E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, EBI/EMI, I²C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, SWPMI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, PWM, WDT
Number of I/O	82
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l475vgt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32L475xx microcontrollers.

This document should be read in conjunction with the STM32L4x5 reference manual (RM0395). The reference manual is available from the STMicroelectronics website *www.st.com*.

For information on the ARM[®] Cortex[®]-M4 core, please refer to the Cortex[®]-M4 Technical Reference Manual, available from the www.arm.com website.

Per	STM32L475Vx			STM32L475Rx				
Flash memory		256KB	512KB	1MB	256KB	512KB	1MB	
SRAM		128 KE			KB	КВ		
External memory cor static memories	Yes ⁽¹⁾			No				
Quad SPI				Ye	es			
	Advanced control			2 (16	6-bit)			
	General purpose			5 (16 2 (32	6-bit) 2-bit)			
Timers	Basic			2 (16	β-bit)			
Timers	Low -power			2 (16	6-bit)			
	SysTick timer				1			
	Watchdog timers (independent, window)			2	2			
	SPI			3	3			
	l ² C			3	3			
	USART UART LPUART				3 2 1			
Comm. interfaces	SAI	2						
	CAN	1						
	USB OTG FS	Yes						
	SDMMC	Yes						
	SWPMI	Yes						
Digital filters for sigm	a-delta modulators			Yes (4	filters)			
Number of channels				8	3			
RTC				Ye	es			
Tamper pins		3 2						
Random generator		Yes						
GPIOs Wakeup pins Nb of I/Os down to 1.08 V		82 51 5 4 0 0		51 4 0				
Capacitive sensing Number of channels		21 12		12				
12-bit ADCs Number of channels			3 16			3 16		
12-bit DAC channels	2							
Internal voltage reference buffer		Yes No						
Analog comparator			2	2				
Operational amplifier				2				
Max. CPU frequency			80 N	MHz				
Operating voltage				1.71 to	o 3.6 V			
Operating temperatu	re	Ambient o Junct	perating tempion temperatu	perature: -40 to are: -40 to 105	o 85 °C / -40 t °C / -40 to 12	o 105 °C / -40 5 °C / -40 to 1	to 125 °C 30 °C	
Packages			LQFP100			LQFP64		

Table 2. STM32L475xx family device features and peripheral counts

Figure 1. STM32L475xx block diagram

3.9.3 Voltage regulator

Two embedded linear voltage regulators supply most of the digital circuitries: the main regulator (MR) and the low-power regulator (LPR).

- The MR is used in the Run and Sleep modes and in the Stop 0 mode.
- The LPR is used in Low-Power Run, Low-Power Sleep, Stop 1 and Stop 2 modes. It is also used to supply the 32 Kbyte SRAM2 in Standby with RAM2 retention.
- Both regulators are in power-down in Standby and Shutdown modes: the regulator output is in high impedance, and the kernel circuitry is powered down thus inducing zero consumption.

The ultralow-power STM32L475xx supports dynamic voltage scaling to optimize its power consumption in run mode. The voltage from the Main Regulator that supplies the logic (VCORE) can be adjusted according to the system's maximum operating frequency.

There are two power consumption ranges:

- Range 1 with the CPU running at up to 80 MHz.
- Range 2 with a maximum CPU frequency of 26 MHz. All peripheral clocks are also limited to 26 MHz.

The VCORE can be supplied by the low-power regulator, the main regulator being switched off. The system is then in Low-power run mode.

 Low-power run mode with the CPU running at up to 2 MHz. Peripherals with independent clock can be clocked by HSI16.

