

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

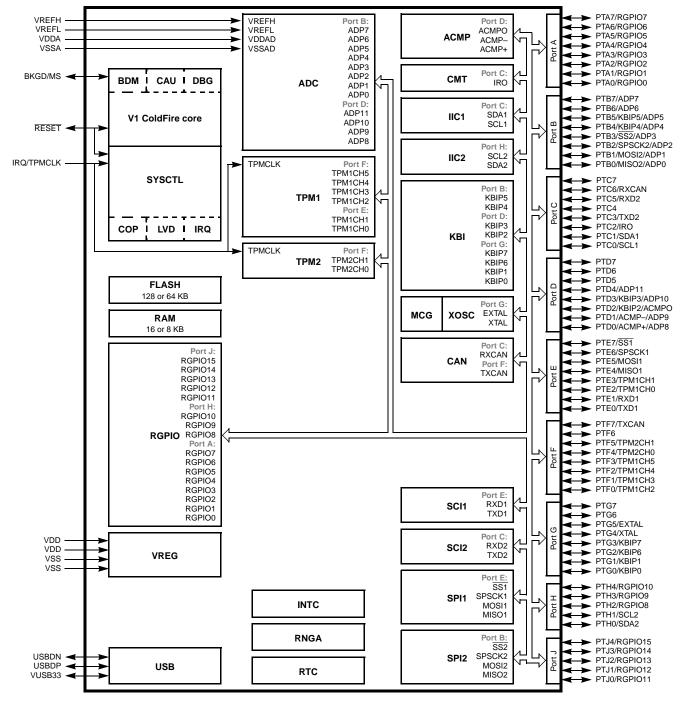
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	Coldfire V1
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	CANbus, I ² C, SCI, SPI, USB OTG
Peripherals	LVD, PWM, WDT
Number of I/O	51
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-QFP
Supplier Device Package	64-QFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcf51jm128evqh

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

² Up to 16 pins on Ports A, H, and J are shared with the ColdFire Rapid GPIO module.

1.2 Block Diagram

Figure 1 shows the connections between the MCF51JM128 series pins and modules.

1.3 Features

Table 2 describes the functional units of the MCF51JM128 series.

Unit	Function
CF1CORE (V1 ColdFire core)	Executes programs and interrupt handlers
BDM (background debug module)	Provides a single-pin debugging interface (part of the V1 ColdFire core)
DBG (debug)	Provides debugging and emulation capabilities (part of the V1 ColdFire core)
SYSCTL (system control)	Provides LVD, COP, external interrupt request, and so on
FLASH (flash memory)	Provides storage for program code and constants
RAM (random-access memory)	Provides storage for program code, constants, and variables
RGPIO (rapid general-purpose input/output)	Allows I/O port access at CPU clock speeds
VREG (voltage regulator)	Controls power management throughout the device
USBOTG (USB On-The-Go)	Supports the USB On-The-Go dual-role controller
ADC (analog-to-digital converter)	Measures analog voltages at up to 12 bits of resolution
TPM1, TPM2 (timer/pulse-width modulators)	Provide a variety of timing-based features
CF1_INTC (interrupt controller)	Controls and prioritizes all device interrupts
CAU (cryptographic acceleration unit)	Co-processor support for DES, 3DES, AES, MD5, and SHA-1
RNGA (random number generator accelerator)	32-bit random number generator that complies with FIPS-140
RTC (real-time counter)	Provides a constant-time base with optional interrupt
ACMP (analog comparator)	Compares two analog inputs
CMT (carrier modulator timer)	Infrared output used for the Remote Controller
IIC1, IIC2 (inter-integrated circuits)	Supports the standard IIC communications protocol
KBI (keyboard interrupt)	Provides pin interrupt capabilities
MCG (multipurpose clock generator)	Provides clocking options for the device, including a phase-locked loop (PLL) and frequency-locked loop (FLL) for multiplying slower reference clock sources
XOSC (crystal oscillator)	Supports low/high range crystals
CAN (controller area network)	Supports standard CAN communications protocol
SCI1, SCI2 (serial communications interfaces)	Serial communications UARTs that can support RS-232 and LIN protocols
SPI1, SPI2 (serial peripheral interfaces)	Provide a 4-pin synchronous serial interface

