

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Detano	
Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, SWPMI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, PWM, WDT
Number of I/O	51
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l475ret6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6	Electrical characteristics										
	6.1	Parame	eter conditions								
		6.1.1	Minimum and maximum values								
		6.1.2	Typical values								
		6.1.3	Typical curves								
		6.1.4	Loading capacitor								
		6.1.5	Pin input voltage								
		6.1.6	Power supply scheme								
		6.1.7	Current consumption measurement								
	6.2	Absolut	te maximum ratings								
	6.3	Operati	ing conditions								
		6.3.1	General operating conditions								
		6.3.2	Operating conditions at power-up / power-down								
		6.3.3	Embedded reset and power control block characteristics								
		6.3.4	Embedded voltage reference								
		6.3.5	Supply current characteristics								
		6.3.6	Wakeup time from low-power modes and voltage scaling transition times 108								
		6.3.7	External clock source characteristics								
		6.3.8	Internal clock source characteristics								
		6.3.9	PLL characteristics								
		6.3.10	Flash memory characteristics								
		6.3.11	EMC characteristics								
		6.3.12	Electrical sensitivity characteristics								
		6.3.13	I/O current injection characteristics								
		6.3.14	I/O port characteristics								
		6.3.15	NRST pin characteristics								
		6.3.16	Analog switches booster								
		6.3.17	Analog-to-Digital converter characteristics								
		6.3.18	Digital-to-Analog converter characteristics								
		6.3.19	Voltage reference buffer characteristics								
		6.3.20	Comparator characteristics								
		6.3.21	Operational amplifiers characteristics								
		6.3.22	Temperature sensor characteristics								
		6.3.23	V _{BAT} monitoring characteristics								
		6.3.24	DFSDM characteristics								
		6.3.25	Timer characteristics								

DocID027692 Rev 2

2 Description

The STM32L475xx devices are the ultra-low-power microcontrollers based on the highperformance ARM[®] Cortex[®]-M4 32-bit RISC core operating at a frequency of up to 80 MHz. The Cortex-M4 core features a Floating point unit (FPU) single precision which supports all ARM single-precision data-processing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances application security.

The STM32L475xx devices embed high-speed memories (Flash memory up to 1 Mbyte, up to 128 Kbyte of SRAM), a flexible external memory controller (FSMC) for static memories (for devices with 100 pins package), a Quad SPI flash memories interface (available on all packages) and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix.

The STM32L475xx devices embed several protection mechanisms for embedded Flash memory and SRAM: readout protection, write protection, proprietary code readout protection and Firewall.

The devices offer up to three fast 12-bit ADCs (5 Msps), two comparators, two operational amplifiers, two DAC channels, an internal voltage reference buffer, a low-power RTC, two general-purpose 32-bit timer, two 16-bit PWM timers dedicated to motor control, seven general-purpose 16-bit timers, and two 16-bit low-power timers. The devices support four digital filters for external sigma delta modulators (DFSDM).

In addition, up to 21 capacitive sensing channels are available.

They also feature standard and advanced communication interfaces.

- Three I2Cs
- Three SPIs
- Three USARTs, two UARTs and one Low-Power UART.
- Two SAIs (Serial Audio Interfaces)
- One SDMMC
- One CAN
- One USB OTG full-speed
- One SWPMI (Single Wire Protocol Master Interface)

The STM32L475xx operates in the -40 to +85 $^{\circ}$ C (+105 $^{\circ}$ C junction), -40 to +105 $^{\circ}$ C (+125 $^{\circ}$ C junction) and -40 to +125 $^{\circ}$ C (+130 $^{\circ}$ C junction) temperature ranges from a 1.71 to 3.6 V power supply. A comprehensive set of power-saving modes allows the design of low-power applications.

Some independent power supplies are supported: analog independent supply input for ADC, DAC, OPAMPs and comparators, 3.3 V dedicated supply input for USB and up to 14 I/Os can be supplied independently down to 1.08V₋ A VBAT input allows to backup the RTC and backup registers.

The STM32L475xx family offers two packages from 64-pin to 100-pin packages.

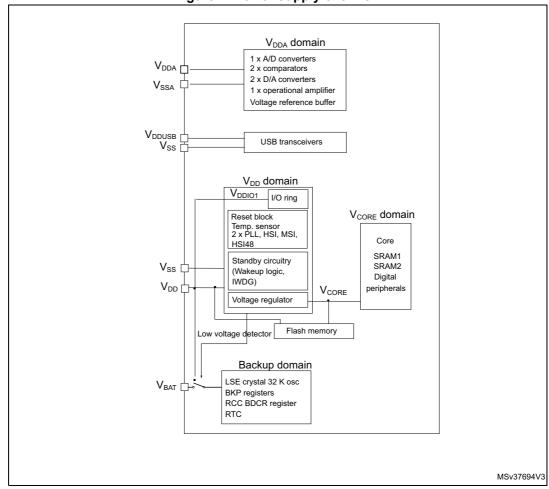


Figure 2. Power supply overview

3.9.2 Power supply supervisor

The device has an integrated ultra-low-power brown-out reset (BOR) active in all modes except Shutdown and ensuring proper operation after power-on and during power down. The device remains in reset mode when the monitored supply voltage V_{DD} is below a specified threshold, without the need for an external reset circuit.

