors: 65 External interrupts: 9 (NMI, IRQ0 to IRQ7 pins) Non-maskable interrupts: 4 (NMI pin, voltage monitoring 1 interrupt, voltage monitoring 2 interrupt, and IWDT interrupt) 16 levels specifiable for the order of priority 						
DMA	Data transfer controller (DTCa)	 Transfer modes: Normal transfer, repeat transfer, and block transfer Activation sources: Interrupts Chain transfer function 						

Table 1.1Outline of Specifications (1/3)

	Fill Fullctions (5/5)		
Classifications	Pin Name	I/O	Description
I/O ports	PC0 to PC7	I/O	8-bit input/output pins.
	PE0 to PE7	I/O	8-bit input/output pins.
	PH0 to PH3	I/O	4-bit input/output pins.
	PH7	Input	1-bit input pin.
	PJ6, PJ7	I/O	2-bit input/output pins.

Table 1.4Pin Functions (3/3)

Note 1. For external clock input.

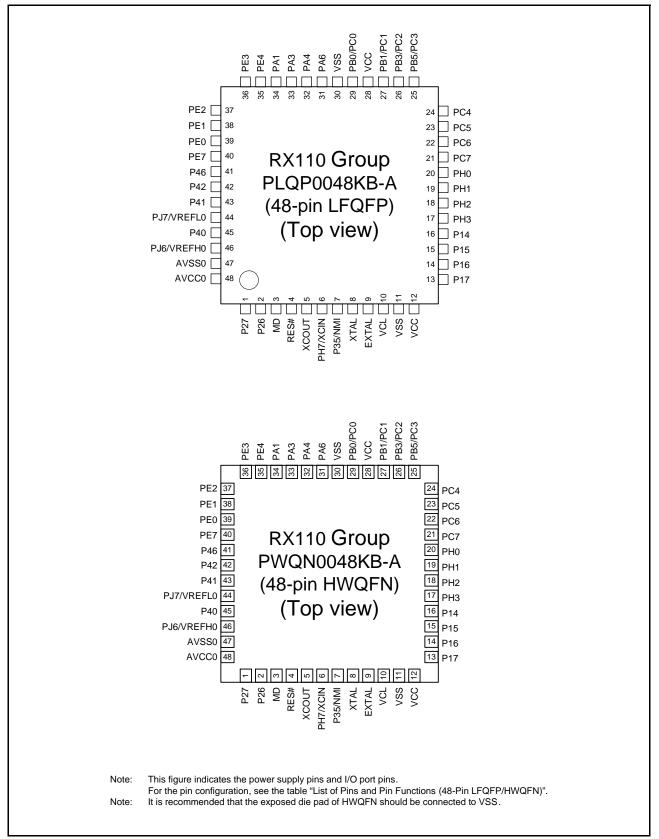
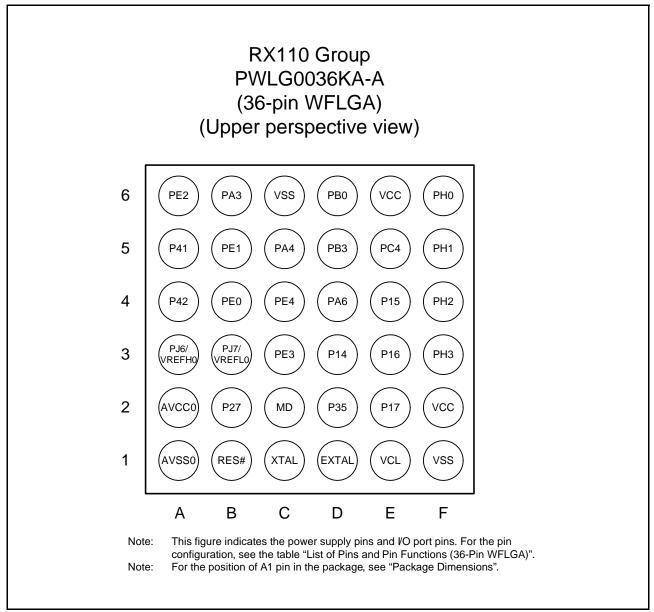



Figure 1.5Pin Assignments of the 48-Pin LFQFP/HWQFN

RENESAS

Pin No.	Power Supply, Clock, System Control	I/O Port	Timers (MTU, RTC)	Communication (SCle, SClf, RSPI, RIIC)	Others
45		PA0		SSLA1	CACREF
46		PE5	MTIOC2B		IRQ5/AN013
47		PE4	MTIOC1A	MOSIA	IRQ4/AN012
48		PE3	MTIOC0A/MTIOC1B	CTS12#/RTS12#/SS12#/RSPCKA	IRQ3/AN011
49		PE2		RXD12/RXDX12/SMISO12/SSCL12	IRQ7/AN010
50		PE1		TXD12/TXDX12/SIOX12/SMOSI12/ SSDA12	IRQ1/AN009
51		PE0	MTIOC2A	SCK12	IRQ0/AN008
52		PE7			IRQ7/AN015
53		PE6			IRQ6/AN014
54		P46* ¹			AN006
55		P44*1			AN004
56		P43* ¹			AN003
57		P42* ¹			AN002
58		P41* ¹			AN001
59	VREFL0	PJ7*1			
60		P40* ¹			AN000
61	VREFH0	PJ6* ¹			
62	AVSS0				
63	AVCC0				
64		P05			

 Table 1.5
 List of Pins and Pin Functions (64-Pin LFQFP/LQFP) (2/2)

Note 1. The power source of the I/O buffer for these pins is AVCCO.