- RTC
 - 8-bit modulus counter with binary- or decimal-based prescaler
 - External clock source for precise time base, time-of-day, calendar or task scheduling functions
 - Free running on-chip low power oscillator (1 kHz) for cyclic wake-up without external components
- Carrier modulator timer (CMT)
 - carrier generator, modulator, and transmitter drive the infrared out (IRO) pin
 - operation in independent high/low time control, baseband, FSK, and direct IRO control modes
- Input/Output
 - 66 GPIOs
 - Eight keyboard interrupt pins with selectable polarity
 - Hysteresis and configurable pull-up device on all input pins; configurable slew rate and drive strength on all output pins
 - 16 bits of Rapid GPIO connected to the processor's local 32-bit platform bus with set, clear, and faster toggle functionality

1.4 Part Numbers

Table 3. Orderable Part Number Summary

Freescale Part Number	Description	Flash / SRAM (KB)	Package	Temperature
MCF51JM128EVLK	MCF51JM128 ColdFire Microcontroller with CAU and RNGA Enabled	128 / 16	80 LQFP	–40 to +105 °C
MCF51JM128VLK	MCF51JM128 ColdFire Microcontroller	128 / 16	80 LQFP	–40 to +105 °C
MCF51JM128EVLH	MCF51JM128 ColdFire Microcontroller with CAU and RNGA Enabled	128 / 16	64 LQFP	–40 to +105 °C
MCF51JM128VLH	MCF51JM128 ColdFire Microcontroller	128 / 16	64 LQFP	–40 to +105 °C
MCF51JM128EVQH	MCF51JM128 ColdFire Microcontroller with CAU and RNGA Enabled	128 / 16	64 QFP	–40 to +105 °C
MCF51JM128VQH	MCF51JM128 ColdFire Microcontroller	128 / 16	64 QFP	–40 to +105 °C
MCF51JM128EVLD	MCF51JM128 ColdFire Microcontroller with CAU and RNGA Enabled	128 / 16	44 LQFP	–40 to +105 °C
MCF51JM128VLD	MCF51JM128 ColdFire Microcontroller	128 / 16	44 LQFP	–40 to +105 °C
MCF51JM64EVLK	MCF51JM64 ColdFire Microcontroller with CAU and RNGA Enabled	64 / 16	80 LQFP	–40 to +105 °C
MCF51JM64VLK	MCF51JM64 ColdFire Microcontroller	64 / 16	80 LQFP	–40 to +105 °C
MCF51JM64EVLH	MCF51JM64 ColdFire Microcontroller with CAU and RNGA Enabled	64 / 16	64 LQFP	–40 to +105 °C
MCF51JM64VLH	MCF51JM64 ColdFire Microcontroller	64 / 16	64 LQFP	–40 to +105 °C
MCF51JM64EVQH	MCF51JM64 ColdFire Microcontroller with CAU and RNGA Enabled	64 / 16	64 QFP	−40 to +105 °C
MCF51JM64VQH	MCF51JM64 ColdFire Microcontroller	64 / 16	64 QFP	–40 to +105 °C

MCF51JM64EVLD	MCF51JM64 ColdFire Microcontroller	64 / 16	44 LQFP	–40 to +105 °C
	with CAU and RNGA Enabled			
MCF51JM64VLD	MCF51JM64 ColdFire Microcontroller	64 / 16	44 LQFP	–40 to +105 °C
MCF51JM32EVLK	MCF51JM32 ColdFire Microcontroller with CAU and RNGA Enabled	32 / 16	80 LQFP	–40 to +105 °C
MCF51JM32VLK	MCF51JM32 ColdFire Microcontroller	32 / 16	80 LQFP	–40 to +105 °C
MCF51JM32EVLH	MCF51JM32 ColdFire Microcontroller with CAU and RNGA Enabled	32 / 16	64 LQFP	–40 to +105 °C
MCF51JM32VLH	MCF51JM32 ColdFire Microcontroller	32 / 16	64 LQFP	–40 to +105 °C
MCF51JM32EVQH	MCF51JM32 ColdFire Microcontroller with CAU and RNGA Enabled	32 / 16	64 QFP	–40 to +105 °C
MCF51JM32VQH	MCF51JM32 ColdFire Microcontroller	32 / 16	64 QFP	–40 to +105 °C
MCF51JM32EVLD	MCF51JM32 ColdFire Microcontroller with CAU and RNGA Enabled	32 / 16	44 LQFP	–40 to +105 °C
MCF51JM32VLD	MCF51JM32 ColdFire Microcontroller	32 / 16	44 LQFP	–40 to +105 °C