3.9.4 Low-power modes

The ultra-low-power STM32L475xx supports seven low-power modes to achieve the best compromise between low-power consumption, short startup time, available peripherals and available wakeup sources:

3.15 Analog to digital converter (ADC)

The device embeds 3 successive approximation analog-to-digital converters with the following features:

- 12-bit native resolution, with built-in calibration
- 5.33 Msps maximum conversion rate with full resolution
 - Down to 18.75 ns sampling time
 - Increased conversion rate for lower resolution (up to 8.88 Msps for 6-bit resolution)
- Up to 16 external channels, some of them shared between ADC1 and ADC2, or ADC1, ADC2 and ADC3.
- 5 Internal channels: internal reference voltage, temperature sensor, VBAT/3, DAC1 and DAC2 outputs.
- One external reference pin is available on some package, allowing the input voltage range to be independent from the power supply
- Single-ended and differential mode inputs
- Low-power design
 - Capable of low-current operation at low conversion rate (consumption decreases linearly with speed)
 - Dual clock domain architecture: ADC speed independent from CPU frequency
- Highly versatile digital interface
 - Single-shot or continuous/discontinuous sequencer-based scan mode: 2 groups of analog signals conversions can be programmed to differentiate background and high-priority real-time conversions
 - Handles two ADC converters for dual mode operation (simultaneous or interleaved sampling modes)
 - Each ADC support multiple trigger inputs for synchronization with on-chip timers and external signals
 - Results stored into 3 data register or in RAM with DMA controller support
 - Data pre-processing: left/right alignment and per channel offset compensation
 - Built-in oversampling unit for enhanced SNR
 - Channel-wise programmable sampling time
 - Three analog watchdog for automatic voltage monitoring, generating interrupts and trigger for selected timers
 - Hardware assistant to prepare the context of the injected channels to allow fast context switching

3.15.1 Temperature sensor

The temperature sensor (TS) generates a voltage V_{TS} that varies linearly with temperature.

The temperature sensor is internally connected to the ADC1_IN17 and ADC3_IN17 input channels which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

3.21 Digital filter for Sigma-Delta Modulators (DFSDM)

The device embeds one DFSDM with 4 digital filters modules and 8 external input serial channels (transceivers) or alternately 8 internal parallel inputs support.

The DFSDM peripheral is dedicated to interface the external $\Sigma\Delta$ modulators to microcontroller and then to perform digital filtering of the received data streams (which represent analog value on $\Sigma\Delta$ modulators inputs). DFSDM can also interface PDM (Pulse Density Modulation) microphones and perform PDM to PCM conversion and filtering in hardware. DFSDM features optional parallel data stream inputs from microcontrollers memory (through DMA/CPU transfers into DFSDM).

DFSDM transceivers support several serial interface formats (to support various $\Sigma\Delta$ modulators). DFSDM digital filter modules perform digital processing according user selected filter parameters with up to 24-bit final ADC resolution.

The DFSDM peripheral supports:

- 8 multiplexed input digital serial channels:
 - configurable SPI interface to connect various SD modulator(s)
 - configurable Manchester coded 1 wire interface support
 - PDM (Pulse Density Modulation) microphone input support
 - maximum input clock frequency up to 20 MHz (10 MHz for Manchester coding)
 - clock output for SD modulator(s): 0..20 MHz
- alternative inputs from 8 internal digital parallel channels (up to 16 bit input resolution):
 - internal sources: device memory data streams (DMA)
- 4 digital filter modules with adjustable digital signal processing:
 - Sinc^x filter: filter order/type (1..5), oversampling ratio (up to 1..1024)
 - integrator: oversampling ratio (1..256)
- up to 24-bit output data resolution, signed output data format
- automatic data offset correction (offset stored in register by user)
- continuous or single conversion
- start-of-conversion triggered by:
 - software trigger
 - internal timers
 - external events
 - start-of-conversion synchronously with first digital filter module (DFSDM0)
- analog watchdog feature:
 - low value and high value data threshold registers
 - dedicated configurable Sincx digital filter (order = 1..3, oversampling ratio = 1..32)
 - input from final output data or from selected input digital serial channels
 - continuous monitoring independently from standard conversion
- short circuit detector to detect saturated analog input values (bottom and top range):
 - up to 8-bit counter to detect 1..256 consecutive 0's or 1's on serial data stream
 - monitoring continuously each input serial channel
- break signal generation on analog watchdog event or on short circuit detector event

3.28 Serial peripheral interface (SPI)

Three SPI interfaces allow communication up to 40 Mbits/s in master and up to 24 Mbits/s slave modes, in half-duplex, full-duplex and simplex modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits. The SPI interfaces support NSS pulse mode, TI mode and Hardware CRC calculation.