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access States
0008 C0C3h	PORT3	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB
008 C0C5h	PORT5	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB
008 C0CAh	PORTA	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB
008 C0CBh	PORTB	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB
008 C0CCh	PORTC	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB
008 C0CEh	PORTE	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB
008 C0D1h	PORTH	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB
008 C11Fh	MPC	Write-Protect Register	PWPR	8	8	2 or 3 PCLKB
008 C120h	PORT	Port Switching Register B	PSRB	8	8	2 or 3 PCLKB
008 C121h	PORT	Port Switching Register A	PSRA	8	8	2 or 3 PCLKB
008 C14Ch	MPC	P14 Pin Function Control Register	P14PFS	8	8	2 or 3 PCLKB
008 C14Dh	MPC	P15 Pin Function Control Register	P15PFS	8	8	2 or 3 PCLKB
008 C14Eh	MPC	P16 Pin Function Control Register	P16PFS	8	8	2 or 3 PCLKB
008 C14Fh	MPC	P17 Pin Function Control Register	P17PFS	8	8	2 or 3 PCLKB
008 C156h	MPC	P26 Pin Function Control Register	P26PFS	8	8	2 or 3 PCLKB
008 C157h	MPC	P27 Pin Function Control Register	P27PFS	8	8	2 or 3 PCLKB
008 C158h	MPC	P30 Pin Function Control Register	P30PFS	8	8	2 or 3 PCLKB
008 C159h	MPC	P31 Pin Function Control Register	P31PFS	8	8	2 or 3 PCLKB
008 C15Ah	MPC	P32 Pin Function Control Register	P32PFS	8	8	2 or 3 PCLKB
008 C160h	MPC	P40 Pin Function Control Register	P40PFS	8	8	2 or 3 PCLKB
008 C160h	MPC	P41 Pin Function Control Register	P40PT3	8	8	2 or 3 PCLKB
		•	P41PFS	8	8	2 or 3 PCLKB
008 C162h	MPC	P42 Pin Function Control Register				
008 C163h	MPC	P43 Pin Function Control Register	P43PFS	8	8	2 or 3 PCLKB
0008 C164h	MPC	P44 Pin Function Control Register	P44PFS	8	8	2 or 3 PCLKB
008 C166h	MPC	P46 Pin Function Control Register	P46PFS	8	8	2 or 3 PCLKB
008 C190h	MPC	PA0 Pin Function Control Register	PA0PFS	8	8	2 or 3 PCLKB
008 C191h	MPC	PA1 Pin Function Control Register	PA1PFS	8	8	2 or 3 PCLKB
008 C193h	MPC	PA3 Pin Function Control Register	PA3PFS	8	8	2 or 3 PCLKB
008 C194h	MPC	PA4 Pin Function Control Register	PA4PFS	8	8	2 or 3 PCLKB
008 C196h	MPC	PA6 Pin Function Control Register	PA6PFS	8	8	2 or 3 PCLKB
008 C198h	MPC	PB0 Pin Function Control Register	PB0PFS	8	8	2 or 3 PCLKB
008 C199h	MPC	PB1 Pin Function Control Register	PB1PFS	8	8	2 or 3 PCLKB
008 C19Bh	MPC	PB3 Pin Function Control Register	PB3PFS	8	8	2 or 3 PCLKB
008 C19Dh	MPC	PB5 Pin Function Control Register	PB5PFS	8	8	2 or 3 PCLKB
0008 C19Eh	MPC	PB6 Pin Function Control Register	PB6PFS	8	8	2 or 3 PCLKB
008 C19Fh	MPC	PB7 Pin Function Control Register	PB7PFS	8	8	2 or 3 PCLKB
0008 C1A2h	MPC	PC2 Pin Function Control Register	PC2PFS	8	8	2 or 3 PCLKB
008 C1A3h	MPC	PC3 Pin Function Control Register	PC3PFS	8	8	2 or 3 PCLKB
008 C1A4h	MPC	PC4 Pin Function Control Register	PC4PFS	8	8	2 or 3 PCLKB
0008 C1A5h	MPC	PC5 Pin Function Control Register	PC5PFS	8	8	2 or 3 PCLKB
008 C1A6h	MPC	PC6 Pin Function Control Register	PC6PFS	8	8	2 or 3 PCLKB
008 C1A7h	MPC	PC7 Pin Function Control Register	PC7PFS	8	8	2 or 3 PCLKB
008 C1B0h	MPC	PE0 Pin Function Control Register	PE0PFS	8	8	2 or 3 PCLKB
008 C1B1h	MPC	PE1 Pin Function Control Register	PE1PFS	8	8	2 or 3 PCLKB
008 C1B2h	MPC	PE2 Pin Function Control Register	PE2PFS	8	8	2 or 3 PCLKB
008 C1B3h	MPC	PE3 Pin Function Control Register	PE3PFS	8	8	2 or 3 PCLKB
008 C1B4h	MPC	PE4 Pin Function Control Register	PE4PFS	8	8	2 or 3 PCLKB
008 C1B5h	MPC	PE5 Pin Function Control Register	PE5PFS	8	8	2 or 3 PCLKB
008 C1B6h	MPC	PE6 Pin Function Control Register	PE6PFS	8	8	2 or 3 PCLKB
008 C1B01	MPC		PE7PFS	8	8	2 or 3 PCLKB
000 010/11		PE7 Pin Function Control Register	PE7PFS	8	8	
008 C1C8h	MPC	PH0 Pin Function Control Register				2 or 3 PCLKB