The lowest BOR level is 1.71V at power on, and other higher thresholds can be selected through option bytes. The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD} power supply and compares it to the VPVD threshold. An interrupt can be generated when V_{DD} drops below the VPVD threshold and/or when V_{DD} is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

In addition, the devices embeds a Peripheral Voltage Monitor which compares the independent supply voltages V_{DDA} , V_{DDUSB} with a fixed threshold in order to ensure that the peripheral is in its functional supply range.

By default, the microcontroller is in Run mode after a system or a power Reset. It is up to the user to select one of the low-power modes described below:

• Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

• Low-power run mode

This mode is achieved with VCORE supplied by the low-power regulator to minimize the regulator's operating current. The code can be executed from SRAM or from Flash, and the CPU frequency is limited to 2 MHz. The peripherals with independent clock can be clocked by HSI16.

• Low-power sleep mode

This mode is entered from the low-power run mode. Only the CPU clock is stopped. When wakeup is triggered by an event or an interrupt, the system reverts to the lowpower run mode.

• Stop 0, Stop 1 and Stop 2 modes

Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the VCORE domain are stopped, the PLL, the MSI RC, the HSI16 RC and the HSE crystal oscillators are disabled. The LSE or LSI is still running.

The RTC can remain active (Stop mode with RTC, Stop mode without RTC).

Some peripherals with wakeup capability can enable the HSI16 RC during Stop mode to detect their wakeup condition.

Three Stop modes are available: Stop 0, Stop 1 and Stop 2 modes. In Stop 2 mode, most of the VCORE domain is put in a lower leakage mode.

Stop 1 offers the largest number of active peripherals and wakeup sources, a smaller wakeup time but a higher consumption than Stop 2. In Stop 0 mode, the main regulator remains ON, allowing a very fast wakeup time but with much higher consumption.

The system clock when exiting from Stop 0, Stop1 or Stop2 modes can be either MSI up to 48 MHz or HSI16, depending on software configuration.

• Standby mode

The Standby mode is used to achieve the lowest power consumption with BOR. The internal regulator is switched off so that the VCORE domain is powered off. The PLL, the MSI RC, the HSI16 RC and the HSE crystal oscillators are also switched off.

The RTC can remain active (Standby mode with RTC, Standby mode without RTC).

The brown-out reset (BOR) always remains active in Standby mode.

The state of each I/O during standby mode can be selected by software: I/O with internal pull-up, internal pull-down or floating.

After entering Standby mode, SRAM1 and register contents are lost except for registers in the Backup domain and Standby circuitry. Optionally, SRAM2 can be retained in

3.27 Low-power universal asynchronous receiver transmitter (LPUART)

The device embeds one Low-Power UART. The LPUART supports asynchronous serial communication with minimum power consumption. It supports half duplex single wire communication and modem operations (CTS/RTS). It allows multiprocessor communication.

The LPUART has a clock domain independent from the CPU clock, and can wakeup the system from Stop mode using baudrates up to 220 Kbaud. The wake up events from Stop mode are programmable and can be:

- Start bit detection
- Any received data frame
- A specific programmed data frame

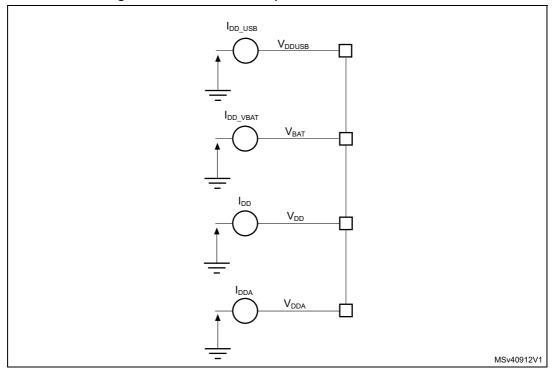
Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption. Higher speed clock can be used to reach higher baudrates.

LPUART interface can be served by the DMA controller.