Figure 4 shows the pinout of the 44-pin LQFP.

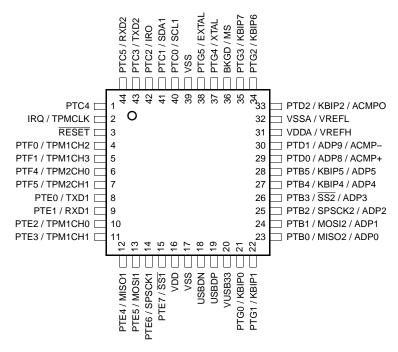


Figure 4. 44-pin LQFP

Table 4 shows the package pin assignments.

Pin	Pin Number		< Lowest Priority > Highest		
80	64	44	Port Pin	Alt 1	Alt 2
1	1	1	PTC4		_
2	2	2	_	IRQ	TPMCLK
3	3	3	—	RESET	_
4	4	4	PTF0	TPM1CH2	_
5	5	5	PTF1	TPM1CH3	_
6	6	_	PTF2	TPM1CH4	_
7	7		PTF3	TPM1CH5	_
8	8	6	PTF4	TPM2CH0	BUSCLK_OUT
9	9		PTC6	RXCAN	—
10	10	—	PTF7	TXCAN	_
11	11	7	PTF5	TPM2CH1	_
12	12	_	PTF6	—	—
13	13	8	PTE0	TXD1	_
14	14	9	PTE1	RXD1	
15	15	10	PTE2	TPM1CH0	

Pin Number < Lowest					Highest
80	64	44	Port Pin	Alt 1	Alt 2
16	16	11	PTE3	TPM1CH1	—
17		—	PTC7	_	—
18	—	_	PTH0	SDA2	—
19			PTH1	SCL2	—
20		_	PTH2	RGPIO8	—
21	_	_	PTH3	RGPIO9	—
22		_	PTH4	RGPIO10	—
23	17	12	PTE4	MISO1	—
24	18	13	PTE5	MOSI1	—
25	19	14	PTE6	SPSCK1	—
26	20	15	PTE7	SS1	—
27	21	16	_	_	VDD
28	22	17	_	_	VSS
29	23	18	_	_	USBDN
30	24	19	_	_	USBDP
31	25	20	_	_	VUSB33
32	26	21	PTG0	KBIP0	USB_ALT_CLK
33	27	22	PTG1	KBIP1	—
34	28		PTA0	RGPIO0	USB_SESSVLD
35	29		PTA1	RGPIO1	USB_SESSEND
36	30	_	PTA2	RGPIO2	USB_VBUSVLD
37	31	_	PTA3	RGPIO3	USB_PULLUP(D+)
38	32	_	PTA4	RGPIO4	USB_DM_DOWN
39	33	_	PTA5	RGPIO5	USB_DP_DOWN
40		—	PTA6	RGPIO6	USB_ID
41	—	—	PTA7	RGPI07	—
42	34	23	PTB0	MISO2	ADP0
43	35	24	PTB1	MOSI2	ADP1
44	36	25	PTB2	SPSCK2	ADP2
45	37	26	PTB3	SS2	ADP3
46	38	27	PTB4	KBIP4	ADP4
47	39	28	PTB5	KBIP5	ADP5
48	40	—	PTB6	ADP6	

Table 4. Pin Assignments by Package and Pin Sharing Priority (continued)

This section contains electrical specification tables and reference timing diagrams for the MCF51JM128 microcontroller, including detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications.

