

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	RX
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, SCI, SPI
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 7x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	36-WFLGA
Supplier Device Package	36-WFLGA (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f5110jadlm-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Classification	Module/Function	Description
I/O ports	General I/O ports	64-pin /48-pin /40-pin /36-pin • I/O: 50/34/28/24 • Input: 2/2/1/1 • Pull-up resistors: 42/28/23/20 • Open-drain outputs: 38/28/23/20 • 5-V tolerance: 4/4/4/4
Multi-function pin o	controller (MPC)	Capable of selecting the input/output function from multiple pins
Timers	Multi-function timer pulse unit 2 (MTU2b)	 (16 bits x 4 channels) x 1 unit Time bases for the four 16-bit timer channels can be provided via up to 8 pulse-input/output lines and three pulse-input lines Select from among eight or seven counter-input clock signals for each channel (PCLK/1, PCLK/4, PCLK/16, PCLK/64, PCLK/256, PCLK/1024, MTCLKA, MTCLKB, MTCLKC, MTCLKD) other than channel 5, for which only four signals are available. Input capture function 13 output compare/input capture registers Pulse output mode Phase counting mode Generation of triggers for A/D converter conversion
	Compare match timer (CMT) Independent watchdog timer (WDTa)	 (16 bits × 2 channels) × 1 unit Select from among four clock signals (PCLK/8, PCLK/32, PCLK/128, PCLK/512) 14 bits × 1 channel Count clock: Dedicated law speed on chip oscillator for the IWDT
	Realtime clock (RTCA)	Count clock: Dedicated low-speed on-chip oscillator for the twD1 Frequency divided by 1, 16, 32, 64, 128, or 256 Clock source: Sub-clock Calendar count mode or binary count mode selectable Interrupt: Alema interrupt periodic interrupt and corrections interrupt
Communication functions	Serial communications interfaces (SCIe, SCIf)	 Interrupt: Atalminiterrupt, periodic interrupt, and carry interrupt 3 channels (channel 1, 5: SCle, channel 12: SClf) Serial communications modes: Asynchronous, clock synchronous, and smart card interface On-chip baud rate generator allows selection of the desired bit rate Choice of LSB first or MSB first transfer Average transfer rate clock can be input from MTU2 timers Simple I²C Simple SPI Master/slave mode supported (SClf only) Start frame and information frame are included (SClf only) Start-bit detection in asynchronous mode: Low level or falling edge is selectable (SCle/SClf)
	I ² C bus interface (RIIC)	 1 channel Communications formats: I²C bus format/SMBus format Master mode or slave mode selectable Supports fast mode
	Serial peripheral interface (RSPI)	 1 channel Transfer facility Using the MOSI (master out, slave in), MISO (master in, slave out), SSL (slave select), and RSPI clock (RSPCK) signals enables serial transfer through SPI operation (four lines) or clock- synchronous operation (three lines) Capable of handling serial transfer as a master or slave Data formats Choice of LSB first or MSB first transfer The number of bits in each transfer can be changed to 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, or 32 bits. 128-bit buffers for transmission and reception Up to four frames can be transmitted or received in a single transfer operation (with each frame having up to 32 bits) Double buffers for both transmission and reception
12-bit A/D convert	er (S12ADb)	 1 unit (1 unit x 14 channels) 12-bit resolution Minimum conversion time: 1.0 µs per channel when the ADCLK is operating at 32 MHz Operating modes Scan mode (single scan mode, continuous scan mode, and group scan mode) Double trigger mode (duplication of A/D conversion data) A/D conversion start conditions A software trigger, a trigger from a timer (MTU), or an external trigger signal
Temperature sense	or (TEMPSA)	1 channelThe voltage of the temperature is converted into a digital value by the 12-bit A/D converter.
CRC calculator (C	RC)	 CRC code generation for arbitrary amounts of data in 8-bit units Select any of three generating polynomials: X⁸ + X² + X + 1, X¹⁶ + X¹⁵ + X² + 1, or X¹⁶ + X¹² + X⁵ + 1 Generation of CRC codes for use with LSB first or MSB first communications is selectable.

