

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

	Activo
Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, SWPMI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, PWM, WDT
Number of I/O	51
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l475rgt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 94.	Synchronous multiplexed NOR/PSRAM read timings	179
Table 95.	Synchronous multiplexed PSRAM write timings	181
Table 96.	LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package	
	mechanical data	183
Table 97.	LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat	
	package mechanical data	185
Table 98.	Package thermal characteristics	188
Table 99.	STM32L475xx ordering information scheme	191
Table 100.	Document revision history	192

1. For the LQFP100 package, only FMC Bank1 is available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select.

Figure 2. Power supply overview

3.9.2 Power supply supervisor

The device has an integrated ultra-low-power brown-out reset (BOR) active in all modes except Shutdown and ensuring proper operation after power-on and during power down. The device remains in reset mode when the monitored supply voltage V_{DD} is below a specified threshold, without the need for an external reset circuit.

The lowest BOR level is 1.71V at power on, and other higher thresholds can be selected through option bytes. The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD} power supply and compares it to the VPVD threshold. An interrupt can be generated when V_{DD} drops below the VPVD threshold and/or when V_{DD} is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

In addition, the devices embeds a Peripheral Voltage Monitor which compares the independent supply voltages V_{DDA} , V_{DDUSB} with a fixed threshold in order to ensure that the peripheral is in its functional supply range.

3.11 Clocks and startup

The clock controller (see *Figure 3*) distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features:

- Clock prescaler: to get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler
- **Safe clock switching:** clock sources can be changed safely on the fly in run mode through a configuration register.
- **Clock management:** to reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.
- System clock source: four different clock sources can be used to drive the master clock SYSCLK:
 - 4-48 MHz high-speed external crystal or ceramic resonator (HSE), that can supply a PLL. The HSE can also be configured in bypass mode for an external clock.
 - 16 MHz high-speed internal RC oscillator (HSI16), trimmable by software, that can supply a PLL
 - Multispeed internal RC oscillator (MSI), trimmable by software, able to generate 12 frequencies from 100 kHz to 48 MHz. When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be automatically trimmed by hardware to reach better than ±0.25% accuracy. In this mode the MSI can feed the USB device, saving the need of an external high-speed crystal (HSE). The MSI can supply a PLL.
 - System PLL which can be fed by HSE, HSI16 or MSI, with a maximum frequency at 80 MHz.
- **Auxiliary clock source:** two ultralow-power clock sources that can be used to drive the real-time clock:
 - 32.768 kHz low-speed external crystal (LSE), supporting four drive capability modes. The LSE can also be configured in bypass mode for an external clock.
 - 32 kHz low-speed internal RC (LSI), also used to drive the independent watchdog. The LSI clock accuracy is ±5% accuracy.
- **Peripheral clock sources:** Several peripherals (USB, SDMMC, RNG, SAI, USARTs, I2Cs, LPTimers, ADC, SWPMI) have their own independent clock whatever the system clock. Three PLLs, each having three independent outputs allowing the highest flexibility, can generate independent clocks for the ADC, the USB/SDMMC/RNG and the two SAIs.
- **Startup clock:** after reset, the microcontroller restarts by default with an internal 4 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
- **Clock security system (CSS):** this feature can be enabled by software. If a HSE clock failure occurs, the master clock is automatically switched to HSI16 and a software

3.15 Analog to digital converter (ADC)

The device embeds 3 successive approximation analog-to-digital converters with the following features:

