

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	Coldfire V1
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	CANbus, I ² C, SCI, SPI, USB OTG
Peripherals	LVD, PWM, WDT
Number of I/O	66
Program Memory Size	128KB (128K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcf51jm128evlk

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1 Device Comparison

The MCF51JM128 series consists of the devices compared in Table 1.

Table 1. MCF51JM128 Series Device Comparison

Fasture	MCF51JM128			MCF51JM64			MCF51JM32		
Feature	80-pin	64-pin	44-pin	80-pin	64-pin	44-pin	80-pin	64-pin	44-pin
Flash memory size (KB)	128				64	1		32	
RAM size (KB)		16			16			16	
V1 ColdFire core with BDM (background debug module)				1	Yes		1		
ACMP (analog comparator)					Yes				
ADC channels (12-bit)	1	2	8	1	2	8	1	2	8
CAN (controller area network)	Yes	Yes	No	Yes	Yes	No	Yes	Yes	No
RNGA + CAU			•	•	Yes ¹	•			
CMT (carrier modulator timer)					Yes				
COP (computer operating properly)					Yes				
IIC1 (inter-integrated circuit)					Yes				
IIC2	Yes	N	lo	Yes	No		Yes No		
IRQ (interrupt request input)				Yes					
KBI (keyboard interrupts)	8	8	6	8	8	6	8	8	6
LVD (low-voltage detector)	Yes								
MCG (multipurpose clock generator)				Yes					
Port I/O ²	66	51	33	66	51	33	66	51	33
RGPIO (rapid general-purpose I/O)	16	6	0	16	6	0	16	6	0
RTC (real-time counter)	Yes								
SCI1 (serial communications interface)	Yes								
SCI2	Yes								
SPI1 (serial peripheral interface)	Yes								
SPI2					Yes				
TPM1 (timer/pulse-width modulator) channels	6	6	4	6	6	4	6	6	4
TPM2 channels	2								
USBOTG (USB On-The-Go dual-role controller)	Yes								
XOSC (crystal oscillator)	Yes								

¹ Only existed on special part number

- RTC
 - 8-bit modulus counter with binary- or decimal-based prescaler
 - External clock source for precise time base, time-of-day, calendar or task scheduling functions
 - Free running on-chip low power oscillator (1 kHz) for cyclic wake-up without external components
- Carrier modulator timer (CMT)
 - carrier generator, modulator, and transmitter drive the infrared out (IRO) pin
 - operation in independent high/low time control, baseband, FSK, and direct IRO control modes
- Input/Output
 - 66 GPIOs
 - Eight keyboard interrupt pins with selectable polarity
 - Hysteresis and configurable pull-up device on all input pins; configurable slew rate and drive strength on all output pins
 - 16 bits of Rapid GPIO connected to the processor's local 32-bit platform bus with set, clear, and faster toggle functionality

1.4 Part Numbers

Table 3. Orderable Part Number Summary

Freescale Part Number	Description	Flash / SRAM (KB)	Package	Temperature
MCF51JM128EVLK	MCF51JM128 ColdFire Microcontroller with CAU and RNGA Enabled	128 / 16	80 LQFP	–40 to +105 °C
MCF51JM128VLK	MCF51JM128 ColdFire Microcontroller	128 / 16	80 LQFP	–40 to +105 °C
MCF51JM128EVLH	CF51JM128EVLH MCF51JM128 ColdFire Microcontroller with CAU and RNGA Enabled		64 LQFP	–40 to +105 °C
MCF51JM128VLH	MCF51JM128 ColdFire Microcontroller	128 / 16	64 LQFP	–40 to +105 °C
MCF51JM128EVQH	MCF51JM128 ColdFire Microcontroller with CAU and RNGA Enabled	128 / 16	64 QFP	–40 to +105 °C
MCF51JM128VQH	MCF51JM128 ColdFire Microcontroller	128 / 16	64 QFP	–40 to +105 °C
MCF51JM128EVLD	MCF51JM128 ColdFire Microcontroller with CAU and RNGA Enabled	128 / 16	44 LQFP	–40 to +105 °C
MCF51JM128VLD	MCF51JM128 ColdFire Microcontroller	128 / 16	44 LQFP	–40 to +105 °C
MCF51JM64EVLK	MCF51JM64 ColdFire Microcontroller with CAU and RNGA Enabled	64 / 16	80 LQFP	–40 to +105 °C
MCF51JM64VLK	MCF51JM64 ColdFire Microcontroller	64 / 16	80 LQFP	–40 to +105 °C
MCF51JM64EVLH	MCF51JM64 ColdFire Microcontroller with CAU and RNGA Enabled	64 / 16	64 LQFP	–40 to +105 °C
MCF51JM64VLH	MCF51JM64 ColdFire Microcontroller	64 / 16	64 LQFP	–40 to +105 °C
MCF51JM64EVQH	MCF51JM64 ColdFire Microcontroller with CAU and RNGA Enabled	64 / 16	64 QFP	–40 to +105 °C
MCF51JM64VQH	MCF51JM64 ColdFire Microcontroller	64 / 16	64 QFP	–40 to +105 °C