Table 1.1Outline of Specifications (2/3)

Figure 1.5Pin Assignments of the 48-Pin LFQFP/HWQFN

RENESAS

Pin	Power Supply, Clock,			Communication	
No.	System Control	I/O Port	Timers (MTU, RTC)	(SCIe, SCIf, RSPI, RIIC)	Others
F5		P54			
F6		PC7	MTCLKB	TXD1/SMOSI1/SSDA1/MISOA	CACREF
F7		PC4	MTCLKC	SCK5/SSLA0	IRQ2/CLKOUT
F8		PB5	MTIOC1B/MTIOC2A		
G1	VCL				
G2		P17	MTIOC0C	SCK1/MISOA/SDA0/RXD12/RXDX12/ SMISO12/SSCL12	IRQ7
G3		P16	RTCOUT	TXD1/SMOSI1/SSDA1/SCL0/MOSIA	IRQ6/ADTRG0#
G4		P15	MTIOC0B/MTCLKB	RXD1/SMISO1/SSCL1/RSPCKA	IRQ5/CLKOUT
G5		PC6	MTCLKA	RXD1/SMISO1/SSCL1/MOSIA	
G6		PC5	MTCLKD	SCK1/RSPCKA	
G7		PC3		TXD5/SMOSI5/SSDA5	
G8		PB6/PC0			
H1	VSS				
H2	VCC				
H3		PH3	MTIOC1A		
H4		PH2			IRQ1
H5		PH1			IRQ0
H6		PH0	MTIOC1B		CACREF
H7		PC2		RXD5/SMISO5/SSCL5/SSLA3	
H8		PB7/PC1			

 Table 1.6
 List of Pins and Pin Functions (64-Pin WFLGA) (2/2)

Note 1. The power source of the I/O buffer for these pins is AVCC0.

Pin No.	Power Supply, Clock, System Control	I/O Port	Timers (MTU, RTC)	Communication (SCle, SClf, RSPI, RIIC)	Others
1		P27	MTIOC2B	SCK1/SCK12	IRQ3/CMPA2/ CACREF/ADTRG0#
2		P26	MTIOC2A	TXD1/SMOSI1/SSDA1	
3	MD				FINED
4	RES#				
5		P35			NMI
6	XTAL				
7	EXTAL				
8	VCL				
9	VSS				
10	VCC				
11		P32	MTIOC0C		IRQ2
12		P17	MTIOCOC	SCK1/MISOA/SDA0/RXD12/RXDX12/ SMISO12/SSCL12	IRQ7
13		P16		TXD1/SMOSI1/SSDA1/SCL0/MOSIA	IRQ6/ADTRG0#
14		P15	MTIOC0B/MTCLKB	RXD1/SMISO1/SSCL1/RSPCKA	IRQ5/CLKOUT
15		P14	MTIOC0A/MTCLKA	CTS1#/RTS1#/SS1#/SSLA0/TXD12/ TXDX12/SIOX12/SMOSI12/SSDA12	IRQ4
16		PH3	MTIOC1A		
17		PH2			IRQ1
18		PH1			IRQ0
19		PH0	MTIOC1B		CACREF
20		PC4	MTCLKC	SCK5/SSLA0	IRQ2/CLKOUT
21		PB3	MTIOC0A		
22	VCC				
23		PB0	MTIOC0C/MTIC5W	SCL0/RSPCKA	IRQ2/ADTRG0#
24	VSS				
25		PA6	MTIOC2A/MTIC5V/MTCLKB	CTS5#/RTS5#/SS5#/SDA0/MOSIA	IRQ3
26		PA4	MTIOC2B/MTIC5U/MTCLKA	TXD5/SMOSI5/SSDA5/SSLA0	IRQ5
27		PA3	MTIOC0D/MTIOC1B/ MTCLKD	RXD5/SMISO5/SSCL5/MISOA	IRQ6
28		PA1	MTIOC0B/MTCLKC	SCK5/SSLA2	
29		PE4	MTIOC1A	MOSIA	IRQ4/AN012
30		PE3	MTIOC0A/MTIOC1B	CTS12#/RTS12#/SS12#/RSPCKA	IRQ3/AN011
31		PE2		RXD12/RXDX12/SMISO12/SSCL12	IRQ7/AN010
32		PE1		TXD12/TXDX12/SIOX12/SMOSI12/ SSDA12	IRQ1/AN009
33		PE0	MTIOC2A	SCK12	IRQ0/AN008
34		P46* ¹			AN006
35		P42*1			AN002
36		P41 ^{*1}			AN001
37	VREFL0	PJ7*1			
38	VREFH0	PJ6* ¹			
39	AVSS0				
40	AVCC0				

Table 1.8	List of Pins and Pin Function	s (40-Pin HWQFN)
-----------	-------------------------------	------------------

Note 1. The power source of the I/O buffer for these pins is AVCCO.