- 12-bit native resolution, with built-in calibration
- 5.33 Msps maximum conversion rate with full resolution
 - Down to 18.75 ns sampling time
 - Increased conversion rate for lower resolution (up to 8.88 Msps for 6-bit resolution)
- Up to 16 external channels, some of them shared between ADC1 and ADC2, or ADC1, ADC2 and ADC3.
- 5 Internal channels: internal reference voltage, temperature sensor, VBAT/3, DAC1 and DAC2 outputs.
- One external reference pin is available on some package, allowing the input voltage range to be independent from the power supply
- Single-ended and differential mode inputs
- Low-power design
 - Capable of low-current operation at low conversion rate (consumption decreases linearly with speed)
 - Dual clock domain architecture: ADC speed independent from CPU frequency
- Highly versatile digital interface
 - Single-shot or continuous/discontinuous sequencer-based scan mode: 2 groups of analog signals conversions can be programmed to differentiate background and high-priority real-time conversions
 - Handles two ADC converters for dual mode operation (simultaneous or interleaved sampling modes)
 - Each ADC support multiple trigger inputs for synchronization with on-chip timers and external signals
 - Results stored into 3 data register or in RAM with DMA controller support
 - Data pre-processing: left/right alignment and per channel offset compensation
 - Built-in oversampling unit for enhanced SNR
 - Channel-wise programmable sampling time
 - Three analog watchdog for automatic voltage monitoring, generating interrupts and trigger for selected timers
 - Hardware assistant to prepare the context of the injected channels to allow fast context switching

3.15.1 Temperature sensor

The temperature sensor (TS) generates a voltage V_{TS} that varies linearly with temperature.

The temperature sensor is internally connected to the ADC1_IN17 and ADC3_IN17 input channels which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

- extremes detector:
 - storage of minimum and maximum values of final conversion data
 - refreshed by software
- DMA capability to read the final conversion data
- interrupts: end of conversion, overrun, analog watchdog, short circuit, input serial channel clock absence
- "regular" or "injected" conversions:
 - "regular" conversions can be requested at any time or even in continuous mode without having any impact on the timing of "injected" conversions
 - "injected" conversions for precise timing and with high conversion priority

3.22 Random number generator (RNG)

All devices embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit.

3.23 Timers and watchdogs

The STM32L475xx includes two advanced control timers, up to nine general-purpose timers, two basic timers, two low-power timers, two watchdog timers and a SysTick timer. The table below compares the features of the advanced control, general purpose and basic timers.

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complementary outputs
Advanced control	TIM1, TIM8	16-bit	Up, down, Up/down	Any integer between 1 and 65536	Yes	4	3
General- purpose	TIM2, TIM5	32-bit	Up, down, Up/down	Any integer between 1 and 65536	Yes	4	No
General- purpose	TIM3, TIM4	16-bit	Up, down, Up/down	Any integer between 1 and 65536	Yes	4	No
General- purpose	TIM15	16-bit	Up	Any integer between 1 and 65536	Yes	2	1
General- purpose	TIM16, TIM17	16-bit	Up	Any integer between 1 and 65536	Yes	1	1
Basic	TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No

Table 10. Timer feature comparison

3.27 Low-power universal asynchronous receiver transmitter (LPUART)

The device embeds one Low-Power UART. The LPUART supports asynchronous serial communication with minimum power consumption. It supports half duplex single wire communication and modem operations (CTS/RTS). It allows multiprocessor communication.

The LPUART has a clock domain independent from the CPU clock, and can wakeup the system from Stop mode using baudrates up to 220 Kbaud. The wake up events from Stop mode are programmable and can be:

- Start bit detection
- Any received data frame
- A specific programmed data frame

Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption. Higher speed clock can be used to reach higher baudrates.

LPUART interface can be served by the DMA controller.