The electrical specifications are preliminary and are from previous designs or design simulations. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle. These specifications will, however, be met for production silicon. Finalized specifications will be published after complete characterization and device qualifications have been completed.

NOTE

The parameters specified in this data sheet supersede any values found in the module specifications.

2.1 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Table 5.	. Parameter Classifications	

Р	Those parameters are guaranteed during production testing on each individual device.
с	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled C in the parameter tables where appropriate.

2.2 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 6 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, V_{SS} or V_{DD}).

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to + 5.8	V
Input voltage	V _{In}	– 0.3 to V _{DD} + 0.3	V
Instantaneous maximum current Single pin limit (applies to all port pins) ¹ , ² , ³	I _D	± 25	mA
Maximum current into V _{DD}	I _{DD}	120	mA
Storage temperature	T _{stg}	-55 to +150	°C
Maximum junction temperature	Τ _J	150	°C

Table 6. Absolute Maximum Ratings

¹ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

- 2 All functional non-supply pins are internally clamped to V_{SS} and V_{DD}.
- ³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load shunt current is greater than maximum injection current. This is the greatest risk when the MCU is not consuming power. Examples: if no system clock is present or if the clock rate is low, which would reduce overall power consumption.

2.3 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} is small.

Rating	Symbol	Value	Unit
Operating temperature range (packaged)	T _A	-40 to +105	°C
Thermal resistance ^{1,2,3,4}			
80-pin LQFP			
1:		52	
2s2		40	
64-pin LQFP			
1:		65	
2s2	θ_{JA}	47	°C/W
64-pin QFP			
1:		54	
2s2		40	
44-pin LQFP			
1:		69	
2s2j)	48	

Table 7. Thermal Characteristics	Table	7.	Thermal	Characteristics
----------------------------------	-------	----	---------	-----------------

Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

² Junction to Ambient Natural Convection

Num	Rating	Symbol	Min	Max	Unit
1	Human Body Model (HBM)	V _{HBM}	+/- 2000	_	V
2	Charge Device Model (CDM)	V _{CDM}	+/- 500	_	V
3	Latch-up Current at $T_A = 105^{\circ}C$	I _{LAT}	+/- 100	_	mA

2.5 DC Characteristics

This section includes information about power supply requirements, I/O pin characteristics, and power supply current in various operating modes.

Num	С	Parameter	Symbol	Min	Typ ¹	Max	Unit
1		Operating voltage ²		2.7	_	5.5	V
	D	Output high voltage — Low Drive (PTxDSn = 0) 5 V, I _{Load} = -4 mA 3 V, I _{Load} = -2 mA 5 V, I _{Load} = -2 mA 3 V, I _{Load} = -1 mA		V _{DD} – 1.5 V _{DD} – 1.5 V _{DD} – 0.8 V _{DD} – 0.8			
2	Ρ	Output high voltage — High Drive (PTxDSn = 1) 5 V, I _{Load} = -15 mA 3 V, I _{Load} = -8 mA 5 V, I _{Load} = -8 mA 3 V, I _{Load} = -4 mA	V _{OH}	V _{DD} - 1.5 V _{DD} - 1.5 V _{DD} - 0.8 V _{DD} - 0.8			V
3	Ρ	Output low voltage — Low Drive (PTxDSn = 0) $5 \text{ V}, \text{ I}_{\text{Load}} = 4\text{mA}$ $3 \text{ V}, \text{ I}_{\text{Load}} = 2 \text{ mA}$ $5 \text{ V}, \text{ I}_{\text{Load}} = 2 \text{ mA}$ $3 \text{ V}, \text{ I}_{\text{Load}} = 1 \text{ mA}$	V _{OL}			1.5 1.5 0.8 0.8	V
		Output low voltage — High Drive (PTxDSn = 1) $5 \text{ V}, \text{ I}_{\text{Load}} = 15 \text{ mA}$ $3 \text{ V}, \text{ I}_{\text{Load}} = 8 \text{ mA}$ $5 \text{ V}, \text{ I}_{\text{Load}} = 8 \text{ mA}$ $3 \text{ V}, \text{ I}_{\text{Load}} = 4 \text{ mA}$	*			1.5 1.5 0.8 0.8	
4	Ρ	Output high current — Max total I _{OH} for all ports 5V 3V	I _{OHT}			100 60	mA
5	Ρ	Output low current — Max total I _{OL} for all ports 5V 3V	I _{OLT}		_	100 60	mA
6	Ρ	Input high voltage; all digital inputs					
		$V_{DD} = 5V$ $V_{DD} = 3V$	V _{IH}	3.25 2.10	_	 	V