All SPI interfaces can be served by the DMA controller.

3.29 Serial audio interfaces (SAI)

The device embeds 2 SAI. Refer to *Table 13: SAI implementation* for the features implementation. The SAI bus interface handles communications between the microcontroller and the serial audio protocol.

The SAI peripheral supports:

- Two independent audio sub-blocks which can be transmitters or receivers with their respective FIFO.
- 8-word integrated FIFOs for each audio sub-block.
- Synchronous or asynchronous mode between the audio sub-blocks.
- Master or slave configuration independent for both audio sub-blocks.
- Clock generator for each audio block to target independent audio frequency sampling when both audio sub-blocks are configured in master mode.
- Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit.
- Peripheral with large configurability and flexibility allowing to target as example the following audio protocol: I2S, LSB or MSB-justified, PCM/DSP, TDM, AC'97 and SPDIF out.
- Up to 16 slots available with configurable size and with the possibility to select which ones are active in the audio frame.
- Number of bits by frame may be configurable.
- Frame synchronization active level configurable (offset, bit length, level).
- First active bit position in the slot is configurable.
- LSB first or MSB first for data transfer.
- Mute mode.
- Stereo/Mono audio frame capability.
- Communication clock strobing edge configurable (SCK).
- Error flags with associated interrupts if enabled respectively.
 - Overrun and underrun detection.
 - Anticipated frame synchronization signal detection in slave mode.
 - Late frame synchronization signal detection in slave mode.
 - Codec not ready for the AC'97 mode in reception.
- Interruption sources when enabled:
 - Errors.
 - FIFO requests.
- DMA interface with 2 dedicated channels to handle access to the dedicated integrated FIFO of each SAI audio sub-block.

- Transmission
 - Three transmit mailboxes
 - Configurable transmit priority
- Reception
 - Two receive FIFOs with three stages
 - 14 Scalable filter banks
 - Identifier list feature
 - Configurable FIFO overrun
- Time-triggered communication option
 - Disable automatic retransmission mode
 - 16-bit free running timer
 - Time Stamp sent in last two data bytes
- Management
 - Maskable interrupts
 - Software-efficient mailbox mapping at a unique address space

3.32 Secure digital input/output and MultiMediaCards Interface (SDMMC)

The card host interface (SDMMC) provides an interface between the APB peripheral bus and MultiMediaCards (MMCs), SD memory cards and SDIO cards.

The SDMMC features include the following:

- Full compliance with MultiMediaCard System Specification Version 4.2. Card support for three different databus modes: 1-bit (default), 4-bit and 8-bit
- Full compatibility with previous versions of MultiMediaCards (forward compatibility)
- Full compliance with SD Memory Card Specifications Version 2.0
- Full compliance with SD I/O Card Specification Version 2.0: card support for two different databus modes: 1-bit (default) and 4-bit
- Data transfer up to 48 MHz for the 8 bit mode
- Data write and read with DMA capability

3.33 Universal serial bus on-the-go full-speed (OTG_FS)

The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and with the OTG 2.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG controller requires a dedicated 48 MHz clock that can be provided by the internal multispeed oscillator (MSI) automatically trimmed by 32.768 kHz external oscillator (LSE). This allows to use the USB device without external high speed crystal (HSE).