P Nur	in nber	Pin name		arre		Pin fun	ctions
LQFP64	LQFP100	(function after reset)	Pin type	I/O structu	Notes	Alternate functions	Additional functions
38	64	PC7	I/O	FT	-	TIM3_CH2, TIM8_CH2, DFSDM_DATIN3, TSC_G4_IO2, SDMMC1_D7, SAI2_MCLK_B, EVENTOUT	-
39	65	PC8	I/O	FT	-	TIM3_CH3, TIM8_CH3, TSC_G4_IO3, SDMMC1_D0, EVENTOUT	-
40	66	PC9	I/O	FT	-	TIM8_BKIN2, TIM3_CH4, TIM8_CH4, TSC_G4_IO4, OTG_FS_NOE, SDMMC1_D1, SAI2_EXTCLK, TIM8_BKIN2_COMP1, EVENTOUT	-
41	67	PA8	I/O	FT	-	MCO, TIM1_CH1, USART1_CK, OTG_FS_SOF, LPTIM2_OUT, EVENTOUT	-
42	68	PA9	I/O	FT_u	-	TIM1_CH2, USART1_TX, TIM15_BKIN, EVENTOUT	OTG_FS_VBUS
43	69	PA10	I/O	FT_u	-	TIM1_CH3, USART1_RX, OTG_FS_ID, TIM17_BKIN, EVENTOUT	-
44	70	PA11	I/O	FT_u	-	TIM1_CH4, TIM1_BKIN2, USART1_CTS, CAN1_RX, OTG_FS_DM, TIM1_BKIN2_COMP1, EVENTOUT	_
45	71	PA12	I/O	FT_u	-	TIM1_ETR, USART1_RTS_DE, CAN1_TX, OTG_FS_DP, EVENTOUT	-
46	72	PA13 (JTMS-SWDIO)	I/O	FT	(3)	JTMS-SWDIO, IR_OUT, OTG_FS_NOE, EVENTOUT	-
47	-	VSS	S	-	-	-	-
48	73	VDDUSB	S	-	-	-	-
-	74	VSS	S	-	-	-	-
-	75	VDD	S	-	-	-	-
49	76	PA14 (JTCK-SWCLK)	I/O	FT	(3)	JTCK-SWCLK, EVENTOUT	-

P Nur	'in nber	Pin name		Ire		Pin fur	nctions
LQFP64	LQFP100	(function after reset)	Pin type	I/O structu	Notes	Alternate functions	Additional functions
-	98	PE1	I/O	FT	-	FMC_NBL1, TIM17_CH1, EVENTOUT	-
63	99	VSS	S	-	-	-	-
64	100	VDD	S	-	-	-	-

Table 15. STM32L475xx pin definitions (continued)

PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:

 The speed should not exceed 2 MHz with a maximum load of 30 pF
 The speed should not exceed 2 MHz with a maximum load of 30 pF

- These GPIOs must not be used as current sources (e.g. to drive an LED).

After a Backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to the Backup domain and RTC register descriptions in the RM0395 reference manual.

3. After reset, these pins are configured as JTAG/SW debug alternate functions, and the internal pull-up on PA15, PA13, PB4 pins and the internal pull-down on PA14 pin are activated.

		Та	able 17. Altern	ate function AF8 to	AF15 (for A	F0 to AF7 see Table	16) (continued	I)	
		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
P	ort	UART4, UART5, LPUART1	CAN1, TSC	OTG_FS, QUADSPI	-	SDMMC1, COMP1, COMP2, FMC, SWPMI1	SAI1, SAI2	TIM2, TIM15, TIM16, TIM17, LPTIM2	EVENTOUT
	PC0	LPUART1_ RX	-	-	-	-	-	LPTIM2_IN1	EVENTOUT
	PC1	LPUART1_TX	-	-	-	-	-	-	EVENTOUT
	PC2	-	-	-	-	-	-	-	EVENTOUT
	PC3	-	-	-	-	-	SAI1_SD_A	LPTIM2_ETR	EVENTOUT
	PC4	-	-	-	-	-	-	-	EVENTOUT
	PC5	-	-	-	-	-	-	-	EVENTOUT
	PC6	-	TSC_G4_IO1	-	-	SDMMC1_D6	SAI2_MCLK_ A	-	EVENTOUT
	PC7	-	TSC_G4_IO2	-	-	SDMMC1_D7	SAI2_MCLK_ B	-	EVENTOUT
Port C	PC8	-	TSC_G4_IO3	-	-	SDMMC1_D0	-	-	EVENTOUT
	PC9	-	TSC_G4_IO4	OTG_FS_NOE	-	SDMMC1_D1	SAI2_EXTCLK	TIM8_BKIN2_ COMP1	EVENTOUT
	PC10	UART4_TX	TSC_G3_IO2	-	-	SDMMC1_D2	SAI2_SCK_B	-	EVENTOUT
	PC11	UART4_RX	TSC_G3_IO3	-	-	SDMMC1_D3	SAI2_MCLK_ B	-	EVENTOUT
	PC12	UART5_TX	TSC_G3_IO4	-	-	SDMMC1_CK	SAI2_SD_B	-	EVENTOUT
	PC13	-	-	-	-	-	-	-	EVENTOUT
	PC14	-	-		-	-	-	-	EVENTOUT
	PC15	-	-	-	-	-	-	-	EVENTOUT