Table 10. DC Characteristics

Num	С	Parameter	Symbol	Min	Typ ¹	Max	Unit
7	Ρ	Input low voltage; all digital inputs $V_{DD} = 5V$ $V_{DD} = 3V$	V _{IL}		_	1.75 1.05	v
8	Ρ	Input hysteresis; all digital inputs	V _{hys}	0.06 x V _{DD}			mV
9	Ρ	Input leakage current; input only pins ³	I _{In}	_	0.1	1	μA
10	Ρ	High Impedance (off-state) leakage current ³	I _{OZ}		0.1	1	μA
11	Ρ	Internal pullup resistors ⁴	R _{PU}	20	45	65	kΩ
12	Ρ	Internal pulldown resistors ⁵	R _{PD}	20	45	65	kΩ
13		Internal pullup resistor to USBDP (to V _{USB33}) Idle Transmit	R _{PUPD}	900 1425	1300 2400	1575 3090	kΩ
14	С	Input Capacitance; all non-supply pins	C _{In}		—	8	pF
15	D	RAM retention voltage ⁶	V _{RAM}	_	0.6	1.0	V
16	Ρ	POR rearm voltage	V _{POR}	0.9	1.4	2.0	V
17	D	POR rearm time	t _{POR}	10	—	_	μs
18	Ρ	Low-voltage detection threshold — high range V _{DD} falling V _{DD} rising	V _{LVD1}	3.9 4.0	4.0 4.1	4.1 4.2	V
19	Ρ	Low-voltage detection threshold — low range V _{DD} falling V _{DD} rising	V _{LVD0}	2.48 2.54	2.56 2.62	2.64 2.70	V
20	с	Low-voltage warning threshold — high range 1 V _{DD} falling V _{DD} rising	V _{LVW3}	4.5 4.6	4.6 4.7	4.7 4.8	V
21	Ρ	Low-voltage warning threshold — high range 0 V _{DD} falling V _{DD} rising	V _{LVW2}	4.2 4.3	4.3 4.4	4.4 4.5	V
22	Ρ	Low-voltage warning threshold low range 1 V _{DD} falling V _{DD} rising	V _{LVW1}	2.84 2.90	2.92 2.98	3.00 3.06	V
23	С	Low-voltage warning threshold — low range 0 V _{DD} falling V _{DD} rising	V _{LVW0}	2.66 2.72	2.74 2.80	2.82 2.88	V
24	Т	Low-voltage inhibit reset/recover hysteresis 5 V 3 V	V _{hys}		100 60	_	mV

Table 10. DC Characteristics	(continued)
------------------------------	-------------