Pin No.	Power Supply, Clock, System Control	I/O Port	Timers (MTU, RTC)	Communication (SCle, SClf, RSPI, RIIC)	Others
A1	AVSS0				
A2	AVCC0				
A3	VREFH0	PJ6* ¹			
A4		P42* ¹			AN002
A5		P41* ¹			AN001
A6		PE2		RXD12/RXDX12/SMISO12/SSCL12	IRQ7/AN010
B1	RES#				
B2		P27	MTIOC2B	SCK1/SCK12	IRQ3/CMPA2/ CACREF/ADTRG0#
B3	VREFL0	PJ7* ¹			
B4		PE0	MTIOC2A	SCK12	IRQ0/AN008
B5		PE1		TXD12/TXDX12/SIOX12/SMOSI12/ SSDA12	IRQ1/AN009
B6		PA3	MTIOC0D/MTCLKD/ MTIOC1B	RXD5/SMISO5/SSCL5/MISOA	IRQ6
C1	XTAL				
C2	MD				FINED
C3		PE3	MTIOC0A/MTIOC1B	CTS12#/RTS12#/SS12#/RSPCKA	IRQ3/AN011
C4		PE4	MTIOC1A	MOSIA	IRQ4/AN012
C5		PA4	MTIOC2B/MTIC5U/MTCLKA	TXD5/SMOSI5/SSDA5/SSLA0	IRQ5
C6	VSS				
D1	EXTAL				
D2		P35			NMI
D3		P14	MTIOC0A/MTCLKA	CTS1#/RTS1#/SS1#/SSLA0/TXD12/ TXDX12/SIOX12/SMOSI12/SSDA12	IRQ4
D4		PA6	MTIC5V/MTCLKB/MTIOC2A	CTS5#/RTS5#/SS5#/SDA0/MOSIA	IRQ3
D5		PB3	MTIOC0A		
D6		PB0	MTIOC0C/MTIC5W	SCL0/RSPCKA	IRQ2/ADTRG0#
E1	VCL				
E2		P17	MTIOCOC	SCK1/MISOA/SDA0/RXD12/RXDX12/ SMISO12/SSCL12	IRQ7
E3		P16		TXD1/SMOSI1/SSDA1/SCL0/MOSIA	IRQ6/ADTRG0#
E4		P15	MTIOC0B/MTCLKB	RXD1/SMISO1/SSCL1/RSPCKA	IRQ5/CLKOUT
E5		PC4	MTCLKC	SCK5/SSLA0	IRQ2/CLKOUT
E6	VCC				
F1	VSS				
F2	VCC				
F3		PH3	MTIOC1A		
F4		PH2			IRQ1
F5		PH1			IRQ0
F6		PH0	MTIOC1B		CACREF

Table 1.9 List of Pins and Pin Functions (36-Pin WFLGA)

Note 1. The power source of the I/O buffer for these pins is AVCC0.

4. I/O Registers

This section provides information on the on-chip I/O register addresses and bit configuration. The information is given as shown below. Notes on writing to I/O registers are also given below.

(1) I/O register addresses (address order)

- Registers are listed from the lower allocation addresses.
- Registers are classified according to module symbols.
- Numbers of cycles for access indicate numbers of cycles of the given base clock.
- Among the internal I/O register area, addresses not listed in the list of registers are reserved. Reserved addresses must not be accessed. Do not access these addresses; otherwise, the operation when accessing these bits and subsequent operations cannot be guaranteed.

(2) Notes on writing to I/O registers

While writing to an I/O register, the CPU starts executing subsequent instructions before the I/O register write access is completed. This may cause the subsequent instructions to be executed before the write value is reflected in the operation. The examples below show how subsequent instructions must be executed after a write access to an I/O register is completed.