Pinouts and pin description

5

72/193

DocID027692 Rev 2

STM32L475xx

6.1.6 Power supply scheme

Figure 10. Power supply scheme

Caution: Each power supply pair (V_{DD}/V_{SS}, V_{DDA}/V_{SSA} etc.) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device.

				isump		otunius	y moue	(001111	lacaj					
Symbol	Baramotor	Conditions		ТҮР					MAX ⁽¹⁾					
Symbol	Farameter	-	V _{DD}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	
	Supply current		1.8 V	235	641	2293	5192	11213	588	1603	5733	12980	28033	
I _{DD} (SRAM2)	to be added in		2.4 V	237	645	2303	5213	11246	593	1613	5758	13033	28115]
(4)	when SRAM2	-	3 V	236	647	2306	5221	11333	593	1618	5765	13053	28333	
	is retained		3.6 V	235	646	2308	5200	11327	595	1620	5770	13075	28350	1
I _{DD} (wakeup from Standby)	Supply current during wakeup from Standby mode	Wakeup clock is MSI = 4 MHz. See ⁽⁵⁾ .	3 V	1.7	-	-	-	-			-			mA

Table 37 Current consumption in Standby mode (continued)

1. Guaranteed by characterization results, unless otherwise specified.

2. Guaranteed by test in production.

3. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.

The supply current in Standby with SRAM2 mode is: I_{DD}(Standby) + I_{DD}(SRAM2). The supply current in Standby with RTC with SRAM2 mode is: I_{DD}(Standby + RTC) + I_{DD}(SRAM2).

5. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 41: Low-power mode wakeup timings.

Table 38. Current consumption in Shutdown mode

					-									
Symbol	Parameter	Conditions		ТҮР					MAX ⁽¹⁾					
Gymbol	Falameter	-	V _{DD}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	
	Supply current		1.8 V	29.8	194	1110	3250	9093	75	485	2775	8125	22733	
li l	in Shutdown	mode	2.4 V	44.3	237	1310	3798	10473	111	593	3275	9495	26183	
I _{DD} (Shutdown)	(backup	-	3 V	64.1	293	1554	4461	12082	160	733	3885	11153	30205	nA
	registers retained) RTC disabled		3.6 V	112	420	2041	5689	15186	280	1050	5103	14223	37965	

		Tuble			neamp			lieue						
Sympol	Parameter	Conditions		ТҮР					MAX ⁽¹⁾					110
Symbol	Farameter	-	V_{BAT}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	_ Unit ;
			1.8 V	4	29	196	587	1663	10.8	73	490	1468	4158	
		PTC disabled	2.4 V	5.27	36	226	673	1884	13.2	90	565	1683	4710	1
		KTC disabled	3 V	6	42	264	775	2147	15.5	106	660	1938	5368	
			3.6 V	10	58	323	919	2488	25.8	144	808	2298	6220	1
	Backup domain	ain t t t t t t t t t t t t t t t t t t t	1.8 V	183	201	367	729	-	-	-	-	-	-	1
(\/BAT)			2.4 V	268	295	486	901	-	-	-	-	-	-]
	supply current		3 V	376	412	602	1075	-	-	-	-	-	-	1 ''
			3.6 V	508	558	752	1299	-	-	-	-	-	-	
			1.8 V	302	344	521	915	1978	-	-	-	-	-	
		RTC enabled and	2.4 V	388	436	639	1091	2289	-	-	-	-	-	
		quartz ⁽²⁾	3 V	494	549	784	1301	2656	-	-	-	-	-]
			3.6 V	630	692	971	1571	3115	-	-	-	-	-]

Table 39. Current consumption in VBAT mode

1. Guaranteed by characterization results, unless otherwise specified.

2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.