Table 15, ST	M32L475xx r	oin definitions	(continued)
	MOLLTI OAA P		(continueu)

	in nber	Pin name		er		Pin fur	ictions
LQFP64	LQFP100	(function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	4	PE5	I/O	FT	-	TRACED2, TIM3_CH3, DFSDM_CKIN3, TSC_G7_IO4, FMC_A21, SAI1_SCK_A, EVENTOUT	-
-	5	PE6	I/O	FT	-	TRACED3, TIM3_CH4, FMC_A22, SAI1_SD_A, EVENTOUT	RTC_TAMP3/ WKUP3
1	6	VBAT	S	-	-	-	-
2	7	PC13	I/O	FT	(1) (2)	EVENTOUT	RTC_TAMP1/ RTC_TS/ RTC_OUT/ WKUP2
3	8	PC14- OSC32_IN (PC14)	I/O	FT	(1) (2)	EVENTOUT	OSC32_IN
4	9	PC15- OSC32_OUT (PC15)	I/O	FT	(1) (2)	EVENTOUT	OSC32_OUT
-	10	VSS	S	-	-	-	-
-	11	VDD	S	-	-	-	-
5	12	PH0-OSC_IN (PH0)	I/O	FT	-	EVENTOUT	OSC_IN
6	13	PH1-OSC_OUT (PH1)	I/O	FT	-	EVENTOUT	OSC_OUT
7	14	NRST	I/O	RST	-	-	-
8	15	PC0	I/O	FT_fa	-	LPTIM1_IN1, I2C3_SCL, DFSDM_DATIN4, LPUART1_RX, LPTIM2_IN1, EVENTOUT	ADC123_IN1
9	16	PC1	I/O	FT_fa	-	LPTIM1_OUT, I2C3_SDA, DFSDM_CKIN4, LPUART1_TX, EVENTOUT	ADC123_IN2
10	17	PC2	I/O	FT_a	-	LPTIM1_IN2, SPI2_MISO, DFSDM_CKOUT, EVENTOUT	ADC123_IN3
11	18	PC3	I/O	FT_a	-	LPTIM1_ETR, SPI2_MOSI, SAI1_SD_A, LPTIM2_ETR, EVENTOUT	ADC123_IN4
-	19	VSSA	S	-	-	-	-
-	20	VREF-	S	-	-	-	-

Table 15. STM32L475xx	pin definitions	(continued)
		(ooninaoa)


	'in nber	Pin name		Ire		Pin fun	ictions
LQFP64	LQFP100	(function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
35	53	PB14	I/O	FT_f	-	TIM1_CH2N, TIM8_CH2N, I2C2_SDA, SPI2_MISO, DFSDM_DATIN2, USART3_RTS_DE, TSC_G1_IO3, SWPMI1_RX, SAI2_MCLK_A, TIM15_CH1, EVENTOUT	-
36	54	PB15	I/O	FT	_	RTC_REFIN, TIM1_CH3N, TIM8_CH3N, SPI2_MOSI, DFSDM_CKIN2, TSC_G1_IO4, SWPMI1_SUSPEND, SAI2_SD_A, TIM15_CH2, EVENTOUT	-
-	55	PD8	I/O	FT	-	USART3_TX, FMC_D13, EVENTOUT	-
-	56	PD9	I/O	FT	-	USART3_RX, FMC_D14, SAI2_MCLK_A, EVENTOUT	-
-	57	PD10	I/O	FT	-	USART3_CK, TSC_G6_IO1, FMC_D15, SAI2_SCK_A, EVENTOUT	-
-	58	PD11	I/O	FT	-	USART3_CTS, TSC_G6_IO2, FMC_A16, SAI2_SD_A, LPTIM2_ETR, EVENTOUT	-
-	59	PD12	I/O	FT	-	TIM4_CH1, USART3_RTS_DE, TSC_G6_IO3, FMC_A17, SAI2_FS_A, LPTIM2_IN1, EVENTOUT	-
-	60	PD13	I/O	FT	-	TIM4_CH2, TSC_G6_IO4, FMC_A18, LPTIM2_OUT, EVENTOUT	-
-	61	PD14	I/O	FT	-	TIM4_CH3, FMC_D0, EVENTOUT	-
-	62	PD15	I/O	FT	-	TIM4_CH4, FMC_D1, EVENTOUT	-
37	63	PC6	I/O	FT	-	TIM3_CH1, TIM8_CH1, DFSDM_CKIN3, TSC_G4_IO1, SDMMC1_D6, SAI2_MCLK_A, EVENTOUT	-