[Examples of cases requiring special care]

- The subsequent instruction must be executed while an interrupt request is disabled with the IENj bit in IERn of the ICU (interrupt request enable bit) set to 0.
- A WAIT instruction is executed immediately after the preprocessing for causing a transition to the low power consumption state.

In the above cases, after writing to an I/O register, wait until the write operation is completed using the following procedure and then execute the subsequent instruction.

- (a) Write to an I/O register.
- (b) Read the value in the I/O register and write it to a general register.
- (c) Execute the operation using the value read.
- (d) Execute the subsequent instruction.

Example of instructions

• Byte-size I/O registers

MOV.L #SFR_ADDR, R1 MOV.B #SFR_DATA, [R1] CMP [R1].UB, R1 ;; Next process

• Word-size I/O registers

MOV.L #SFR_ADDR, R1 MOV.W #SFR_DATA, [R1] CMP [R1].W, R1 ;; Next process

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access States
0008 70DBh	ICU	Interrupt Request Register 219	IR219	8	8	2 ICLK
0008 70DCh	ICU	Interrupt Request Register 220	IR220	8	8	2 ICLK
0008 70DDh	ICU	Interrupt Request Register 221	IR221	8	8	2 ICLK
0008 70DEh	ICU	Interrupt Request Register 222	IR222	8	8	2 ICLK
0008 70DFh	ICU	Interrupt Request Register 223	IR223	8	8	2 ICLK
0008 70E0h	ICU	Interrupt Request Register 224	IR224	8	8	2 ICLK
0008 70E1h	ICU	Interrupt Request Register 225	IR225	8	8	2 ICLK
0008 70EEh	ICU	Interrupt Request Register 238	IR238	8	8	2 ICLK
0008 70EFh	ICU	Interrupt Request Register 239	IR239	8	8	2 ICLK
0008 70F0h	ICU	Interrupt Request Register 240	IR240	8	8	2 ICLK
0008 70F1h	ICU	Interrupt Request Register 241	IR241	8	8	2 ICLK
0008 70F2h	ICU	Interrupt Request Register 242	IR242	8	8	2 ICLK
0008 70F3h	ICU	Interrupt Request Register 243	IR243	8	8	2 ICLK
0008 70F4h	ICU	Interrupt Request Register 244	IR244	8	8	2 ICLK
0008 70F5h	ICU	Interrupt Request Register 245	IR245	8	8	2 ICLK
0008 70F6h	ICU	Interrupt Request Register 246	IR246	8	8	2 ICLK
0008 70F7h	ICU	Interrupt Request Register 247	IR247	8	8	2 ICLK
0008 70F8h	ICU	Interrupt Reguest Register 248	IR248	8	8	2 ICLK
0008 70F9h	ICU	Interrupt Reguest Register 249	IR249	8	8	2 ICLK
0008 711Bh	ICU	DTC Activation Enable Register 027	DTCER027	8	8	2 ICLK
0008 711Ch	ICU	DTC Activation Enable Register 028	DTCER028	8	8	2 ICLK
0008 711Dh	ICU	DTC Activation Enable Register 029	DTCER029	8	8	2 ICLK
0008 712Dh	ICU	DTC Activation Enable Register 045	DTCER045	8	8	2 ICLK
0008 712Eh	ICU	DTC Activation Enable Register 046	DTCER046	8	8	2 ICLK
0008 7140h	ICU	DTC Activation Enable Register 064	DTCER064	8	8	2 ICLK
0008 7141h	ICU	DTC Activation Enable Register 065	DTCER065	8	8	2 ICLK
0008 7142h	ICU	DTC Activation Enable Register 066	DTCER066	8	8	2 ICI K
0008 7143h		DTC Activation Enable Register 067	DTCER067	8	8	2 ICL K
0008 7144h		DTC Activation Enable Register 068	DTCER068	8	8	2 ICL K
0008 7145h		DTC Activation Enable Register 069	DTCER069	8	8	2 ICL K
0008 7146h		DTC Activation Enable Register 070	DTCER070	8	8	2 ICL K
0008 7147h		DTC Activation Enable Register 071	DTCER071	8	8	2 ICL K
0008 71665		DTC Activation Enable Register 102	DTCEP102	0	8	2 IOLK
0008 7167h		DTC Activation Enable Register 102	DTCER102	0	9	2 ICLK
0000 710711		DTC Activation Enable Register 103	DICERIUS	0	0	2 ICLK
0000 71721		DTC Activation Enable Register 114	DICERII4	0	0	2 ICLK
0008 71730		DTC Activation Enable Register 115	DICERIIS	0	0	2 ICLK
0008 71740		DTC Activation Enable Register 117	DICERIIO	0	0	2 ICLK
0000 71750		DTC Activation Enable Register 177	DICERIII	0	0	2 ICLK
0008 7179h		DTC Activation Enable Register 121	DICER121	8	8	2 ICLK
0008 /1/Ah	ICU	DIC Activation Enable Register 122	DICER122	8	8	2 ICLK
0008 717Dh	ICU	DIC Activation Enable Register 125	DICER125	8	8	2 ICLK
0008 /1/Eh	ICU	DIC Activation Enable Register 126	DICER126	8	8	2 ICLK
0008 718Bh	ICU	DTC Activation Enable Register 139	DTCER139	8	8	2 ICLK
0008 718Ch	ICU	DTC Activation Enable Register 140	DTCER140	8	8	2 ICLK
0008 718Dh	ICU	DTC Activation Enable Register 141	DTCER141	8	8	2 ICLK
0008 71DBh	ICU	DTC Activation Enable Register 219	DTCER219	8	8	2 ICLK
0008 71DCh	ICU	DIC Activation Enable Register 220	DTCER220	8	8	2 ICLK
0008 71DFh	ICU	DTC Activation Enable Register 223	DTCER223	8	8	2 ICLK
0008 71E0h	ICU	DTC Activation Enable Register 224	DTCER224	8	8	2 ICLK
0008 71EFh	ICU	DTC Activation Enable Register 239	DTCER239	8	8	2 ICLK
0008 71F0h	ICU	DTC Activation Enable Register 240	DTCER240	8	8	2 ICLK
0008 71F7h	ICU	DTC Activation Enable Register 247	DTCER247	8	8	2 ICLK