Na	me	Abbreviation	Definition				
Pin r	name	Unless otherwise specified in reset is the same as the actual	brackets below the pin name, the pin function during and after al pin name				
		S	Supply pin				
Pin	type	I	Input only pin				
		I/O	Input / output pin				
		FT	5 V tolerant I/O				
		TT	3.6 V tolerant I/O				
		B Dedicated BOOT0 pin					
		RST Bidirectional reset pin with embedded weak pull-up resisto					
I/O str	ucture	Option for TT or FT I/Os					
		_f ⁽¹⁾	I/O, Fm+ capable				
		u ⁽²⁾	I/O, with USB function supplied by V{DDUSB}				
		_a ⁽³⁾ I/O, with Analog switch function supplied by V _{DDA}					
Notes		Unless otherwise specified by a note, all I/Os are set as analog inputs during and after reset.					
Pin	Pin Alternate functions selected through GPIOx_AFR registers						
functions	Additional functions	Functions directly selected/enabled through peripheral registers					

Table 14.	Legend/abbreviations	used in the	pinout table

1. The related I/O structures in *Table 15* are: FT_f, FT_fa, FT_f, FT_fa.

2. The related I/O structures in *Table 15* are: FT_u.

3. The related I/O structures in *Table 15* are: FT_a, FT_fa, TT_a.

P Nur	'in nber	Pin name		are		Pin functions	
LQFP64	LQFP100	(function after reset)	Pin type	I/O structu	Notes	Alternate functions	Additional functions
-	1	PE2	I/O	FT	-	TRACECK, TIM3_ETR, TSC_G7_IO1, FMC_A23, SAI1_MCLK_A, EVENTOUT	-
-	2	PE3	I/O	FT	-	TRACED0, TIM3_CH1, TSC_G7_IO2, FMC_A19, SAI1_SD_B, EVENTOUT	-
-	3	PE4	I/O	FT	-	TRACED1, TIM3_CH2, DFSDM_DATIN3, TSC_G7_IO3, FMC_A20, SAI1_FS_A, EVENTOUT	-

P Nur	'in nber	Pin name		Ire		Pin functions	
LQFP64	LQFP100	(function after reset)	Pin type	I/O structu	Notes	Alternate functions	Additional functions
-	98	PE1	I/O	FT	-	FMC_NBL1, TIM17_CH1, EVENTOUT	-
63	99	VSS	S	-	-	-	-
64	100	VDD	S	-	-	-	-

Table 15. STM32L475xx pin definitions (continued)

PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:

 The speed should not exceed 2 MHz with a maximum load of 30 pF
 The speed should not exceed 2 MHz with a maximum load of 30 pF

- These GPIOs must not be used as current sources (e.g. to drive an LED).

After a Backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to the Backup domain and RTC register descriptions in the RM0395 reference manual.

3. After reset, these pins are configured as JTAG/SW debug alternate functions, and the internal pull-up on PA15, PA13, PB4 pins and the internal pull-down on PA14 pin are activated.

	Table 17. Alternate function AF8 to AF15 (for AF0 to AF7 see Table 16)								
		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
P	ort	UART4, UART5, LPUART1	CAN1, TSC	OTG_FS, QUADSPI	-	SDMMC1, COMP1, COMP2, FMC, SWPMI1	SAI1, SAI2	TIM2, TIM15, TIM16, TIM17, LPTIM2	EVENTOUT
	PA0	UART4_TX	-	-	-	-	SAI1_EXTCLK	TIM2_ETR	EVENTOUT
	PA1	UART4_RX	-	-	-	-	-	TIM15_CH1N	EVENTOUT
	PA2	-	-	-	-	-	SAI2_EXTCLK	TIM15_CH1	EVENTOUT
	PA3	-	-	-	-	-	-	TIM15_CH2	EVENTOUT
	PA4	-	-	-	-	-	SAI1_FS_B	LPTIM2_OUT	EVENTOUT
	PA5	-	-	-	-	-	-	LPTIM2_ETR	EVENTOUT
	PA6	-	-	QUADSPI_BK1_IO3	-	TIM1_BKIN_ COMP2	TIM8_BKIN_ COMP2	TIM16_CH1	EVENTOUT
	PA7	-	-	QUADSPI_BK1_IO2	-	-	-	TIM17_CH1	EVENTOUT
Port A	PA8	-	-	OTG_FS_SOF	-	-	-	LPTIM2_OUT	EVENTOUT
	PA9	-	-	-	-	-	-	TIM15_BKIN	EVENTOUT
	PA10	-	-	OTG_FS_ID	-	-	-	TIM17_BKIN	EVENTOUT
	PA11	-	CAN1_RX	OTG_FS_DM	-	TIM1_BKIN2_ COMP1	-	-	EVENTOUT
	PA12	-	CAN1_TX	OTG_FS_DP	-	-	-	-	EVENTOUT
	PA13	-	-	OTG_FS_NOE	-	-	-	-	EVENTOUT
	PA14	-	-	-	-	-	-	-	EVENTOUT
	PA15	UART4_RTS _DE	TSC_G3_IO1	-	-	-	SAI2_FS_B	-	EVENTOUT