	'in nber	Pin name		Ire		Pin fun	ctions
LQFP64	LQFP100	(function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
38	64	PC7	I/O	FT	-	TIM3_CH2, TIM8_CH2, DFSDM_DATIN3, TSC_G4_IO2, SDMMC1_D7, SAI2_MCLK_B, EVENTOUT	-
39	65	PC8	I/O	FT	-	TIM3_CH3, TIM8_CH3, TSC_G4_IO3, SDMMC1_D0, EVENTOUT	-
40	66	PC9	I/O	FT	-	TIM8_BKIN2, TIM3_CH4, TIM8_CH4, TSC_G4_IO4, OTG_FS_NOE, SDMMC1_D1, SAI2_EXTCLK, TIM8_BKIN2_COMP1, EVENTOUT	-
41	67	PA8	I/O	FT	-	MCO, TIM1_CH1, USART1_CK, OTG_FS_SOF, LPTIM2_OUT, EVENTOUT	-
42	68	PA9	I/O	FT_u	-	TIM1_CH2, USART1_TX, TIM15_BKIN, EVENTOUT	OTG_FS_VBUS
43	69	PA10	I/O	FT_u	-	TIM1_CH3, USART1_RX, OTG_FS_ID, TIM17_BKIN, EVENTOUT	-
44	70	PA11	I/O	FT_u	-	TIM1_CH4, TIM1_BKIN2, USART1_CTS, CAN1_RX, OTG_FS_DM, TIM1_BKIN2_COMP1, EVENTOUT	-
45	71	PA12	I/O	FT_u	-	TIM1_ETR, USART1_RTS_DE, CAN1_TX, OTG_FS_DP, EVENTOUT	-
46	72	PA13 (JTMS-SWDIO)	I/O	FT	(3)	JTMS-SWDIO, IR_OUT, OTG_FS_NOE, EVENTOUT	-
47	-	VSS	S	-	-	-	-
48	73	VDDUSB	S	-	-	-	-
-	74	VSS	S	-	-	-	-
-	75	VDD	S	-	-		-
49	76	PA14 (JTCK-SWCLK)	I/O	FT	(3)	JTCK-SWCLK, EVENTOUT	-

6.1.7 Current consumption measurement

Figure 11. Current consumption measurement scheme

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 19: Voltage characteristics*, *Table 20: Current characteristics* and *Table 21: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Мах	Unit
V _{DDX} - V _{SS}	External main supply voltage (including V_{DD} , V_{DDA} , V_{DDUSB} , V_{BAT})	-0.3	4.0	V
	Input voltage on FT_xxx pins	V _{SS} -0.3	min (V _{DD} , V _{DDA} , V _{DDUSB}) + 4.0 ⁽³⁾⁽⁴⁾	
V _{IN} ⁽²⁾	Input voltage on TT_xx pins	V _{SS} -0.3	4.0	V
	Input voltage on BOOT0 pin	V _{SS}	9.0	
	Input voltage on any other pins	V _{SS} -0.3	4.0	
ΔV _{DDx}	Variations between different V _{DDX} power pins of the same domain	-	50	mV
V _{SSx} -V _{SS}	Variations between all the different ground pins ⁽⁵⁾	-	50	mV

Table 19.	Voltage	characteristics ⁽¹⁾
-----------	---------	--------------------------------