Table 4.1 List of I/O Registers (Address Order) (11/13)

Table 4.1	List of I/O Registers (Address Order) (12/13)
-----------	---

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access States
0008 C1CAh	MPC	PH2 Pin Function Control Register	PH2PFS	8	8	2 or 3 PCLKB
0008 C1CBh	MPC	PH3 Pin Function Control Register	PH3PFS	8	8	2 or 3 PCLKB
0008 C1D6h	MPC	PJ6 Pin Function Control Register	PJ6PFS	8	8	2 or 3 PCLKB
0008 C1D7h	MPC	PJ7 Pin Function Control Register	PJ7PFS	8	8	2 or 3 PCLKB
008 C290h	SYSTEM	Reset Status Register 0	RSTSR0	8	8	4 or 5 PCLKB
0008 C291h	SYSTEM	Reset Status Register 1	RSTSR1	8	8	4 or 5 PCLKB
008 C293h	SYSTEM	Main Clock Oscillator Forced Oscillation Control Register	MOFCR	8	8	4 or 5 PCLKB
0008 C297h	SYSTEM	Voltage Monitoring Circuit Control Register	LVCMPCR	8	8	4 or 5 PCLKB
008 C298h	SYSTEM	Voltage Detection Level Select Register	LVDLVLR	8	8	4 or 5 PCLKB
008 C29Ah	SYSTEM	Voltage Monitoring 1 Circuit Control Register 0	LVD1CR0	8	8	4 or 5 PCLKB
008 C29Bh	SYSTEM	Voltage Monitoring 2 Circuit Control Register 0	LVD2CR0	8	8	4 or 5 PCLKB
008 C400h	RTC	64-Hz Counter	R64CNT	8	8	2 or 3 PCLKB
008 C402h	RTC	Second Counter	RSECCNT	8	8	2 or 3 PCLKB
008 C402h	RTC	Binary Counter 0	BCNT0	8	8	2 or 3 PCLKB
008 C404h	RTC	Minute Counter	RMINCNT	8	8	2 or 3 PCLKB
008 C404h	RTC	Binary Counter 1	BCNT1	8	8	2 or 3 PCLKB
008 C406h	RTC	Hour Counter	RHRCNT	8	8	2 or 3 PCLKB
008 C406h	RTC	Binary Counter 2	BCNT2	8	8	2 or 3 PCLKB
008 C408h	RTC	Day-Of-Week Counter	RWKCNT	8	8	2 or 3 PCLKB
008 C408h	RTC	Binary Counter 3	BCNT3	8	8	2 or 3 PCLKB
008 C40Ah	RTC	Date Counter	RDAYCNT	8	8	2 or 3 PCLKB
008 C40Ch	RTC	Month Counter	RMONCNT	8	8	2 or 3 PCLKB
008 C40Eh	RTC	Year Counter	RYRCNT	16	16	2 or 3 PCLKB
008 C410h	RTC	Second Alarm Register	RSECAR	8	8	2 or 3 PCLKB
008 C410h	RTC	Binary Counter 0 Alarm Register	BCNT0AR	8	8	2 or 3 PCLKB
008 C412h	RTC	Minute Alarm Register	RMINAR	8	8	2 or 3 PCLKB
008 C412h	RTC	Binary Counter 1 Alarm Register	BCNT1AR	8	8	2 or 3 PCLKB
008 C414h	RTC	Hour Alarm Register	RHRAR	8	8	2 or 3 PCLKB
008 C414h	RTC	Binary Counter 2 Alarm Register	BCNT2AR	8	8	2 or 3 PCLKB
008 C416h	RTC	Day-of-Week Alarm Register	RWKAR	8	8	2 or 3 PCLKB
008 C416h	RTC	Binary Counter 3 Alarm Register	BCNT3AR	8	8	2 or 3 PCLKB
008 C418h	RTC	Date Alarm Register	RDAYAR	8	8	2 or 3 PCLKB
008 C418h	RTC	Binary Counter 0 Alarm Enable Register	BCNT0AER	8	8	2 or 3 PCLKB
008 C41Ah	RTC	Month Alarm Register	RMONAR	8	8	2 or 3 PCLKB
008 C41Ah	RTC	Binary Counter 1 Alarm Enable Register	BCNT1AER	8	8	2 or 3 PCLKB
008 C41Ch	RTC	Year Alarm Register	RYRAR	16	16	2 or 3 PCLKB
008 C41Ch	RTC	Binary Counter 2 Alarm Enable Register	BCNT2AER	16	16	2 or 3 PCLKB
008 C41Eh	RTC	Year Alarm Enable Register	RYRAREN	8	8	2 or 3 PCLKB
008 C41Eh	RTC	Binary Counter 3 Alarm Enable Register	BCNT3AER	8	8	2 or 3 PCLKB
008 C422h	RTC	RTC Control Register 1	RCR1	8	8	2 or 3 PCLKB
008 C424h	RTC	RTC Control Register 2	RCR2	8	8	2 or 3 PCLKB
008 C424h	RTC	RTC Control Register 3	RCR3	8	8	2 or 3 PCLKB
008 C42011	RTC	•	RADJ	8	8	2 or 3 PCLKB
		Time Error Adjustment Register				
		Temperature Sensor Calibration Data Register	TSCDRL	8	8	1 or 2 PCLKB
07F COADh		Temperature Sensor Calibration Data Register	TSCDRH	8	8	1 or 2 PCLKB
07F C0B0h	FLASH	Flash Start-Up Setting Monitor Register	FSCMR	16	16	2 or 3 FCLK
07F C0B2h	FLASH	Flash Access Window Start Address Monitor	FAWSMR	16	16	2 or 3 FCLK
	FLASH	Flash Access Window End Address Monitor Register	FAWEMR	16	16	2 or 3 FCLK
07F C0B4h	EL A C' I		FISR	8	8	2 or 3 FCLK
07F C0B6h	FLASH	Flash Initial Setting Register				
07F C0B4h 07F C0B6h 07F C0B7h 07F C0B8h	FLASH FLASH FLASH	Flash Extra Area Control Register Flash Extra Area Control Register Flash Error Address Monitor Register L	FEXCR	8	8 16	2 or 3 FCLK 2 or 3 FCLK