70/193

DocID027692 Rev 2

5

STM32L475xx

5

Memory mapping

Figure 7. STM32L475 memory map

DocID027692 Rev 2

Bus	Boundary address	Size (bytes)	Peripheral
	0x4000 4000 - 0x4000 43FF	1 KB	Reserved
	0x4000 3C00 - 0x4000 3FFF	1 KB	SPI3
	0x4000 3800 - 0x4000 3BFF	1 KB	SPI2
	0x4000 3400 - 0x4000 37FF	1 KB	Reserved
	0x4000 3000 - 0x4000 33FF	1 KB	IWDG
	0x4000 2C00 - 0x4000 2FFF	1 KB	WWDG
	0x4000 2800 - 0x4000 2BFF	1 KB	RTC
AFDI	0x4000 1800 - 0x4000 27FF	4 KB	Reserved
	0x4000 1400 - 0x4000 17FF	1 KB	TIM7
	0x4000 1000 - 0x4000 13FF	1 KB	TIM6
	0x4000 0C00- 0x4000 0FFF	1 KB	TIM5
	0x4000 0800 - 0x4000 0BFF	1 KB	TIM4
	0x4000 0400 - 0x4000 07FF	1 KB	TIM3
	0x4000 0000 - 0x4000 03FF	1 KB	TIM2

Table 18. STM32L475xx memory map and peripheral register b	boundary
addresses (continued) ⁽¹⁾	

1. The gray color is used for reserved boundary addresses.

Ш
ē
珨
Ţ.
a
2
÷
ar
aj.
8
er
S
Ē
ö

S
-
~
_
-
ω
N
_
· •
~
сл
x
- C 3
x
F 4

		Table 37.	Curre	nt con	sumpti	on in S	tandby	mode						
Symphol	Deremeter	Conditions				TYP			MAX ⁽¹⁾				11:00	
Symbol Parameter		-	V_{DD}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	
			1.8 V	114	355	1540	4146	10735	176	888	3850	10365	26838	
			2.4 V	138	407	1795	4828	12451	223	1018	4488	12070	31128	1
	Supply current	no independent watchdog	3 V	150	486	2074	5589	14291	263	1215	5185	13973	35728	1
I _{DD} (Standby)	in Standby mode (backup		3.6 V	198	618	2608	6928	17499	383	1545	6520	17320 (2)	43748	nA
	retained),		1.8 V	317	-	-	-	-	-	-	-	-	-	
	RTC disabled	with independent	2.4 V	391	-	-	-	-	-	-	-	-	-	
		watchdog	3 V	438	-	-	-	-	-	-	-	-	-	
		3.6 V	566	-	-	-	-	-	-	-	-	-		
		1.8 V	377	621	1873	4564	11318	491	1207	4250	10867	27537		
	RTC clocked by LSI, no independent watchdog	2.4 V	464	756	2210	5348	13166	614	1436	4986	12694	31986	_	
		3 V	572	913	2599	6219	15197	770	1727	5815	14729	36815		
			3.6 V	722	1144	3253	7724	18696	1012	2176	7294	18275	45184	nA
			1.8 V	456	-	-	-	-	-	-	-	-	-	
		RTC clocked by LSI, with	2.4 V	557	-	-	-	-	-	-	-	-	-	
	in Standby	independent watchdog	3 V	663	-	-	-	-	-	-	-	-	-	
I _{DD} (Standby	mode (backup		3.6 V	885	-	-	-	-	-	-	-	-	-	
with RTC)	registers		1.8 V	289	527	1747	4402	11009	-	-	-	-	-	
	RTC enabled	RTC clocked by LSE	2.4 V	396	671	2108	5202	12869	-	-	-	-	-	
		bypassed at 32768Hz	3 V	528	853	2531	6095	14915	-	-	-	-	-	_
			3.6 V	710	1111	3115	7470	18221	-	-	-	-	-	nA
			1.8 V	416	640	1862	4479	11908	-	-	-	-	-	_
		RTC clocked by LSE	2.4 V	514	796	2193	5236	13689	-	-	-	-	-	
		quartz ver in low drive mode	3 V	652	961	2589	6103	15598	-	-	-	-	-	4
			3.6 V	821	1226	3235	7551	17947	-	-	-	-	-	