Table 4.1 List of I/O Registers (Address Order) (3/13)

Table 5.7 DC Characteristics (5) (2/2)

Conditions: 1.8 V \leq VCC \leq 3.6 V, 1.8 V \leq AVCC0 \leq 3.6 V, VSS = AVSS0 = 0 V, T_a = -40 to +105°C

		Symbol	Typ *4	Max	Unit	Test Conditions			
Supply	Low-speed	Normal	No peripheral operation*7	ICLK = 32.768 kHz	I _{CC}	3.9	_	μΑ	
current*1 operating mode	operating mode	All peripheral operation: Normal* ^{8, *9}	ICLK = 32.768 kHz		10.4	_			
			All peripheral operation: Max.* ^{8, *9}	ICLK = 32.768 kHz		_	36		
		Sleep mode	No peripheral operation*7	ICLK = 32.768 kHz		2.1	_		
		All peripheral operation: Normal* ⁸	ICLK = 32.768 kHz		5.6				
		Deep sleep	No peripheral operation*7	ICLK = 32.768 kHz		1.7	_		
		mode	All peripheral operation: Normal* ⁸	ICLK = 32.768 kHz		3.9	—		

Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up MOSs are in the off state.

Note 2. Clock supply to the peripheral functions is stopped. The clock source is HOCO. FCLK and PCLK are set to divided by 64.

Note 3. Clocks are supplied to the peripheral functions. The clock source is HOCO. FCLK and PCLK are set to the same frequency as ICLK.

Note 4. Values when VCC = 3.3 V.

Note 5. Clock supply to the peripheral functions is stopped. The clock source is the main oscillation circuit when ICLK = 12 MHz and HOCO when ICLK = 8 or 1 MHz. FCLK and PCLK are set to divided by 64.

Note 6. Clocks are supplied to the peripheral functions. The clock source is the main oscillation circuit when ICLK = 12 MHz and HOCO when ICLK = 8 or 1 MHz. FCLK and PCLK are set to the same frequency as ICLK.

Note 7. Clock supply to the peripheral functions is stopped. The clock source is the sub-clock oscillator. FCLK and PCLK are set to divided by 64.

Note 8. Clocks are supplied to the peripheral functions. The clock source is the sub-clock oscillator. FCLK and PCLK are set to the same frequency as ICLK.