5.2 **DC** Characteristics

Table 5.3DC Characteristics (1)Conditions: $2.7 \text{ V} \le \text{VCC} \le 3.6 \text{ V}, 2.7 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

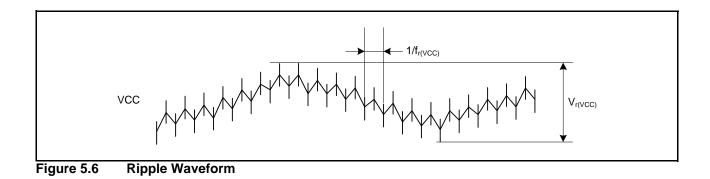
	Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Schmitt trigger input voltage	RIIC input pin (except for SMBus, 5 V tolerant)	V _{IH}	VCC × 0.7	—	5.8	V	
	Ports P16, P17, port PA6, port PB0 (5 V tolerant)		VCC × 0.8	—	5.8		
	Ports P03, P05, ports P14, P15, ports P26, P27, ports P30 to P32, P35, ports P54, P55, ports PA0, PA1, PA3, PA4, ports PB1, PB3, PB5 to PB7, ports PC0 to PC7, ports PE0 to PE7, ports PH0 to PH3, PH7, RES#		VCC × 0.8	_	VCC + 0.3		
	RIIC input pin (except for SMBus)	V _{IL}	-0.3	_	VCC × 0.3		
	Other than RIIC input pin		-0.3	_	VCC × 0.2		
	RIIC input pin (except for SMBus)	ΔV _T	VCC × 0.05	—	_		
	Other than RIIC input pin		VCC × 0.1	_	_		
Input voltage	MD	V _{IH}	VCC × 0.9	_	VCC + 0.3	V	
(except for Schmitt trigger input pins)	XTAL (external clock input)		VCC × 0.8	—	VCC + 0.3		
	Ports P40 to P44, P46, ports PJ6, PJ7		AVCC0 × 0.7	—	AVCC0 + 0.3		
	RIIC input pin (SMBus)		2.1	_	VCC + 0.3		
	MD	V _{IL}	-0.3	—	VCC × 0.1		
	XTAL (external clock input)	1	-0.3	—	VCC × 0.2		
	Ports P40 to P44, P46, ports PJ6, PJ7		-0.3	—	AVCC0 × 0.3		
	RIIC input pin (SMBus)]	-0.3	_	0.8		

Table 5.4DC Characteristics (2)

Conditions: 1.8 V \leq VCC < 2.7 V, 1.8 V \leq AVCC0 < 2.7 V, VSS = AVSS0 = 0 V, T_a = -40 to +105°C

	Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Schmitt trigger input voltage	Ports P16, P17, port PA6, port PB0 (5 V tolerant)	V _{IH}	VCC × 0.8		5.8	V	
	Ports P03, P05, ports P14, P15, ports P26, P27, ports P30 to P32, P35, ports P54, P55, ports PA0, PA1, PA3, PA4, ports PB1, PB3, PB5 to PB7, ports PC0 to PC7, ports PE0 to PE7, ports PH0 to PH3, PH7, RES#		VCC × 0.8		VCC + 0.3		
	All pins		-0.3		VCC × 0.2		
	All pins	ΔV_T	VCC × 0.01	_	—		
Input voltage	MD	V _{IH}	VCC × 0.9	_	VCC + 0.3	V	
(except for Schmitt trigger input pins)	XTAL (external clock input)		VCC × 0.8	_	VCC + 0.3		
	Ports P40 to P44, P46, ports PJ6, PJ7		AVCC0 × 0.7		AVCC0 + 0.3		
	MD	V _{IL}	-0.3	_	VCC × 0.1		
	XTAL (external clock input)		-0.3	_	VCC × 0.2		
	Ports P40 to P44, P46, ports PJ6, PJ7]	-0.3		AVCC0 × 0.3		