100/193

5

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in *Table 40*. The MCU is placed under the following conditions:

- All I/O pins are in Analog mode
- The given value is calculated by measuring the difference of the current consumptions:
 - when the peripheral is clocked on
 - when the peripheral is clocked off
- Ambient operating temperature and supply voltage conditions summarized in *Table 19: Voltage characteristics*
- The power consumption of the digital part of the on-chip peripherals is given in *Table 40*. The power consumption of the analog part of the peripherals (where applicable) is indicated in each related section of the datasheet.

Peripheral		Range 1	Range 2	Low-power run and sleep	Unit
	Bus Matrix ⁽¹⁾	4.5	3.7	4.1	
	ADC independent clock domain	0.4	0.1	0.2	
	ADC AHB clock domain	5.5	4.7	5.5	
	CRC	0.4	0.2	0.3	
	DMA1	1.4	1.3	1.4	
	DMA2	1.5	1.3	1.4	
	FLASH	6.2	5.2	5.8	
	FMC	8.9	7.5	8.4	
АНВ	GPIOA ⁽²⁾	4.8	3.8	4.4	
	GPIOB ⁽²⁾	4.8	4.0	4.6	
	GPIOC ⁽²⁾	4.5	3.8	4.3	
	GPIOD ⁽²⁾	4.6	3.9	4.4	uA/MHz
	GPIOE ⁽²⁾	5.2	4.5	4.9	P
	GPIOF ⁽²⁾	5.9	4.9	5.7	
	GPIOG ⁽²⁾	4.3	3.8	4.2	
	GPIOH ⁽²⁾	0.7	0.6	0.8	
	OTG_FS independent clock domain	23.2	NA	NA	
	OTG_FS AHB clock domain	16.4	NA	NA	
	QUADSPI	7.8	6.7	7.3	
	RNG independent clock domain	2.2	NA	NA	
	RNG AHB clock domain	0.6	NA	NA	
	SRAM1	0.9	0.8	0.9	