1.5 **Pinouts and Packaging**

Figure 2 shows the pinout of the 80-pin LQFP.

Figure 3 shows the pinout of the 64-pin LQFP and QFP.

Figure 3. 64-pin QFP and LQFP

Pin	Num	Number < Lowest Priority> Highest			Highest
80	64	44	Port Pin	Alt 1	Alt 2
16	16	11	PTE3	TPM1CH1	—
17	—	_	PTC7	_	—
18	_	_	PTH0	SDA2	—
19	—	_	PTH1	SCL2	—
20	_		PTH2	RGPIO8	—
21	_	_	PTH3	RGPIO9	—
22		_	PTH4	RGPIO10	—
23	17	12	PTE4	MISO1	—
24	18	13	PTE5	MOSI1	—
25	19	14	PTE6	SPSCK1	—
26	20	15	PTE7	SS1	—
27	21	16	_	_	VDD
28	22	17	_	_	VSS
29	23	18	_	_	USBDN
30	24	19	_	_	USBDP
31	25	20	_		VUSB33
32	26	21	PTG0	KBIP0	USB_ALT_CLK
33	27	22	PTG1	KBIP1	—
34	28		PTA0	RGPIO0	USB_SESSVLD
35	29		PTA1	RGPIO1	USB_SESSEND
36	30		PTA2	RGPIO2	USB_VBUSVLD
37	31		PTA3	RGPIO3	USB_PULLUP(D+)
38	32		PTA4	RGPIO4	USB_DM_DOWN
39	33		PTA5	RGPIO5	USB_DP_DOWN
40			PTA6	RGPIO6	USB_ID
41	_	_	PTA7	RGPIO7	—
42	34	23	PTB0	MISO2	ADP0
43	35	24	PTB1	MOSI2	ADP1
44	36	25	PTB2	SPSCK2	ADP2
45	37	26	PTB3	SS2	ADP3
46	38	27	PTB4	KBIP4	ADP4
47	39	28	PTB5	KBIP5	ADP5
48	40	—	PTB6	ADP6	—

Table 4. Pin Assignments by Package and Pin Sharing Priority (continued)

- ³ 1s Single Layer Board, one signal layer
- ⁴ 2s2p Four Layer Board, 2 signal and 2 power layers

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 1

where:

 T_A = Ambient temperature, $^{\circ}C\theta_{JA}$ = Package thermal resistance, junction-to-ambient, $^{\circ}C/WP_D = P_{int} + P_{I/O}P_{int} = I_{DD} \times V_{DD}$, Watts — chip internal power $P_{I/O}$ = Power dissipation on input and output pins — user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C)$$
 Eqn. 2

Solving equations 1 and 2 for K gives:

$$K = P_D \times (T_A + 273^{\circ}C) + \theta_{JA} \times (P_D)^2$$
 Eqn. 3

where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving equations 1 and 2 iteratively for any value of T_A .

2.4 Electrostatic Discharge (ESD) Protection Characteristics

Although damage from static discharge is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with CDF-AEC-Q00 Stress Test Qualification for Automotive Grade Integrated Circuits. (http://www.aecouncil.com/) This device was qualified to AEC-Q100 Rev E.