Table 5.5DC Characteristics (3)


Conditions: $1.8 \text{ V} \le \text{VCC} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{ T}_{a} = -40 \text{ to } +105^{\circ}\text{C}$

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions	
Input leakage current	RES#, MD, port P35, port PH7	I _{in}	_	—	1.0	μA	V _{in} = 0 V, VCC	
Three-state	Ports for 5 V tolerant	I _{TSI}		—	1.0	μA	V _{in} = 0 V, 5.8 V	
leakage current (off-state)	Pins other than above		_	—	1.0		V _{in} = 0 V, VCC	
Input capacitance	All input pins (except for port P16, port P35)	C _{in}	_	—	15	pF	V _{in} = 0 mV, Frequency: 1 MHz,	
	Port P16, port P35	1	_	—	30	1	T _a = 25°C	

Table 5.6DC Characteristics (4)

Conditions: 1.8 V ≤ VCC ≤ 3.6 V, 1.8 V ≤ AVCC0 ≤ 3.6 V, VSS = AVSS0 = 0 V, $T_a = -40$ to +105°C

ltem		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Input pull-up resistor	All ports (except for port P35, port PH7)	R _U	10	20	100	kΩ	$V_{in} = 0 V$

Table 5.14 DC Characteristics (12)

Conditions: $1.8 \text{ V} \le \text{VCC} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Permissible error of VCL pin external capacitance	C _{VCL}	1.4	4.7	7.0	μF	

Note: The recommended capacitance is 4.7 µF. Variations in connected capacitors should be within the above range.

Table 5.15 Permissible Output Currents (1)

Conditions: $1.8 \text{ V} \le \text{VCC} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V},$

 $T_a = -40$ to +85°C (D version)

	Item	Symbol	Max.	Unit
Permissible output low current	Ports P40 to P44, P46, ports PJ6, PJ7	I _{OL}	0.4	mA
(average value per pin)	Ports other than above		8.0	
Permissible output low current	Ports P40 to P44, P46, ports PJ6, PJ7		0.4	
(maximum value per pin)	Ports other than above		8.0	
Permissible output low current	Total of ports P40 to P44, P46, ports PJ6, PJ7	ΣI_{OL}	2.4	
	Total of ports P03, P05, ports P26, P27, ports P30, P31		30	
	Total of ports P14 to P17, port P32, ports P54, P55, ports PB0, PB1, PB3, PB5 to PB7, ports PC2 to PC7, ports PH0 to PH3		30	
	Total of ports PA0, PA1, PA3, PA4, PA6, ports PE0 to PE7		30	
	Total of all output pins		60	
Permissible output high current	Ports P40 to P44, P46, ports PJ6, PJ7	I _{OH}	-0.1	
(average value per pin)	Ports other than above		-4.0	
Permissible output high current	Ports P40 to P44, P46, ports PJ6, PJ7		-0.1	
(maximum value per pin)	Ports other than above		-4.0	
Permissible output high current	Total of ports P40 to P44, P46, ports PJ6, PJ7	Σl _{OH}	-0.6	
	Total of ports P03, P05, ports P26, P27, ports P30, P31		-10	
	Total of ports P14 to P17, port P32, ports P54, P55, ports PB0, PB1, PB3, PB5 to PB7, ports PC2 to PC7, ports PH0 to PH3		-15	
	Total of ports PA0, PA1, PA3, PA4, PA6, ports PE0 to PE7		-15	
	Total of all output pins		-40	

Note: Do not exceed the permissible total supply current.

Table 5.16 Permissible Output Currents (2)

Conditions: $1.8 \text{ V} \le \text{VCC} \le 3.6 \text{ V}$, $1.8 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}$, VSS = AVSS0 = 0 V, $T_a = -40 \text{ to } +105^{\circ}\text{C} \text{ (G version)}$

	Item	Symbol	Max.	Unit
Permissible output low current	Ports P40 to P44, P46, ports PJ6, PJ7	I _{OL}	0.4	mA
(average value per pin)	Ports other than above		8.0	
Permissible output low current	Ports P40 to P44, P46, ports PJ6, PJ7		0.4	
(maximum value per pin)	Ports other than above		8.0	
Permissible output low current	Total of ports P40 to P44, P46, ports PJ6, PJ7	Σl _{OL}	1.6	
	Total of ports P03, P05, ports P26, P27, ports P30, P31		20	
	Total of ports P14 to P17, port P32, ports P54, P55, ports PB0, PB1, PB3, PB5 to PB7, ports PC2 to PC7, ports PH0 to PH3		20	
	Total of ports PA0, PA1, PA3, PA4, PA6, ports PE0 to PE7		20	
	Total of all output pins		40	
Permissible output high current	Ports P40 to P44, P46, ports PJ6, PJ7	I _{ОН}	-0.1	
(average value per pin)	Ports other than above		-4.0	
Permissible output high current	Ports P40 to P44, P46, ports PJ6, PJ7		-0.1	
(maximum value per pin)	Ports other than above		-4.0	
Permissible output high current	Total of ports P40 to P44, P46, ports PJ6, PJ7	Σl _{OH}	-0.6	
	Total of ports P03, P05, ports P26, P27, ports P30, P31		-10	
	Total of ports P14 to P17, port P32, ports P54, P55, ports PB0, PB1, PB3, PB5 to PB7, ports PC2 to PC7, ports PH0 to PH3		-15	
	Total of ports PA0, PA1, PA3, PA4, PA6, ports PE0 to PE7		-15	1
	Total of all output pins		-40	1

Note: Do not exceed the permissible total supply current.