DocID027692 Rev 2

103/193

Symbol	Parameter		Conditions		Min	Тур	Max	Unit
			Range 0	-	-	0.6	1	
			Range 1	-	-	0.8	1.2	
			Range 2	-	-	1.2	1.7	
			Range 3	-	-	1.9	2.5	
	MSI oscillator power consumption	MSI and PLL mode	Range 4	-	-	4.7	6	
$(M \in \mathbb{N}^{(6)})$			Range 5	-	-	6.5	9	
			Range 6	-	-	11	15	- μΛ
			Range 7	-	-	18.5	25	
			Range 8	-	-	62	80	
			Range 9	-	-	85	110	
			Range 10	-	-	110	130	
			Range 11	-	-	155	190	

Table 49. MSI oscillator characteristics⁽¹⁾ (continued)

1. Guaranteed by characterization results.

2. This is a deviation for an individual part once the initial frequency has been measured.

3. Sampling mode means Low-power run/Low-power sleep modes with Temperature sensor disable.

 Average period of MSI @48 MHz is compared to a real 48 MHz clock over 28 cycles. It includes frequency tolerance + jitter of MSI @48 MHz clock.

 Only accumulated jitter of MSI @48 MHz is extracted over 28 cycles. For next transition: min. and max. jitter of 2 consecutive frame of 28 cycles of the MSI @48 MHz, for 1000 captures over 28 cycles. For paired transitions: min. and max. jitter of 2 consecutive frame of 56 cycles of the MSI @48 MHz, for 1000 captures over 56 cycles.

6. Guaranteed by design.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin.
- A current injection is applied to each input, output and configurable I/O pin.

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table	57	Electrical	sensitivities
Iable	J/ .	LIECUICAI	30113111411103

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	T_A = +105 °C conforming to JESD78A	II level A

6.3.13 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DDIOx} (for standard, 3.3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of the -5 μ A/+0 μ A range) or other functional failure (for example reset occurrence or oscillator frequency deviation).

The characterization results are given in *Table 58*.

Negative induced leakage current is caused by negative injection and positive induced leakage current is caused by positive injection.

Symbol	Description	Func susce	Unit	
Symbol	Description	Negative injection	Positive injection	onit
I _{INJ}	Injected current on BOOT0 pin	-0	NA ⁽¹⁾	
	Injected current on pins except PA4, PA5, BOOT0		NA ⁽¹⁾	mA
	Injected current on PA4, PA5 pins	-5	0	

Table 58. I/O current injection susceptibility

1. NA: not applicable

Equation 1: R_{AIN} max formula

$$R_{AIN} < \frac{T_{S}}{f_{ADC} \times C_{ADC} \times \ln(2^{N+2})} - R_{ADC}$$

The formula above (*Equation 1*) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

Beechution	Sampling cycle	Sampling time [ns]	RAIN max (Ω)			
Resolution	@80 MHz	@80 MHz	Fast channels ⁽³⁾	Slow channels ⁽⁴⁾		
	2.5	31.25	100	N/A		
	6.5	81.25	330	100		
	12.5	156.25	680	470		
12 hito	24.5	306.25	1500	1200		
12 DIIS	47.5	593.75	2200	1800		
	92.5	1156.25	4700	3900		
	247.5	3093.75	12000	10000		
	640.5	8006.75	39000	33000		
	2.5	31.25	120	N/A		
	6.5	81.25	390	180		
	12.5	156.25	820	560		
10 bito	24.5	306.25	1500	1200		
TO DIIS	47.5	593.75	2200	1800		
	92.5	1156.25	5600	4700		
	247.5	3093.75	12000	10000		
	640.5	8006.75	47000	39000		
	2.5	31.25	180	N/A		
	6.5	81.25	470	270		
	12.5	156.25	1000	680		
9 bito	24.5	306.25	1800	1500		
o bits	47.5	593.75	2700	2200		
	92.5	1156.25	6800	5600		
	247.5	3093.75	15000	12000		
	640.5	8006.75	50000	50000		

Table (65. Maximum	ADC F	RAIN ⁽¹⁾⁽²⁾
---------	-------------	-------	------------------------

3. Refer to Table 59: I/O static characteristics.

4. Ton is the Refresh phase duration. Toff is the Hold phase duration. Refer to RM0395 reference manual for more details.