A device is considered to have failed if, after exposure to ESD pulses, the device no longer meets the device specification requirements. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Model	Description	Symbol	Value	Unit
	Series Resistance	R1	1500	Ω
Human Body	Storage Capacitance	С	100	pF
	Number of Pulse per pin	_	3	
Latch-up	Minimum input voltage limit		-2.5	V
Laten-up	Maximum input voltage limit		7.5	V

Table 8. ESD and Latch-up Test Conditions

Figure 7. Typical High-side Drive (source) characteristics – High Drive (PTxDSn = 1)

Figure 8. Typical High-side Drive (source) characteristics – Low Drive (PTxDSn = 0)

2.6 Supply Current Characteristics

Table 11. Supply Current Characteristics

Num	С	Parameter		Symbol	V _{DD} (V)	Typical ¹	Max ²	Unit
1	C Run supply current ³ measured at (CPU clock =		clock =		5	4.0	7	س ۸
	$Z W \Pi Z, I_{Bus} = 1 W \Pi Z$			3	4.0	7	ma	
2	2 P Run supply current ³ measured at		(CPU clock =	RInn	5	19	30	
	$16 \text{ MHz}, T_{\text{Bus}} = 8 \text{ MHz})$	00		3	18.7	30	mA	
3	3 C Run supply current ³ measured at (CPU clock =		clock =		5	45	70	
	$48 \text{ MHz}, 1_{\text{Bus}} = 24 \text{ MHz})$			3	44	70	MA	

Num	С	Parameter		Symbol	V _{DD} (V)	Typical ¹	Max ²	Unit
4	С	Wait mode supply current ³ measured at	(CPU		5	2.03	3	
		$CIOCK = 2 MHZ, T_{Bus} = 1 MHZ)$			3	2	3	mA
5	С	Wait mode supply current ³ measured at	(CPU	WI _{DD}	5	7.73	12	
		clock = 16 MHz, t _{Bus} = 8 MHz)			3	7.7	12	mA
6	С	Wait mode supply current ³ measured at	(CPU		5	22	30	
		$CIOCK = 48$ MHz, $T_{Bus} = 24$ MHz)			3	21.9	30	MA
7	С	Stop2 mode supply current	–40 °C 25 °C 105 °C	S21	5	1.35	3 3 35	μΑ
			–40 °C 25 °C 105 °C		3	1.25	3 3 35	μΑ
8	Р	Stop3 mode supply current	–40 °C 25 °C 105 °C	531	5	1.41	3 3 35	μΑ
			–40 °C 25 °C 105 °C	DD	3	1.35	3 3 35	μΑ
9	С	Stop4 mode supply current	–40 °C 25 °C 105 °C	S4I _{DD}	5	106	200	μA
			–40 °C 25 °C 105 °C		3	96	200	μΑ
10	Р	RTC adder to stop2 or stop3 ⁴ , 25°C		6001	5	300		nA
				523IDDRTC	3	300		nA
11	Р	Adder to stop3 for oscillator enabled ⁵		S23I _{DDOSC}	5	5		μA
		(ENCLAEN = I and EREFSIEN = 1)			3	5		μA

Table 11.	Supply	Current	Characteristics
-----------	--------	---------	-----------------

¹ Typicals are measured at 25°C.

² Values given here are preliminary estimates prior to completing characterization.

³ All modules' clocks are switched on, code runs from flash, in FEI mode, and there are no DC loads on port pins.

⁴ Most customers are expected to find that auto-wakeup from stop2 or stop3 can be used instead of the higher current wait mode.

⁵ Values given under the following conditions: low range operation (RANGE = 0), low power mode (HGO = 0)

2.7 Analog Comparator (ACMP) Electricals

Num	С	Rating	Symbol	Min	Typical	Мах	Unit
1		Supply voltage	V _{DD}	2.7	_	5.5	V
2		Supply current (active)	I _{DDAC}	—	20	35	μΑ
3		Analog input voltage	V _{AIN}	V _{SS} – 0.3		V _{DD}	V
4		Analog input offset voltage	V _{AIO}		20	40	mV
5		Analog Comparator hysteresis	V _H	3.0	6.0	20.0	mV
6		Analog input leakage current	I _{ALKG}			1.0	μΑ
7		Analog Comparator initialization delay	t _{AINIT}	—	_	1.0	μS
8		Bandgap Voltage Reference Factory trimmed at $V_{DD} = 3.0$ V, Temp = 25°C	V _{BG}	1.19	1.20	1.21	V

2.8 ADC Characteristics

Fable 13. 5	Volt 12-bit	ADC Oper	ating Conditions
--------------------	-------------	----------	------------------

Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
Supply voltage	Absolute	V _{DDA}	2.7	_	5.5	V	
	Delta to V _{DD} (V _{DD} -V _{DDA}) ²	ΔV_{DDA}	-100	0	+100	mV	
Ground voltage	Delta to V _{SS} (V _{SS} -V _{SSA}) ²	ΔV_{SSA}	-100	0	+100	mV	
Ref Voltage High		V _{REFH}	2.7	V _{DDA}	V _{DDA}	V	
Ref Voltage Low		V _{REFL}	V _{SSA}	V _{SSA}	V _{SSA}	V	
Input Voltage		V _{ADIN}	V _{REFL}	_	V _{REFH}	V	
Input Capacitance		C _{ADIN}	—	4.5	5.5	pF	
Input Resistance		R _{ADIN}	_	3	5	kΩ	
Analog Source Resistance	12 bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz	R _{AS}			2 5	kΩ	External to MCU
	10 bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz				5 10		
	8 bit mode (all valid f _{ADCK})		—		10		
ADC Conversion	High Speed (ADLPC=0)	f _{ADCK}	0.4		8.0	MHz	
Clock Freq.	Low Power (ADLPC=1)		0.4	_	4.0		

¹ Typical values assume V_{DDA} = 5.0V, Temp = 25°C, f_{ADCK}=1.0MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² DC potential difference.

Figure 9. ADC Input Impedance Equivalency Diagram

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit	Comment
Supply Current ADLPC=1 ADLSMP=1 ADCO=1		Т	I _{DDAD}		133		μA	
Supply Current ADLPC=1 ADLSMP=0 ADCO=1		Т	I _{DDAD}	_	218	_	μA	
Supply Current ADLPC=0 ADLSMP=1 ADCO=1		Т	I _{DDAD}	_	327	—	μA	
Supply Current ADLPC=0 ADLSMP=0 ADCO=1		Р	I _{DDAD}	_	0.582	1	mA	
Supply Current	Stop, Reset, Module Off		I _{DDAD}		0.011	1	μΑ	
ADC Asynchronous Clock Source	High Speed (ADLPC=0)	Т	f _{ADACK}	2	3.3	5	MHz	t _{ADACK} =
	Low Power (ADLPC=1)			1.25	2	3.3		1/f _{ADACK}

Table 14. 5 Volt 12-bit	ADC Characteristics ($V_{\text{REFH}} = V_{\text{DDA}},$	$V_{REFL} = V_{SSA}$)

- ⁵ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{BUS}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.
- ⁶ 625 ns represents 5 time quanta for CAN applications, under worst case conditions of 8 MHz CAN bus clock, 1 Mbps CAN bus speed, and 8 time quanta per bit for bit time settings. 5 time quanta is the minimum time between a synchronization edge and the sample point of a bit using 8 time quanta per bit.
- ⁷ Below D_{lock} minimum, the MCG is guaranteed to enter lock. Above D_{lock} maximum, the MCG will not enter lock. But if the MCG is already in lock, then the MCG may stay in lock.
- ⁸ Below D_{unl} minimum, the MCG will not exit lock if already in lock. Above D_{unl} maximum, the MCG is guaranteed to exit lock.

2.11 AC Characteristics

This section describes ac timing characteristics for each peripheral system.

2.11.1 Control Timing

Num	С	Parameter	Symbol	Min	Typ ¹	Max	Unit
1		Bus frequency $(t_{cyc} = 1/f_{Bus})$	f _{Bus}	dc	_	24	MHz
2		Internal low-power oscillator period	t _{LPO}	700		1300	μs
3		External reset pulse width ² (t _{cyc} = 1/f _{Self_reset})	t _{extrst}	100		_	ns
4		Reset low drive	t _{rstdrv}	66 x t _{cyc}		_	ns
5		Active background debug mode latch setup time	t _{MSSU}	500		_	ns
6		Active background debug mode latch hold time	t _{MSH}	100		_	ns
7		IRQ pulse width Asynchronous path ² Synchronous path ³	t _{ILIH,} t _{IHIL}	100 1.5 x t _{cyc}	_	_	ns
8		KBIPx pulse width Asynchronous path ² Synchronous path ³	t _{ILIH,} t _{IHIL}	100 1.5 x t _{cyc}		_	ns
9		Port rise and fall time (load = 50 pF) ⁴ Slew rate control disabled (PTxSE = 0) High drive Slew rate control enabled (PTxSE = 1) High drive Slew rate control disabled (PTxSE = 0) Low drive Slew rate control enabled (PTxSE = 1) Low drive	^t Rise ^{, t} Fall		11 35 40 75		ns

Table 17. Control Timing

¹ Typical values are based on characterization data at V_{DD} = 5.0V, 25°C unless otherwise stated.