5.3.3 Timing of Recovery from Low Power Consumption Modes

Table 5.24 Timing of Recovery from Low Power Consumption Modes (1)

Conditions: $1.8 \text{ V} \le \text{VCC} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{ T}_{a} = -40 \text{ to } +105^{\circ}\text{C}$

Item			Symbol	Min.	Тур.	Max.	Unit	Test Conditions	
Recovery time from software standby mode*1	ware mode connected to operating*2		t _{SBYMC}	_	2	3	ms	Figure 5.28	
		External clock input to main clock oscillator	Main clock oscillator operating* ³	t _{SBYEX}		35	50	μs	
		Sub-clock oscillator operating HOCO clock oscillator operating*4 LOCO clock oscillator operating Inclusion		t _{SBYSC}	_	650	800	μs	
				t _{SBYHO}	_	40	55	μs	
				t _{SBYLO}	_	40	55	μs	

Note: When the division ratios of PCLKB, PCLKD, FCLK, and ICLK are all set to 1.

 Note 1. The recovery time varies depending on the state of each oscillator when the WAIT instruction is executed. The recovery time when multiple oscillators are operating varies depending on the operating state of the oscillators that are not selected as the system clock source. This applies when only the oscillator listed in each item is operating and the other oscillators are stopped.
 Note 2. When the frequency of the crystal is 20 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 04h. Note 3. When the frequency of the external clock is 20 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 00h.

Note 4. When the frequency of HOCO is 32 MHz. When the high-speed clock oscillator wait control register (HOCOWTCR) is set to 05h.

Table 5.25 Timing of Recovery from Low Power Consumption Modes (2)

Conditions: $1.8 \text{ V} \le \text{VCC} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Item			Symbol	Min.	Тур.	Max.	Unit	Test Conditions	
Recovery time from software standby mode*1	Middle-speed Crystal Main clock oscillator mode connected to main clock oscillator		t _{SBYMC}	_	2	3	ms	Figure 5.28	
		External clock input to main clock oscillator	Main clock oscillator operating* ³	t _{SBYEX}	—	3	4	μs	
		Sub-clock oscillato	or operating	t _{SBYSC}	—	600	750	μs	
		HOCO clock oscillator operating*4 LOCO clock oscillator operating		t _{SBYHO}	_	40	50	μs	
				t _{SBYLO}		4.8	7	μs	

Note: When the division ratios of PCLKB, PCLKD, FCLK, and ICLK are all set to 1.

Note 1. The recovery time varies depending on the state of each oscillator when the WAIT instruction is executed. The recovery time when multiple oscillators are operating varies depending on the operating state of the oscillators that are not selected as the system clock source. This applies when only the oscillator listed in each item is operating and the other oscillators are stopped.
 Note 2. When the frequency of the crystal is 12 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 04h.

Note 3. When the frequency of the external clock is 12 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 00h. Note 4. When the frequency of HOCO is 8 MHz.

When the high-speed clock oscillator wait control register (HOCOWTCR) is set to 05h.

Table 5.31 Timing of On-Chip Peripheral Modules (2)

Conditions: $1.8 \text{ V} \le \text{VCC} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}, \text{ C} = 30 \text{ pF}$

	Item		Symbol	Min.	Max.	Unit	Test Condit
RSPCK clock cycle	Master		t _{SPcyc}	2	4096	t _{Pcyc} *1	Figure 5.39
	Slave			8	4096	*1	
RSPCK clock high pulse width	Master		t _{SPCKWH}	(t _{SPcyc} – t _{SPCKr} – t _{SPCKf})/2 – 3		ns	
	Slave			(t _{SPcyc} – t _{SPCKr} – t _{SPCKf})/2	—		
RSPCK clock low pulse width	Master		t _{SPCKWL}	(t _{SPcyc} – t _{SPCKr} – t _{SPCKf})/2 – 3	—	ns	
	Slave			(t _{SPcyc} – t _{SPCKr} – t _{SPCKf})/2	—		
RSPCK clock	Output	2.7 V or above	t _{SPCKr,}	—	10	ns	1
rise/fall time		1.8 V or above	t _{SPCKf}	—	15		
	Input				1	μs	
Data input setup	Master	2.7 V or above	t _{SU}	10	—	ns	Figure 5.40
time		1.8 V or above		30	_		Figure 5.45
	Slave	1	1	25 – t _{Pcyc}	-		
Data input hold time	Master	RSPCK set to a division ratio other than PCLKB divided by 2	t _H	t _{Pcyc}	_	ns	
		RSPCK set to PCLKB divided by 2	t _{HF}	0	_		
	Slave	I	t _H	20 + 2 × t _{Pcyc}	_		
SSL setup time	Master		t _{LEAD}	-30 + N*2 × t _{SPcyc}	—	ns	1
	Slave			2	_	t _{Pcyc}	
SSL hold time	Master		t _{LAG}	-30 + N* ³ × t _{SPcyc}	_	ns	1
	Slave			2	_	t _{Pcyc}	
Data output delay	Master	2.7 V or above	t _{OD}	_	14	ns	1
time		1.8 V or above	-		30		
	Slave	2.7 V or above	-		3 × t _{Pcyc} + 65		
		1.8 V or above	-		3 × t _{Pcyc} +105		
Data output hold	Master	2.7 V or above	t _{OH}	0		ns	1
time		1.8 V or above		-20	_		
	Slave	1	1	0	—		
Successive	Master		t _{TD}	t _{SPcyc} + 2 × t _{Pcyc}	$8 \times t_{SPcyc} + 2 \times t_{Pcyc}$	ns	1
transmission delay time	Slave			4 × t _{Pcyc}	_		
MOSI and MISO	Output	2.7 V or above	t _{Dr,} t _{Df}	—	10	ns	
rise/fall time		1.8 V or above			20		
	Input			—	1	μs	
SSL rise/fall time	Output		t _{SSLr,}	—	20	ns	1
	Input		t _{SSLf}	—	1	μs	1
Slave access time		2.7 V or above	t _{SA}	—	6	t _{Pcyc}	Figure 5.44
		1.8 V or above	1	—	7	-	Figure 5.45
Slave output release	e time	2.7 V or above	t _{REL}	—	5	t _{Pcyc}	1
l		1.8 V or above	1		6		