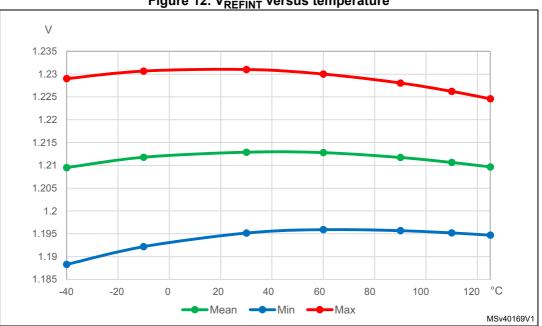


Figure 12. V_{REFINT} versus temperature

Electrical characteristics

DocID027692 Rev 2

2

98/193

•	5	Conditions				TYP			MAX ⁽¹⁾					Unit
Symbol Parameter -	-	V _{DD}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	Ur	
	Supply		1.8 V	6.59	24.7	92.7	208	437	16	62	232	520	1093	1
I _{DD} (Stop 1)	current in		2.4 V	6.65	24.8	92.9	209	439	17	62	232	523	1098	μ
	Stop 1 mode,	_	3 V	6.65	24.9	93.3	210	442	17	62	233	525	1105	- μ
	RTC disabled		3.6 V	6.70	25.1	93.8	212	447	17	63	235	530	1118	
			1.8 V	6.88	25.0	93.1	209	439	17	63	233	523	1098	
		RTC clocked by LSI	2.4 V	7.02	25.2	93.7	210	441	18	63	234	525	1103	
			3 V	7.12	25.4	94.2	212	444	18	64	236	530	1110	
			3.6 V	7.25	25.7	95.2	214	449	18	64	238	535	1123	μΑ
	Supply	RTC clocked by LSE bypassed, at 32768 Hz	1.8 V	6.91	25.2	93.4	210	440	17	63	234	525	1100	
I _{DD} (Stop 1	current in stop		2.4 V	7.04	25.3	94.2	211	443	18	63	236	528	1108	
with RTC)	1 mode,		3 V	7.19	25.7	95.0	212	446	18	64	238	530	1115	
	RTC enabled		3.6 V	7.97	26.0	96.1	215	451	20	65	240	538	1128	
		RTC clocked by LSE quartz ⁽²⁾ in low drive mode	1.8 V	6.85	25.0	93.0	208.3	-	17	63	233	521	-	
			2.4 V	6.94	25.1	93.2	209.3	-	17	63	233	523	-	
			3 V	7.10	25.2	93.6	210.3	-	18	63	234	526	-	1
			3.6 V	7.34	25.4	94.1	212.3	-	18	64	235	531	-	
Supply I _{DD} (wakeup current during from Stop1) wakeup from Stop 1	Wakeup clock MSI = 48 MHz, voltage Range 1, See ⁽³⁾ .	3 V	1.47	-	-	-	-							
	current during wakeup from	Wakeup clock MSI = 4 MHz, voltage Range 2, See ⁽³⁾ .	3 V	1.7	-	-	-	-			-			m
	Stop 1	Wakeup clock HSI16 = 16 MHz, voltage Range 1, See ⁽³⁾ .	3 V	1.62	-	-	-	-						

1. Guaranteed based on test during characterization, unless otherwise specified.

2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.

3. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in *Table 41: Low-power mode wakeup timings*.

ctrica	
I characteristi	

ഗ	
-	
~	
ω	
N	
4	
1	
сл	
×	
- C	
~	

		Conditions				TYP			MAX ⁽¹⁾				.	
Symbol	Parameter	-	V _{DD}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	U
			1.8 V	114	355	1540	4146	10735	176	888	3850	10365	26838	T
			2.4 V	138	407	1795	4828	12451	223	1018	4488	12070	31128	
	Supply current	no independent watchdog	3 V	150	486	2074	5589	14291	263	1215	5185	13973	35728	1
In Standby Mode (backup		3.6 V	198	618	2608	6928	17499	383	1545	6520	17320 (2)	43748		
	registers retained),		1.8 V	317	-	-	-	-	-	-	-	-	-	1
	RTC disabled	with independent	2.4 V	391	-	-	-	-	-	-	-	-	-	
		watchdog	3 V	438	-	-	-	-	-	-	-	-	-	1
		3.6 V	566	-	-	-	-	-	-	-	-	-	1	
			1.8 V	377	621	1873	4564	11318	491	1207	4250	10867	27537	Ī
	RTC clocked by LSI, no independent watchdog	2.4 V	464	756	2210	5348	13166	614	1436	4986	12694	31986		
		3 V	572	913	2599	6219	15197	770	1727	5815	14729	36815		
		3.6 V	722	1144	3253	7724	18696	1012	2176	7294	18275	45184		
		RTC clocked by LSI, with independent watchdog	1.8 V	456	-	-	-	-	-	-	-	-	I	
	Supply ourrept		2.4 V	557	-	-	-	-	-	-	-	-	-	
	in Standby		3 V	663	-	-	-	-	-	-	-	-	I	
I _{DD} (Standby	mode (backup		3.6 V	885	-	-	-	-	-	-	-	-	I	
with RTC)	registers retained),		1.8 V	289	527	1747	4402	11009	-	-	-	-	-	
	RTC enabled	RTC clocked by LSE	2.4 V	396	671	2108	5202	12869	-	-	-	-	-	
		bypassed at 32768Hz	3 V	528	853	2531	6095	14915	-	-	-	-	-	
			3.6 V	710	1111	3115	7470	18221	-	-	-	-	-	
			1.8 V	416	640	1862	4479	11908	-	-	-	-	-	
		RTC clocked by LSE	2.4 V	514	796	2193	5236	13689	-	-	-	-	-	
		quartz ⁽³⁾ in low drive mode	3 V	652	961	2589	6103	15598	-	-	-	-	-	
			3.6 V	821	1226	3235	7551	17947	-	-	-	-	-	l