Num	С	Parameter		Symbol	V _{DD} (V)	Typical ¹	Max ²	Unit
4	С	Wait mode supply current ³ measured at	(CPU		5	2.03	3	
		clock = 2 MHz, f _{Bus} = 1 MHz)			3	2	3	mA
5	С	Wait mode supply current ³ measured at	(CPU	WI _{DD}	5	7.73	12	_
		clock = 16 MHz, f _{Bus} = 8 MHz)			3	7.7	12	mA
6	С	Wait mode supply current ³ measured at	(CPU		5	22	30	
		clock = 48 MHz, f _{Bus} = 24 MHz)			3	21.9	30	mA
7	С	Stop2 mode supply current	–40 °C 25 °C 105 °C	S2I _{DD}	5	1.35	3 3 35	μΑ
		–40 °C 25 °C 105 °C	טט	3	1.25	3 3 35	μΑ	
8	Ρ	Stop3 mode supply current	–40 ℃ 25 ℃ 105 ℃	S3I _{DD}	5	1.41	3 3 35	μΑ
			–40 °C 25 °C 105 °C	UUI _{DD}	3	1.35	3 3 35	μΑ
9	С	Stop4 mode supply current	–40 °C 25 °C 105 °C	S4I _{DD}	5	106	200	μΑ
	–40 °C 25 °C 105 °C	טט	3	96	200	μΑ		
10	Р	RTC adder to stop2 or stop3 ⁴ , 25°C		0001	5	300	—	nA
				S23I _{DDRTC}	3	300		nA
11	Р	Adder to stop3 for oscillator enabled ⁵		S23I _{DDOSC}	5	5		μΑ
		(ERCLKEN =1 and EREFSTEN = 1)			3	5	_	μA

Table 11.	Supply	Current	Characteristics
-----------	--------	---------	-----------------

¹ Typicals are measured at 25°C.

² Values given here are preliminary estimates prior to completing characterization.

³ All modules' clocks are switched on, code runs from flash, in FEI mode, and there are no DC loads on port pins.

⁴ Most customers are expected to find that auto-wakeup from stop2 or stop3 can be used instead of the higher current wait mode.

⁵ Values given under the following conditions: low range operation (RANGE = 0), low power mode (HGO = 0)

- ⁵ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{BUS}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.
- ⁶ 625 ns represents 5 time quanta for CAN applications, under worst case conditions of 8 MHz CAN bus clock, 1 Mbps CAN bus speed, and 8 time quanta per bit for bit time settings. 5 time quanta is the minimum time between a synchronization edge and the sample point of a bit using 8 time quanta per bit.
- ⁷ Below D_{lock} minimum, the MCG is guaranteed to enter lock. Above D_{lock} maximum, the MCG will not enter lock. But if the MCG is already in lock, then the MCG may stay in lock.
- ⁸ Below D_{unl} minimum, the MCG will not exit lock if already in lock. Above D_{unl} maximum, the MCG is guaranteed to exit lock.

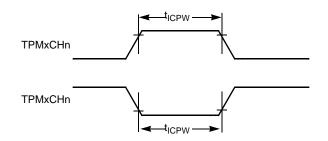
2.11 AC Characteristics

This section describes ac timing characteristics for each peripheral system.

2.11.1 Control Timing

Num	С	Parameter	Symbol	Min	Typ ¹	Мах	Unit
1		Bus frequency (t _{cyc} = 1/f _{Bus})	f _{Bus}	dc	_	24	MHz
2		Internal low-power oscillator period	t _{LPO}	700		1300	μS
3		External reset pulse width ² (t _{cyc} = 1/f _{Self_reset})	t _{extrst}	100		_	ns
4		Reset low drive	t _{rstdrv}	66 x t _{cyc}		_	ns
5		Active background debug mode latch setup time	t _{MSSU}	500		—	ns
6		Active background debug mode latch hold time	t _{MSH}	100		—	ns
7		IRQ pulse width Asynchronous path ² Synchronous path ³	t _{ILIH,} t _{IHIL}	100 1.5 x t _{cyc}	_	_	ns
8		KBIPx pulse width Asynchronous path ² Synchronous path ³	t _{ILIH,} t _{IHIL}	100 1.5 x t _{cyc}	_	_	ns
9		Port rise and fall time (load = 50 pF) ⁴ Slew rate control disabled (PTxSE = 0) High drive Slew rate control enabled (PTxSE = 1) High drive Slew rate control disabled (PTxSE = 0) Low drive Slew rate control enabled (PTxSE = 1) Low drive	t _{Rise} , t _{Fall}	—	11 35 40 75		ns

Table 17. Control Timing


¹ Typical values are based on characterization data at V_{DD} = 5.0V, 25°C unless otherwise stated.

² This is the shortest pulse guaranteed to be recognized as a reset pin request. Shorter pulses are not guaranteed to override reset requests from internal sources.

³ This is the minimum pulse width guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.