Figure 24. 12-bit buffered / non-buffered DAC

1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

Symbol	Parameter	Condition	Min	Тур	Мах	Unit		
	Differential non	DAC output buffer ON		-	-	±2		
DINL	linearity ⁽²⁾	DAC output buffer OFF		-	-	±2		
-	monotonicity	10 bits		Ç	guaranteed	d		
INL	Integral non	DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ		-	-	±4		
	linearity ⁽³⁾	DAC output buffer OFF CL ≤ 50 pF, no RL		-	-	±4		
Offset	Offset error at code 0x800 ⁽³⁾	DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ	V _{REF+} = 3.6 V	-	-	±12	- LSB	
			V _{REF+} = 1.8 V	-	-	±25		
		DAC output buffer OFF CL ≤ 50 pF, no RL		-	-	±8		
Offset1	Offset error at code 0x001 ⁽⁴⁾	DAC output buffer OFF CL ≤ 50 pF, no RL		-	-	±5		
OffsetCal	Offset Error at code 0x800 after calibration	et Error at DAC output buffer ON	V _{REF+} = 3.6 V	-	-	±5		
		CL ≤ 50 pF, RL ≥ 5 kΩ	V _{REF+} = 1.8 V	-	-	±7		

Table 71. DAC accuracy⁽¹⁾

6.3.24 **DFSDM** characteristics

Unless otherwise specified, the parameters given in *Table 78* for DFSDM are derived from tests performed under the ambient temperature, f_{APB2} frequency and V_{DD} supply voltage conditions summarized in *Table 22: General operating conditions*.

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5 x VDD

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (DFSDM_CKINy, DFSDM_DATINy, DFSDM_CKOUT for DFSDM).

Symbol	Parameter	Conditions	Min Typ		Мах	Unit	
f _{DFSDMCLK}	DFSDM clock	-	-	-	f _{SYSCLK}		
f _{CKIN} (1/T _{CKIN})	Input clock frequency	SPI mode (SITP[1:0] = 01)	-	-	20 (f _{DFSDMCLK} /4)	MHz	
fскоит	Output clock frequency	-	-	-	20	MHz	
DuCy _{CKOUT}	Output clock frequency duty cycle	-	45	50	55	%	
^t wh(CKIN) ^t wl(CKIN)	Input clock high and low time	SPI mode (SITP[1:0] = 01), External clock mode (SPICKSEL[1:0] = 0)	Т _{СКIN} /2-0.5	T _{CKIN} /2	-		
t _{su}	Data input setup time	SPI mode (SITP[1:0]=01), External clock mode (SPICKSEL[1:0] = 0)	0	-	-		
t _h	Data input hold time	SPI mode (SITP[1:0]=01), External clock mode (SPICKSEL[1:0] = 0)	2	-	-	ns	
T _{Manchester}	Manchester data period (recovered clock period)	Manchester mode (SITP[1:0] = 10 or 11), Internal clock mode (SPICKSEL[1:0] ≠ 0)	(CKOUT DIV+1) x T _{DFSDMCLK}	-	(2 x CKOUTDIV) x T _{DFSDMCLK}		

Table 78. DFSDM characteristics⁽¹⁾

1. Data based on characterization results, not tested in production.

Figure 35. Asynchronous multiplexed PSRAM/NOR write waveforms

samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

7.2 LQFP64 package information

Figure 41. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline

1. Drawing is not to scale.

Table 97. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data

Symbol	millimeters			inches ⁽¹⁾			
	Min	Тур	Мах	Min	Тур	Max	
A	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	-	0.200	0.0035	-	0.0079	
D	-	12.000	-	-	0.4724	-	
D1	-	10.000	-	-	0.3937	-	
D3	-	7.500	-	-	0.2953	-	