² This is the shortest pulse guaranteed to be recognized as a reset pin request. Shorter pulses are not guaranteed to override reset requests from internal sources.

³ This is the minimum pulse width guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.

 4 Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range –40°C to 105°C.

2.13 Flash Specifications

This section provides details about program/erase times and program-erase endurance for the Flash memory.

Program and erase operations do not require any special power sources other than the normal V_{DD} supply.

Num	С	Characteristic	Symbol	Min Typ ¹ Max		Unit	
1		Supply voltage for program/erase	V _{prog/erase}	2.7		5.5	V
2		Supply voltage for read operation	V _{Read}	2.7	2.7		V
3		Internal FCLK frequency ²	f _{FCLK}	150		200	kHz
4		Internal FCLK period (1/FCLK)	t _{Fcyc}	5 6		6.67	μs
5		Byte program time (random location) ⁽²⁾	t _{prog}	9			t _{Fcyc}
6		Byte program time (burst mode) ⁽²⁾	t _{Burst}	4			t _{Fcyc}
7		Page erase time ³	t _{Page}	4000			t _{Fcyc}
8		Mass erase time ⁽²⁾	t _{Mass}	20,000			t _{Fcyc}
9	с	Program/erase endurance ⁴ T _L to T _H = -40° C to + 105° C T = 25° C		10,000	 100,000	_	cycles
10		Data retention ⁵	t _{D_ret}	15	100	_	years

Table	21.	Flash	Characte	ristics
-------	-----	-------	----------	---------

¹ Typical values are based on characterization data at $V_{DD} = 5.0 \text{ V}$, 25°C unless otherwise stated.

² The frequency of this clock is controlled by a software setting.

- ³ These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase.
- ⁴ Typical endurance for Flash was evaluated for this product family on the 9S12Dx64. For additional information on how Freescale Semiconductor defines typical endurance, please refer to Engineering Bulletin EB619/D, *Typical Endurance for Nonvolatile Memory*.
- ⁵ Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale Semiconductor defines typical data retention, please refer to Engineering Bulletin EB618/D, Typical Data Retention for Nonvolatile Memory.

2.14 USB Electricals

The USB electricals for the USBOTG module conform to the standards documented by the Universal Serial Bus Implementers Forum. For the most up-to-date standards, visit http://www.usb.org.

If the Freescale USBOTG implementation requires additional or deviant electrical characteristics, this space would be used to communicate that information.

Mechanical Outline Drawings

3 Mechanical Outline Drawings

3.1 80-pin LQFP

Figure 18. 80-pin LQFP Diagram - I

Figure 19. 80-pin LQFP Diagram - II

N

***	MECHANICAL OUTLINES		DOCUME	NT NO:	98ARL1	0530D					
	DICTI	ONARY	PAGE:		1418						
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROL REPOSITORY, PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RFD.	DO NOT SCALE	THIS DRAWING	REV:		С						
NOTES:											
1. DIMENSIONS ARE IN MILLIMETERS.											
2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.											
3. DATUMS A, B AND D TO BE DETERMINED AT DATUM PLANE H.											
4. DIMENSIONS TO BE DETERMINED AT S	4 dimensions to be determined at seating plane c.										
5. THIS DIMENSION DOES NOT INCLUDE PROTRUSION SHALL NOT CAUSE THE BY MORE THAN 0.08 mm AT MAXIM LOCATED ON THE LOWER RADIUS OR PROTRUSION AND ADJACENT LEAD S	THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE UPPER LIMIT BY MORE THAN 0.08 mm AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD SHALL NOT BE LESS THAN 0.07 mm.										
6. THIS DIMENSION DOES NOT INCLUDE IS 0.25 mm PER SIDE. THIS DIMENSI INCLUDING MOLD MISMATCH.	MOLD PROTRUSION. A ON IS MAXIMUM PLAS	LOWABLE PROTRUSION TIC BODY SIZE DIMEN	N SION								
A EXACT SHAPE OF EACH CORNER IS O	OPTIONAL.										
8. THESE DIMENSIONS APPLY TO THE FL	AT SECTION OF THE	LEAD BETWEEN 0.1 m	m								
AND 0.25 MM FROM THE LEAD TIP.											
TITLE: 8010 10FP		CASE NUMBER: 1	418-01								
14 X 14 X 1.4	PKG,	STANDARD: NON-	-JEDEC								
0.65 PITCH, CASE	OUTLINE	PACKAGE CODE:	8245	SHEET	: 3	OF 4					