5

Symbol	Parameter			Тур	Max	Unit	
		Dense 1	Wakeup clock MSI = 48 MHz	6.2	10.2		
		Range 1	Wakeup clock HSI16 = 16 MHz	6.3	8.99		
	Wake up time from Stop 1 mode to Run mode in Flash	Range 2	Wakeup clock MSI = 24 MHz	6.3 10.46			
			Wakeup clock HSI16 = 16 MHz	6.3	8.87		
			Wakeup clock MSI = 4 MHz	8.0	13.23		
		Dense 1	Wakeup clock MSI = 48 MHz	4.5	5.78		
	Wake up time from Stop 1	Range 1	Wakeup clock HSI16 = 16 MHz	5.5	7.1		
t _{WUSTOP1}	mode to Run mode in		Wakeup clock MSI = 24 MHz	5.0	6.5	μs	
	SRAM1	Range 2	Wakeup clock HSI16 = 16 MHz	5.5	7.1		
			Wakeup clock MSI = 4 MHz	8.2	13.5		
	Wake up time from Stop 1 mode to Low-power run mode in Flash	Regulator in low-power	Wekeun eleek MOL – 2 MUL	12.7	20		
	Wake up time from Stop 1 mode to Low-power run mode in SRAM1	mode (LPR=1 in PWR_CR1)	Wakeup clock MSI = 2 MHz		21.5		
		Danag 1	Wakeup clock MSI = 48 MHz	8.0	9.4		
	Wake up time from Stop 2 mode to Run mode in Flash	Range 1	Wakeup clock HSI16 = 16 MHz	7.3	9.3		
		Range 2	Wakeup clock MSI = 24 MHz	8.2	9.9		
			Wakeup clock HSI16 = 16 MHz	7.3	9.3		
			Wakeup clock MSI = 4 MHz	10.6	15.8		
twustop2		Dense 1	Wakeup clock MSI = 48 MHz	5.1	6.7	μs	
	Wake up time from Stop 2	Range 1	Wakeup clock HSI16 = 16 MHz	5.7	8		
	mode to Run mode in		Wakeup clock MSI = 24 MHz	5.5	6.65		
	SRAM1	Range 2	Wakeup clock HSI16 = 16 MHz	5.7	7.53		
			Wakeup clock MSI = 4 MHz	8.2	16.6		
4	Wakeup time from Standby	Range 1	Wakeup clock MSI = 8 MHz	14.3	20.8		
^I WUSTBY	^t WUSTBY mode to Run mode		Wakeup clock MSI = 4 MHz		35.5	μs	
t _{WUSTBY}	Wakeup time from Standby	Panao 1	Wakeup clock MSI = 8 MHz	14.3	24.3		
SRAM2	with SRAM2 to Run mode	Range 1	Wakeup clock MSI = 4 MHz	20.1	38.5	μs	
t _{WUSHDN}	Wakeup time from Shutdown mode to Run mode	Range 1	Wakeup clock MSI = 4 MHz	256	330.6	μs	

 Table 41. Low-power mode wakeup timings⁽¹⁾ (continued)

1. Guaranteed by characterization results.

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 48 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 46*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽²⁾	Min	Тур	Мах	Unit
f _{OSC_IN}	Oscillator frequency	-	4	8	48	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
		During startup ⁽³⁾	-	-	5.5	
I _{DD(HSE)}		V _{DD} = 3 V, Rm = 30 Ω, CL = 10 pF@8 MHz	-	0.44	-	
	HSE current consumption	V _{DD} = 3 V, Rm = 45 Ω, CL = 10 pF@8 MHz	-	0.45	-	
		V _{DD} = 3 V, Rm = 30 Ω, CL = 5 pF@48 MHz	-	0.68	-	mA
		V _{DD} = 3 V, Rm = 30 Ω, CL = 10 pF@48 MHz	-	0.94	-	
		V _{DD} = 3 V, Rm = 30 Ω, CL = 20 pF@48 MHz	-	1.77	-	
G _m	Maximum critical crystal transconductance	Startup	-	-	1.5	mA/V
$t_{\rm SU(HSE)}^{(4)}$	Startup time	V _{DD} is stabilized	-	2	-	ms

Table 46. HSE oscillator characteristics ⁽¹
--

1. Guaranteed by design.

2. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

3. This consumption level occurs during the first 2/3 of the $t_{SU(\text{HSE})}$ startup time

4. t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 20 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 15*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .

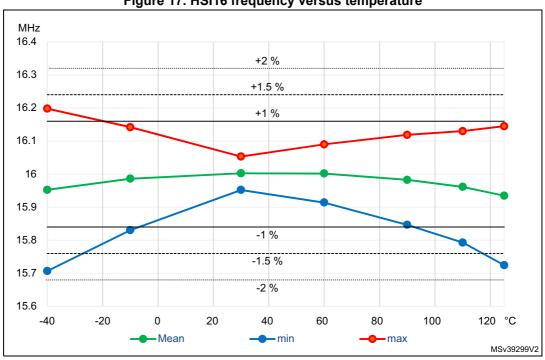


Figure 17. HSI16 frequency versus temperature

DocID027692 Rev 2

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		$V_{IN} \le Max(V_{DDXXX})^{(4)}$	-	-	±100	
	FT_xx input leakage current ⁽³⁾	$\begin{array}{l} Max(V_{DDXXX}) \leq V_{IN} \leq \\ Max(V_{DDXXX}) + 1 \ V^{(4)(5)} \end{array}$	-	-	650 ⁽³⁾⁽⁶⁾	
		$\begin{array}{l} {\sf Max}({\sf V}_{{\sf DDXXX}})\text{+}1~{\sf V} < \\ {\sf VIN} \leq 5.5~{\sf V}^{(3)(5)} \end{array}$	-	-	200 ⁽⁶⁾	
		$V_{IN} \le Max(V_{DDXXX})^{(4)}$	-	-	±150	
l _{lkg}	FT_lu, FT_u and PC3 IO	$\begin{array}{l} Max(V_{DDXXX}) \leq V_{IN} \leq \\ Max(V_{DDXXX}) + 1 \ V^{(4)} \end{array}$	-	-	2500 ⁽³⁾⁽⁷⁾	nA
		Max(V _{DDXXX})+1 V < VIN ≤ 5.5 V ⁽⁴⁾⁽⁵⁾⁽⁷⁾	-	-	250 ⁽⁷⁾	
	TT_xx input leakage current	$V_{IN} \le Max(V_{DDXXX})^{(6)}$	-	-	±150	
		Max(V _{DDXXX}) ≤ V _{IN} < 3.6 V ⁽⁶⁾	-	-	2000 ⁽³⁾	
R _{PU}	Weak pull-up equivalent resistor ⁽⁸⁾	V _{IN} = V _{SS}	25	40	55	kΩ
R _{PD}	Weak pull-down equivalent resistor ⁽⁸⁾	V _{IN} = V _{DDIOx}	25	40	55	kΩ
C _{IO}	I/O pin capacitance	-	-	5	-	pF

Table 59. I/O static characteristics (continued)

1. Refer to Figure 19: I/O input characteristics.

- 2. Tested in production.
- 3. Guaranteed by design.
- 4. Max(V_{DDXXX}) is the maximum value of all the I/O supplies. Refer to Table: Legend/Abbreviations used in the pinout table.
- 5. All TX_xx IO except FT_lu, FT_u and PC3.
- 6. This value represents the pad leakage of the IO itself. The total product pad leakage is provided by this formula: $I_{Total_Ileak_max} = 10 \ \mu A + [number of IOs where V_{IN} is applied on the pad] \times I_{Ikg}(Max)$.
- 7. To sustain a voltage higher than MIN(V_{DD}, V_{DDA}, V_{DDUSB}) +0.3 V, the internal Pull-up and Pull-Down resistors must be disabled.
- Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimal (~10% order).

Symbol	Parameter	Co	Min	Тур	Мах	Unit		
		DAC_OUT	DAC output buffer ON, C _{SH} = 100 nF	-	0.7	3.5	me	
	Sampling time in sample and hold mode (code transition between the	pin connected	DAC output buffer OFF, C _{SH} = 100 nF	-	10.5	18	ms	
^t SAMP	lowest input code and the highest input code when DACOUT reaches final value ±1LSB)	DAC_OUT pin not connected (internal connection only)	DAC output buffer OFF	-	2	3.5	μs	
I _{leak}	Output leakage current	Sample and ho DAC_OUT pin		-	-	_(3)	nA	
Cl _{int}	Internal sample and hold capacitor		-	5.2	7	8.8	pF	
t _{TRIM}	Middle code offset trim time	DAC output bu	50	-	-	μs		
V _{offset}	Middle code offset for 1	V _{REF+} = 3.6 V		I	1500	-	μV	
♥ offset	trim code step	V _{REF+} = 1.8 V		-	750	-	μv	
	DAC consumption from V _{DDA}	DAC output buffer ON	No load, middle code (0x800)	I	315	500		
			No load, worst code (0xF1C)	-	450	670		
I _{DDA} (DAC)		DAC output buffer OFF	No load, middle code (0x800)	-	-	0.2	μA	
		Sample and hold mode, C _{SH} = 100 nF		-	315 x Ton/(Ton +Toff) (4)	670 x Ton/(Ton +Toff) (4)		
		DAC output	No load, middle code (0x800)	-	185	240		
		buffer ON	No load, worst code (0xF1C)	-	340	400		
		DAC output buffer OFF	No load, middle code (0x800)	-	155	205		
I _{DDV} (DAC)	DAC consumption from V _{REF+}	Sample and ho C _{SH} = 100 nF,	old mode, buffer ON, worst case	-	185 x Ton/(Ton +Toff) (4)	400 x Ton/(Ton +Toff) (4)	μA	
		Sample and hold mode, buffer OFF, C _{SH} = 100 nF, worst case		-	155 x Ton/(Ton +Toff) (4)	205 x Ton/(Ton +Toff) (4)		