 Note 1.
 t_{Pcyc}: PCLK cycle

 Note 2.
 N: An integer from 1 to 8 that can be set by the RSPI clock delay register (SPCKD)

 Note 3.
 N: An integer from 1 to 8 that can be set by the RSPI slave select negation delay register (SSLND)

5.4 A/D Conversion Characteristics

Table 5.35 A/D Conversion Characteristics (1)

Conditions: $2.7 \text{ V} \le \text{VCC} \le 3.6 \text{ V}, 2.7 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}, 2.7 \text{ V} \le \text{VREFH0} \le \text{AVCC0}, \text{VSS} = \text{AVSS0} = \text{VREFL0} = 0 \text{ V}, \text{T}_a = -40 \text{ to } +105^{\circ}\text{C}$

	ltem	Min.	Тур.	Max.	Unit	Test Conditions
Frequency Resolution		4		32	MHz Bit	
		—	—	12		
Conversion time ^{*1} (Operation at PCLKD = 32 MHz)	Permissible signal source impedance (Max.) = 0.3 k Ω	1.031 (0.313)* ²	_	—	μs	High-precision channel ADCSR.ADHSC bit = 1 ADSSTRn.SST[7:0] bits = 09h
		1.375 (0.641)* ²	_	—		Normal-precision channel ADCSR.ADHSC bit = 1 ADSSTRn.SST[7:0] bits = 14h
Analog input effective range		0	_	VREFH0	V	
Offset error		_	±0.5	±4.5	LSB	High-precision channel PJ6PFS.ASEL bit = 1 PJ7PFS.ASEL bit = 1
				±6.0	LSB	Other than above
Full-scale error		_	±0.75	±4.5	LSB	High-precision channel PJ6PFS.ASEL bit = 1 PJ7PFS.ASEL bit = 1
				±6.0	LSB	Other than above
Quantization error		—	±0.5	—	LSB	
Absolute accuracy		—	±1.25	±5.0	LSB	High-precision channel PJ6PFS.ASEL bit = 1 PJ7PFS.ASEL bit = 1
				±8.0	LSB	Other than above
DNL differential nonlinearity error		—	±1.0	—	LSB	
INL integral nonlinea	rity error	_	±1.0	±3.0	LSB	

Note: The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. As the test conditions, the number of sampling states is indicated.

Note 2. The value in parentheses indicates the sampling time.

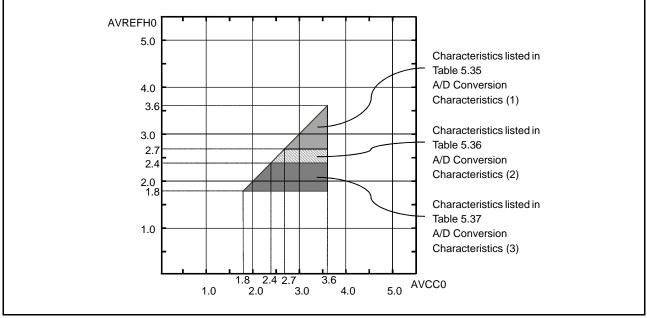


Figure 5.47 AVCC0 to AVREFH Voltage Range

Classification	Channel	Conditions	Remarks
High-precision channel	AN000 to AN004, AN006	AVCC0 = 1.8 to 3.6 V	Pins AN000 to AN004 and AN006
Normal-precision channel	AN008 to AN015		cannot be used as digital outputs when the A/D converter is in use.
Internal reference voltage input channel	Internal reference voltage	AVCC0 = 2.0 to 3.6 V	
Temperature sensor input channel	Temperature sensor output	AVCC0 = 2.0 to 3.6 V	

Table 5.38 A/D Converter Channel Classification

Table 5.39 A/D Internal Reference Voltage Characteristics

Conditions: 2.0 V ≤ VCC ≤ 3.6 V, 2.0 V ≤ AVCC0 ≤ 3.6 V^{*1}, VSS = AVSS0 = VREFL0 = 0 V, T_a = -40 to +105°C

ltem	Min.	Тур.	Max.	Unit	Test Conditions
Internal reference voltage input channel* ²	1.36	1.43	1.50	V	

Note 1. The internal reference voltage cannot be selected for input channels when AVCC0 < 2.0 V.