Table 40. Peripheral current consumption

Symbol	Parameter	Conditions		(Min	Тур	Max	Unit
			Denne 0 to 2	V _{DD} =1.62 V to 3.6 V	-1.2	-	0.5	
Δ _{VDD} (MSI) ⁽²⁾			V _E to	V _{DD} =2.4 V to 3.6 V	-0.5	-	0.5	
	MSI oscillator frequency drift	MSI modo	Range 4 to 7	V _{DD} =1.62 V to 3.6 V	-2.5	-	0.7	0/
	over V _{DD} (reference is 3 V)	MSI mode	Range 4 to 7	V _{DD} =2.4 V to 3.6 V	-0.8	-		70
			Bango 8 to 11	V _{DD} =1.62 V to 3.6 V	-5	-	1	
			Range o to TT	V _{DD} =2.4 V to 3.6 V	-1.6	-		
	Frequency	T _A = -40 to 85 °		°C	-	1	2	
(MSI) ⁽²⁾⁽⁶⁾	variation in sampling mode ⁽³⁾	MSI mode T_A = -40 to 125		°C	-	2	4	%
P_USB	Period jitter for USB clock ⁽⁴⁾	PLL mode	for next transition	-	-	-	3.458	20
Jitter(MSI) ⁽⁶⁾		Range 11	for paired transition	-	-	-	3.916	115
MT_USB	Medium term jitter for USB clock ⁽⁵⁾	PLL mode	for next transition	-	-	-	2	20
Jitter(MSI) ⁽⁶⁾		Range 11	for paired transition	-	-	-	1	115
CC jitter(MSI) ⁽⁶⁾	RMS cycle-to- cycle jitter	PLL mode Range 11		-	-	60	-	ps
P jitter(MSI) ⁽⁶⁾	RMS Period jitter	PLL mode Range 11		-	-	50	-	ps
		Range 0		-	-	10	20	
		Range 1		-	-	5	10	
t (MOV(6)	MSI oscillator	Range 2		-	-	4	8	
I _{SU} (MISI) ⁽³⁾	start-up time	Range 3		-	-	3	7	us
		Range 4 to 7	7	-	-	3	6	
		Range 8 to 1	11	-	-	2.5	6	
			10 % of final frequency	-	-	0.25	0.5	
t _{STAB} (MSI) ⁽⁶⁾	MSI oscillator stabilization time	PLL mode Range 11	5 % of final frequency	-	-	0.5	1.25	ms
			1 % of final frequency	-	-	-	2.5	

Fable 49. MSI oscillato	r characteristics ⁽¹⁾	(continued)
-------------------------	----------------------------------	-------------

6.3.24 **DFSDM** characteristics

Unless otherwise specified, the parameters given in *Table 78* for DFSDM are derived from tests performed under the ambient temperature, f_{APB2} frequency and V_{DD} supply voltage conditions summarized in *Table 22: General operating conditions*.

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5 x VDD

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (DFSDM_CKINy, DFSDM_DATINy, DFSDM_CKOUT for DFSDM).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{DFSDMCLK}	DFSDM clock	-	-	-	f _{SYSCLK}	
f _{CKIN} (1/T _{CKIN})	Input clock frequency	SPI mode (SITP[1:0] = 01)	-	-	20 (f _{DFSDMCLK} /4)	MHz
fскоит	Output clock frequency	-	-	-	20	MHz
DuCy _{CKOUT}	Output clock frequency duty cycle	-	45	50	55	%
^t wh(CKIN) ^t wl(CKIN)	Input clock high and low time	SPI mode (SITP[1:0] = 01), External clock mode (SPICKSEL[1:0] = 0)	Т _{СКIN} /2-0.5	T _{CKIN} /2	-	
t _{su}	Data input setup time	SPI mode (SITP[1:0]=01), External clock mode (SPICKSEL[1:0] = 0)	0	-	-	
t _h	Data input hold time	ta input Id time SPI mode (SITP[1:0]=01), External clock mode (SPICKSEL[1:0] = 0)		-	-	ns
T _{Manchester}	$T_{Manchester} \begin{array}{c} Manchester \\ data period \\ (recovered \\ clock period) \end{array} \begin{array}{c} (SPICKSEL[1:0] = 0) \\ Manchester mode (SITP[1:0] \\ = 10 \text{ or } 11), \\ Internal clock mode \\ clock period) \end{array}$		(CKOUT DIV+1) x T _{DFSDMCLK}	-	(2 x CKOUTDIV) x T _{DFSDMCLK}	