Note 9. Values when the MSTPCRA.MSTPA17 bit (12-bit A/D converter module stop bit) is set to "transition to the module stop state is made".

Figure 5.1 Voltage Dependency in High-Speed Operating Mode (Reference Data)

Table 5.8DC Characteristics (6)

Conditions: $1.8 \text{ V} \le \text{VCC} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{ T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Item		Symbol	Typ.* ³	Max.	Unit	Test Conditions	
Supply	Software standby	$T_a = 25^{\circ}C$	I _{CC}	0.35	0.53	μA	
current*1	mode*2	$T_a = 55^{\circ}C$		0.54	1.17		
		$T_a = 85^{\circ}C$		1.38	5.2		
		$T_a = 105^{\circ}C$		2.8	11.4		
	Increment for RTC or	peration*4		0.31	_		RCR3.RTCDV[2:0] = 010b
				1.09			RCR3.RTCDV[2:0] = 100b
	Increment for IWDT	operation		0.37	_		

Note 1. Supply current values are with all output pins unloaded and all input pull-up MOSs in the off state.

Note 2. The IWDT and LVD are stopped.

Note 3. VCC = 3.3 V.

Note 4. Includes the oscillation circuit.

Figure 5.4 Voltage Dependency in Software Standby Mode (Reference Data)

Figure 5.23 HOCO Clock Oscillation Start Timing (Oscillation is Started by Setting HOCOCR.HCSTP Bit)

Figure 5.24 Sub-Clock Oscillation Start Timing

5.3.3 Timing of Recovery from Low Power Consumption Modes

Table 5.24 Timing of Recovery from Low Power Consumption Modes (1)

Conditions: $1.8 \text{ V} \le \text{VCC} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{ T}_{a} = -40 \text{ to } +105^{\circ}\text{C}$

Item					Min.	Тур.	Max.	Unit	Test Conditions
Recovery time from software standby mode*1	High-speed mode	Crystal connected to main clock oscillator	Main clock oscillator operating* ²	t _{SBYMC}	_	2	3	ms	Figure 5.28
		External clock input to main clock oscillator	Main clock oscillator operating* ³	t _{SBYEX}	_	35	50	μs	
		Sub-clock oscillato	or operating	t _{SBYSC}	_	650	800	μs	
		HOCO clock oscilla	ator operating*4	t _{SBYHO}	—	40	55	μs	
		LOCO clock oscilla	ator operating	t _{SBYLO}	_	40	55	μs	

Note: When the division ratios of PCLKB, PCLKD, FCLK, and ICLK are all set to 1.

 Note 1. The recovery time varies depending on the state of each oscillator when the WAIT instruction is executed. The recovery time when multiple oscillators are operating varies depending on the operating state of the oscillators that are not selected as the system clock source. This applies when only the oscillator listed in each item is operating and the other oscillators are stopped.
 Note 2. When the frequency of the crystal is 20 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 04h. Note 3. When the frequency of the external clock is 20 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 00h.

Note 4. When the frequency of HOCO is 32 MHz.

When the high-speed clock oscillator wait control register (HOCOWTCR) is set to 05h.

Table 5.25 Timing of Recovery from Low Power Consumption Modes (2)

Conditions: $1.8 \text{ V} \le \text{VCC} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Item					Min.	Тур.	Max.	Unit	Test Conditions
Recovery time from software standby mode*1	Middle-speed mode	Crystal connected to main clock oscillator	Main clock oscillator operating* ²	t _{SBYMC}	_	2	3	ms	Figure 5.28
		External clock input to main clock oscillator	Main clock oscillator operating* ³	t _{SBYEX}	—	3	4	μs	
		Sub-clock oscillato	r operating	t _{SBYSC}	_	600	750	μs	
		HOCO clock oscilla	ator operating*4	t _{SBYHO}	_	40	50	μs	
		LOCO clock oscilla	ator operating	t _{SBYLO}	_	4.8	7	μs	

Note: When the division ratios of PCLKB, PCLKD, FCLK, and ICLK are all set to 1.

Note 1. The recovery time varies depending on the state of each oscillator when the WAIT instruction is executed. The recovery time when multiple oscillators are operating varies depending on the operating state of the oscillators that are not selected as the system clock source. This applies when only the oscillator listed in each item is operating and the other oscillators are stopped.
 Note 2. When the frequency of the crystal is 12 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 04h.