Note 2. The A/D internal reference voltage indicates the voltage when the internal reference voltage is input to the A/D converter.

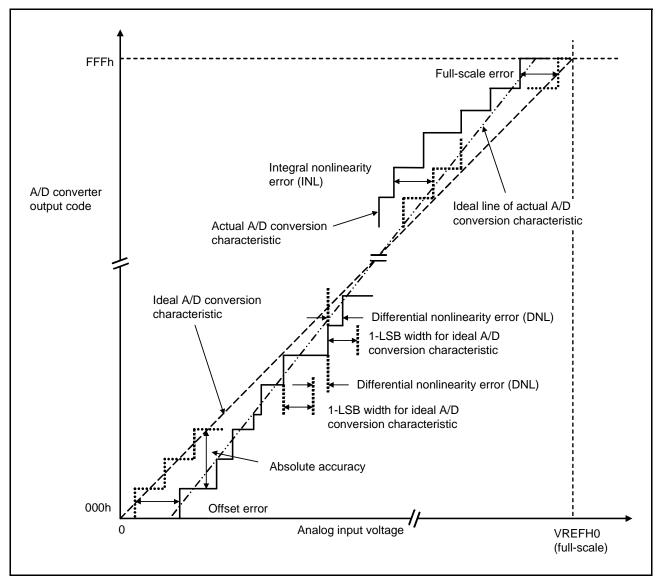


Figure 5.48 Illustration of A/D Converter Characteristic Terms

Absolute accuracy

Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics, and the actual A/D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of analog input voltage (1-LSB width), that can meet the expectation of outputting an equal code based on the theoretical A/D conversion characteristics, is used as an analog input voltage. For example, if 12-bit resolution is used and if reference voltage (VREFH0 = 3.072 V), then 1-LSB width becomes 0.75 mV, and 0 mV, 0.75 mV, 1.5 mV, ... are used as analog input voltages.

If analog input voltage is 6 mV, absolute accuracy = ± 5 LSB means that the actual A/D conversion result is in the range of 003h to 00Dh though an output code, 008h, can be expected from the theoretical A/D conversion characteristics.

Integral nonlinearity error (INL)

Integral nonlinearity error is the maximum deviation between the ideal line when the measured offset and full-scale errors are zeroed, and the actual output code.

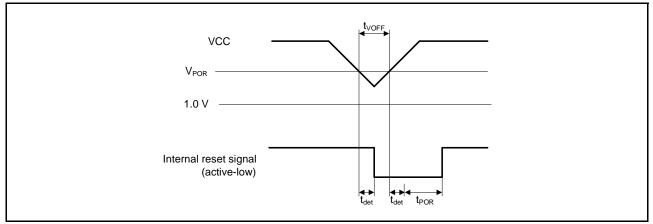


Figure 5.49 Voltage Detection Reset Timing

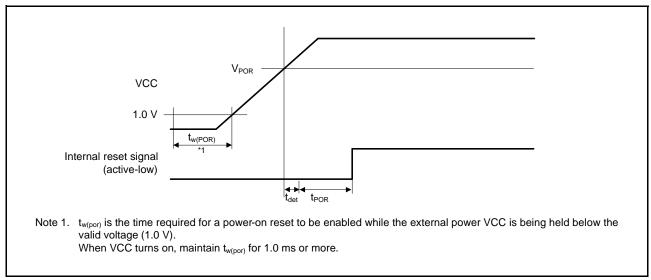


Figure 5.50 Power-On Reset Timing

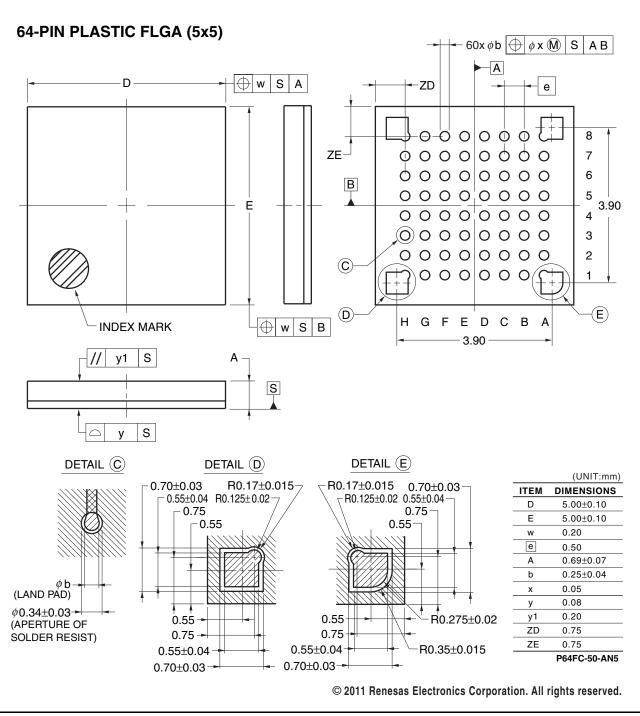


Figure C 64-Pin WFLGA (PWLG0064KA-A)

RENESAS

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.