Table 70. DAC characteristics⁽¹⁾ (continued)

1. Guaranteed by design.

2. In buffered mode, the output can overshoot above the final value for low input code (starting from min value).

Electrical characteristics

Symbol	Parameter	Con	ditions	Min	Тур	Мах	Unit
		PGA Gain = 2		-	80/80	-	
	R2/R1 internal	PGA Gain = 4		-	120/ 40	-	
R _{network}	resistance values in PGA mode ⁽⁵⁾	PGA Gain = 8		-	140/ 20	-	kΩ/kΩ
		PGA Gain = 16		-	150/ 10	-	
Delta R	Resistance variation (R1 or R2)		-15	-	15	%	
PGA gain error	PGA gain error		-	-1	-	1	%
	PGA bandwidth for different non inverting gain	Gain = 2	-	-	GBW/ 2	-	- MHz
PGA BW		Gain = 4	-	-	GBW/ 4	-	
FGA BW		Gain = 8	-	-	GBW/ 8	-	
		Gain = 16	-	-	GBW/ 16	-	
		Normal mode	at 1 kHz, Output loaded with 4 kΩ	-	500	-	
07	Voltage noise	Low-power mode	at 1 kHz, Output loaded with 20 kΩ	-	600	-	nV/√Hz
en	density	Normal mode	at 10 kHz, Output loaded with 4 kΩ	-	180	-	nv/vHz
		Low-power mode	at 10 kHz, Output loaded with 20 kΩ	-	290	-	
	OPAMP	Normal mode	no Load, quiescent	-	120	260	
I _{dda} (opamp) ⁽³⁾	consumption from V _{DDA}	Low-power mode	mode	-	45	100	μA

 Table 74. OPAMP characteristics⁽¹⁾ (continued)

1. Guaranteed by design, unless otherwise specified.

2. The temperature range is limited to 0 °C-125 °C when V_{DDA} is below 2 V

3. Guaranteed by characterization results.

4. Mostly I/O leakage, when used in analog mode. Refer to I_{lkg} parameter in *Table 59: I/O static characteristics*.

5. R2 is the internal resistance between OPAMP output and OPAMP inverting input. R1 is the internal resistance between OPAMP inverting input and ground. The PGA gain =1+R2/R1

SAI characteristics

Unless otherwise specified, the parameters given in *Table 86* for SAI are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in*Table 22: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: $0.5 \times V_{DD}$

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CK,SD,FS).

Symbol	Parameter	Conditions	Min	Мах	Unit
f _{MCLK}	SAI Main clock output	-	-	50	MHz
		Master transmitter 2.7 ≤ V _{DD} ≤ 3.6 Voltage Range 1	-	18.5	
		Master transmitter 1.71 ≤ V _{DD} ≤ 3.6 Voltage Range 1	-	12.5	
		Master receiver Voltage Range 1	-	25	
f _{CK}	SAI clock frequency ⁽²⁾	Slave transmitter 2.7 ≤ V _{DD} ≤ 3.6 Voltage Range 1	-	22.5	MHz
		Slave transmitter 1.71 ≤ V _{DD} ≤ 3.6 Voltage Range 1	-	14.5	
		Slave receiver Voltage Range 1	-	25	
		Voltage Range 2	-	12.5	
+	FS valid time	Master mode 2.7 \leq V _{DD} \leq 3.6	-	22	20
t _{v(FS)}		Master mode $1.71 \le V_{DD} \le 3.6$	-	40	ns
t _{h(FS)}	FS hold time	Master mode	10	-	ns
t _{su(FS)}	FS setup time	Slave mode	1	-	ns
t _{h(FS)}	FS hold time	Slave mode	2	-	ns
t _{su(SD_A_MR)}	Data input setup time	Master receiver	2.5	-	200
t _{su(SD_B_SR)}		Slave receiver	3	-	ns
t _{h(SD_A_MR)}	Data input hold time	Master receiver	8	-	ns
t _{h(SD_B_SR)}		Slave receiver	4	-	115

Table 86. SAI characteristics⁽¹⁾

6.3.27 FSMC characteristics

Unless otherwise specified, the parameters given in *Table 90* to *Table 95* for the FMC interface are derived from tests performed under the ambient temperature, f_{HCLK} frequency and V_{DD} supply voltage conditions summarized in *Table 22*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output

characteristics.

Asynchronous waveforms and timings

Figure 34 and *Figure 35* represent asynchronous waveforms and *Table 90* through *Table 93* provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:

- AddressSetupTime = 0x1
- AddressHoldTime = 0x1
- DataSetupTime = 0x1 (except for asynchronous NWAIT mode, DataSetupTime = 0x5)
- BusTurnAroundDuration = 0x0

In all timing tables, the THCLK is the HCLK clock period.