Note 3. When the frequency of the external clock is 12 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 00h. Note 4. When the frequency of HOCO is 8 MHz.

When the high-speed clock oscillator wait control register (HOCOWTCR) is set to 05h.

Figure 5.43 RSPI Timing (Master, CPHA = 1) (Bit Rate: PCLKB Set to Divided by 2)

Figure 5.46 RIIC Bus Interface Input/Output Timing and Simple I²C Bus Interface Input/Output Timing

5.4 A/D Conversion Characteristics

Table 5.35 A/D Conversion Characteristics (1)

Conditions: $2.7 \text{ V} \le \text{VCC} \le 3.6 \text{ V}, 2.7 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}, 2.7 \text{ V} \le \text{VREFH0} \le \text{AVCC0}, \text{VSS} = \text{AVSS0} = \text{VREFL0} = 0 \text{ V}, \text{T}_a = -40 \text{ to } +105^{\circ}\text{C}$

	Item	Min.	Тур.	Max.	Unit	Test Conditions
Frequency		4	_	32	MHz	
Resolution		—	—	12	Bit	
Conversion time*1 (Operation at PCLKD = 32 MHz)	Permissible signal source impedance (Max.) = 0.3 k Ω	1.031 (0.313)* ²	—	—	μs	High-precision channel ADCSR.ADHSC bit = 1 ADSSTRn.SST[7:0] bits = 09h
		1.375 (0.641)* ²	—			Normal-precision channel ADCSR.ADHSC bit = 1 ADSSTRn.SST[7:0] bits = 14h
Analog input effective range		0	—	VREFH0	V	
Offset error		_	±0.5	±4.5	LSB	High-precision channel PJ6PFS.ASEL bit = 1 PJ7PFS.ASEL bit = 1
				±6.0	LSB	Other than above
Full-scale error		_	±0.75	±4.5	LSB	High-precision channel PJ6PFS.ASEL bit = 1 PJ7PFS.ASEL bit = 1
				±6.0	LSB	Other than above
Quantization error		—	±0.5	—	LSB	
Absolute accuracy		_	±1.25	±5.0	LSB	High-precision channel PJ6PFS.ASEL bit = 1 PJ7PFS.ASEL bit = 1
				±8.0	LSB	Other than above
DNL differential nonlin	nearity error	—	±1.0	—	LSB	
INL integral nonlinear	ity error	_	±1.0	±3.0	LSB	

Note: The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. As the test conditions, the number of sampling states is indicated.

Note 2. The value in parentheses indicates the sampling time.

Table 5.36 A/D Conversion Characteristics (2)

Conditions: 2.4 V \leq VCC \leq 3.6 V, 2.4 V \leq AVCC0 \leq 3.6 V, 2.4 V \leq VREFH0 \leq AVCC0, VSS = AVSS0 = VREFL0 = 0 V, T_a = -40 to +105°C

ltem		Min.	Тур.	Max.	Unit	Test Conditions
Frequency		4	_	16	MHz	
Resolution		—		12	Bit	
Conversion time*1 (Operation at PCLKD = 16 MHz)	Permissible signal source impedance (Max.) = 1.0 k Ω	2.062 (0.625)* ²	_	_	μs	High-precision channel ADCSR.ADHSC bit = 1 ADSSTRn.SST[7:0] bits = 09h
		2.750 (1.313)* ²	_	_	μs	Normal-precision channel ADCSR.ADHSC bit = 1 ADSSTRn.SST[7:0] bits = 14h
Analog input effective range		0		VREFH0	V	
Offset error		—	±0.5	±6.0	LSB	
Full-scale error		—	±1.25	±6.0	LSB	
Quantization error		—	±0.5	_	LSB	
Absolute accuracy		—	±3.0	±8.0	LSB	
DNL differential nonlinearity error		—	±1.0	_	LSB	
INL integral nonlinearity error		—	±1.5	±3.0	LSB	

Note: The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. As the test conditions, the number of sampling states is indicated.

Note 2. The value in parentheses indicates the sampling time.