Table 78. DFSDM characteristics⁽¹⁾

1. Data based on characterization results, not tested in production.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		$1.71 < V_{DD} < 3.6 V$, $C_{LOAD} = 20 pF$ Voltage Range 1	-	-	40	
F _{CK} 1/t _(CK)	Quad SPI clock	2 < V _{DD} < 3.6 V, C _{LOAD} = 20 pF Voltage Range 1	-	-	48	
	frequency	1.71 < V _{DD} < 3.6 V, C _{LOAD} = 15 pF Voltage Range 1	-	-	48	
		1.71 < V _{DD} < 3.6 V C _{LOAD} = 20 pF Voltage Range 2	-	-	26	
t _{w(CKH)}	Quad SPI clock high	f= 48 MHz, presc=0	t _(CK) /2-2	-	t _(CK) /2	
t _{w(CKL)}	and low time	AHBCLK - 40 Minz, prese-0	t _(CK) /2	-	t _(CK) /2+2	
t _{sf(IN)} ;t _{sr(IN)}	Data input setup time	Voltago Bango 1 and 2	3.5	-	-	
t _{hf(IN)} ; t _{hr(IN)}	Data input hold time	vollage Range Tanu Z	6.5	-	-	-
t _{vf(OUT)} ;t _{vr(OUT)}	Data autaut valid time	Voltage Range 1		11	12	115
		Voltage Range 2	-	15	19	
4 4 .	Data output hold time	Voltage Range 1	6	-		
^ւ հf(OUT) [,] ^ւ hr(OUT)		Voltage Range 2	8	-] -	

					(4)
Table 85.	QUADSPI	characteristics	in	DDR	mode ⁽¹⁾

1. Guaranteed by characterization results.

DocID027692 Rev 2

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	3T _{HCLK} -0.5	3T _{HCLK} +2	
t _{v(NOE_NE)}	FMC_NEx low to FMC_NOE low	2T _{HCLK} -0.5	2T _{HCLK} +0.5	
t _{w(NOE)}	FMC_NOE low time	T _{HCLK} +0.5	T _{HCLK} +1	
t _{h(NE_NOE)}	FMC_NOE high to FMC_NE high hold time	0	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	3	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	0	1	
t _{w(NADV)}	FMC_NADV low time	T _{HCLK} -0.5	T _{HCLK} +1	
t _{h(AD_NADV)}	FMC_AD(address) valid hold time after FMC_NADV high	0	-	ns
t _{h(A_NOE)}	Address hold time after FMC_NOE high	T _{HCLK} -0.5	-	
t _{h(BL_NOE)}	FMC_BL time after FMC_NOE high	0	-	
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	2	
t _{su(Data_NE)}	Data to FMC_NEx high setup time	T _{HCLK} -2	-	
t _{su(Data_NOE)}	Data to FMC_NOE high setup time	T _{HCLK} -1	-	
t _{h(Data_NE)}	Data hold time after FMC_NEx high	0	-	
t _{h(Data_NOE)}	Data hold time after FMC_NOE high	0	-	

Table 90. As	vnchronous multi	plexed PSRAM/NOR	read timings ⁽¹⁾⁽²⁾
10010 001710	y		roug uningo

1. CL = 30 pF.

2. Guaranteed by characterization results.

Table 91. Asynchronous multiplexed PSRAW/NOR read-NVVALL umings ~~	Table 91. As	vnchronous m	ultiplexed	PSRAM/NOR	read-NWAIT	timings $^{(1)(2)}$
--	--------------	--------------	------------	------------------	------------	---------------------

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	8T _{HCLK} +2	8T _{HCLK} +4	
t _{w(NOE)}	FMC_NWE low time	5T _{HCLK} -1	5T _{HCLK} +1.5	ne
$t_{su(NWAIT_NE)}$	FMC_NWAIT valid before FMC_NEx high	5T _{HCLK} +1.5	-	113
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} +1	-	

1. CL = 30 pF.

2. Guaranteed by characterization results.

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

7.1 LQFP100 package information

Figure 38. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline

1. Drawing is not to scale.