Figure 20. 80-pin LQFP Diagram - III

3.2 64-pin LQFP

Figure 21. 64-pin LQFP Diagram - I

	MECHANICAL OUTLINES DICTIONARY		DOCUMENT NO: 98ASS23234W							
© TIPESCAIE somiconductor © FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.			PAGE:	840F						
ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROL REPOSITORY. PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED.	DO NOT SCALE	THIS DRAWING	REV:	E						
NOTES:										
1. DIMENSIONS ARE IN MILLIMETERS.										
2. DIMENSIONING AND TO	2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.									
3. DATUMS A, B AND D T	D BE DETERMINE	D AT DATUM PL	ANE H.							
A DIMENSIONS TO BE DE	TERMINED AT SE	ATING PLANE C.								
THIS DIMENSION DOES PROTRUSION SHALL NO BY MORE THAN 0.08 m LOCATED ON THE LOWE PROTRUSION AND ADJA	NOT INCLUDE D T CAUSE THE LE m AT MAXIMUM M R RADIUS OR TH CENT LEAD SHAL	AMBAR PROTRUS AD WIDTH TO EX ATERIAL CONDI E FOOT. MINIMU L NOT BE LESS	ION. ALI KCEED TH TION. D JM SPACI THAN O.	LOWABLE DAMBAR HE UPPER LIMIT AMBAR CANNOT BE E BETWEEN 07 mm.						
A THIS DIMENSION DOES IS 0.25 mm PER SIDE DIMENSION INCLUDING	NOT INCLUDE M THIS DIMENSI MOLD MISMATCH	OLD PROTRUSION ON IS MAXIMUM	N. ALLOWA Plastic	ABLE PROTRUSION C BODY SIZE						
🛆 exact shape of each	CORNER IS OPT	IONAL.								
A THESE DIMENSIONS AP 0.1 mm AND 0.25 mm	A THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.1 mm AND 0.25 mm FROM THE LEAD TIP.									
TITLE: 64LD LQFP,		CASE NUMBER: 8	340F-02							
10 X 10 X 1.4	PKG,	STANDARD: JEDE	DEC MS-026 BCD							
U. 5 PIICH, CASE	UUILINE	PACKAGE CODE:	8426	SHEET: 3						

Figure 23. 64-pin LQFP Diagram - III

MCF51JM128 ColdFire Microcontroller, Rev. 4

NP

3.4 44-pin LQFP

Figure 27. 44-pin LQFP Diagram - I

Mechanical Outline Drawings

	MECHANICA	DUTLINES	DOCUMENT NO: 98ASS23225W								
	DICTI	DNARY	PAGE:	824D							
ELECTRINIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROL REPOSITORY. PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED 'CONTROLLED COPY' IN RED.	DO NOT SCALE	THIS DRAWING	REV:	D							
NOTES:											
1. DIMENSIONS AND TOLERANCING PER ASME Y14.5M-1994.											
2. CONTROLLING DIMENSION: MILLIMETER											
3. DATUM PLANE H IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE.											
4. DATUMS L, M AND N TO E	be determined a	t datum plane	Н.								
5. DIMENSIONS TO BE DETERI	MINED AT SEATING	G PLANE T.									
6. DIMENSIONS DO NOT INCLU SIDE. DIMENSIONS DO INCI PLANE H.	JDE MOLD PROTRU LUDE MOLD MISMA	JSION. ALLOWABLE ATCH AND ARE DE	e protru etermine	ISION IS 0.25 F D AT DATUM	'ER						
ZZ. DIMENSION DOES NOT INCL CAUSE THE DIMENSION TO ADJACENT LEAD OR PROT	UDE DAMBAR PR) EXCEED 0.53. M RUSION 0.07.	INIMUM SPACE BE	TWEEN P	USION SHALL N Rotrusion And)						
TITLE:		CASE NUMBER: 8	324D-02								
44 LD LQFP, 10 x 10 PKG 0.8 PITCH	1.4 THICK	STANDARD: JEDEC MS-026 BCB									
	1. 1 1110K	PACKAGE CODE:	8256	SHEET: 3	OF 4						

Figure 29. 44-pin LQFP Diagram - III