Table 5.37 A/D Conversion Characteristics (3)

Conditions: $1.8 \text{ V} \le \text{VCC} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{VREFH0} \le \text{AVCC0}, \text{VSS} = \text{AVSS0} = \text{VREFL0} = 0 \text{ V}, \text{T}_a = -40 \text{ to } +105^{\circ}\text{C}$

Item		Min.	Тур.	Max.	Unit	Test Conditions
Frequency		1	_	8	MHz	
Resolution		—	_	12	Bit	
Conversion time*1 (Operation at PCLKD = 8 MHz)	Permissible signal source impedance (Max.) = 5.0 k Ω	4.875 (1.250)* ²	_	_	μs	High-precision channel ADCSR.ADHSC bit = 0 ADSSTRn.SST[7:0] bits = 09h
		6.250 (2.625)* ²	_	_		Normal-precision channel ADCSR.ADHSC bit = 0 ADSSTRn.SST[7:0] bits = 14h
Analog input effective range		0	—	VREFH0	V	
Offset error		—	±0.5	±24.0	LSB	
Full-scale error		—	±1.25	±24.0	LSB	
Quantization error		—	±0.5	—	LSB	
Absolute accuracy		—	±2.75	±32.0	LSB	
DNL differential nonlinearity error		—	±1.0	—	LSB	
INL integral nonlinearity error		—	±1.25	±12.0	LSB	

Note: The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. As the test conditions, the number of sampling states is indicated.

Note 2. The value in parentheses indicates the sampling time.

Classification	Channel	Conditions	Remarks	
High-precision channel	AN000 to AN004, AN006	AVCC0 = 1.8 to 3.6 V	Pins AN000 to AN004 and AN006	
Normal-precision channel	AN008 to AN015		cannot be used as digital outputs when the A/D converter is in use.	
Internal reference voltage input channel	Internal reference voltage	AVCC0 = 2.0 to 3.6 V		
Temperature sensor input channel	Temperature sensor output	AVCC0 = 2.0 to 3.6 V		

Table 5.38 A/D Converter Channel Classification

Table 5.39 A/D Internal Reference Voltage Characteristics

Conditions: 2.0 V ≤ VCC ≤ 3.6 V, 2.0 V ≤ AVCC0 ≤ 3.6 V^{*1}, VSS = AVSS0 = VREFL0 = 0 V, T_a = -40 to +105°C

Item	Min.	Тур.	Max.	Unit	Test Conditions
Internal reference voltage input channel*2	1.36	1.43	1.50	V	

Note 1. The internal reference voltage cannot be selected for input channels when AVCC0 < 2.0 V.

Note 2. The A/D internal reference voltage indicates the voltage when the internal reference voltage is input to the A/D converter.

Figure 5.55 Connecting Capacitors (48-pin LFQFP)

Classifications

- Items with Technical Update document number: Changes according to the corresponding issued Technical Update

- Items without Technical Update document number: Minor changes that do not require Technical Update to be issued

Rev Date		Description		Classification		
Nev.	Dale	Page	Summary	Classification		
1.20	Jul 29, 2016	1. Overview				
		18 to 25 Table 1.5 to 1.9 Note 1 regarding I/O power source is AVCC0 for the ports				
			(P4, PJ6, and PJ7), added			
		5. Electrical (
		45 Table 5.1 Absolute Maximum Ratings, Analog power supply voltage added				
		45	45 Table 5.2 Recommended Operating Conditions, VREFH0 / VREFL0 added			
		51 Table 5.8 DC Characteristics (6), Increment for IWDT operation added				
		52	Table 5.9 DC Characteristics (7) Permissible total consumption power	TN-RX*-A135A/E		
			added			
		53	Table 5.10 DC Characteristics (8), LDV1,2 added			
		54, 55	Table 5.15 Permissible Output Currents is divided into D version and G			
			version			
		93 Table 5.45 ROM (Flash Memory for Code Storage) Characteristics (2),		TN-RX*-A132A/E		
			Erasure time - 128-Kbyte added			
		94 Table 5.46 ROM (Flash Memory for Code Storage) Characteristics (3),		TN-RX*-A132A/E		
			Temperature range for the programming/erasure operation changed			
			and Erasure time - 128-Kbyte added			
		95, 96	5.9 Usage Notes added			

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual.

- ³⁄₄ The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- ³⁄₄ The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.
- 3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- ³⁄₄ The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

³⁄4 The characteristics of Microprocessing unit or Microcontroller unit products in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.