 4 Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range –40°C to 105°C.

Figure 13. Timer Input Capture Pulse

2.11.3 MSCAN

Table 19. MSCAN Wake-up Pulse Characteristics

Num	С	Parameter	Symbol	Min	Typ ¹	Max	Unit
1	D	MSCAN Wake-up dominant pulse filtered	t _{WUP}			2	μs
2	D	MSCAN Wake-up dominant pulse pass	t _{WUP}	5		5	μS

¹ Typical values are based on characterization data at V_{DD} = 5.0V, 25°C unless otherwise stated.

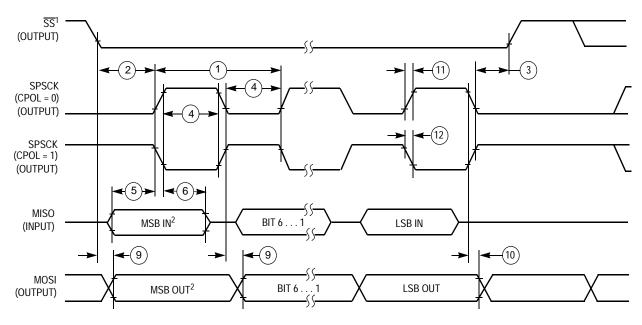
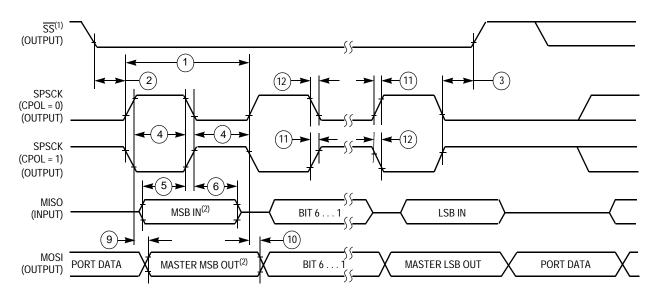

2.12 SPI Characteristics

Table 20 and Figure 14 through Figure 17 describe the timing requirements for the SPI system.

No.	С	Function	Symbol	Min	Max	Unit
_	D	Operating frequency Master Slave	f _{op}	f _{Bus} /2048 0	f _{Bus} /2 f _{Bus} /4	Hz
1	D	SPSCK period Master Slave	t _{SPSCK}	2 4	2048 —	t _{cyc} t _{cyc}
2	D	Enable lead time Master Slave	t _{Lead}	1/2 1		t _{SPSCK} t _{сус}
3	D	Enable lag time Master Slave	t _{Lag}	1/2 1		t _{SPSCK} t _{сус}
4	D	Clock (SPSCK) high or low time Master Slave	t _{WSPSCK}	$t_{cyc} - 30$ $t_{cyc} - 30$	1024 t _{cyc}	ns ns
5	D	Data setup time (inputs) Master Slave	t _{SU}	15 15		ns ns
6	D	Data hold time (inputs) Master Slave	t _{HI}	0 25	_	ns ns
7	D	Slave access time	t _a	—	1	t _{cyc}
8	D	Slave MISO disable time	t _{dis}	—	1	t _{cyc}
9	D	Data valid (after SPSCK edge) Master Slave	t _v		25 25	ns ns
10	D	Data hold time (outputs) Master Slave	t _{HO}	0 0		ns ns
11	D	Rise time Input Output	t _{RI} t _{RO}	_	t _{cyc} – 25 25	ns ns
12	D	Fall time Input Output	t _{FI} t _{FO}	_	t _{cyc} – 25 25	ns ns

Table 20. SPI Timing



NOTES:

- 1. \overline{SS} output mode (DDS7 = 1, SSOE = 1).
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 14. SPI Master Timing (CPHA = 0)

NOTES:

1. \overline{SS} output mode (DDS7 = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 15. SPI Master Timing (CPHA = 1)

2.13 Flash Specifications

This section provides details about program/erase times and program-erase endurance for the Flash memory.

Program and erase operations do not require any special power sources other than the normal V_{DD} supply.

Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit
1		Supply voltage for program/erase	V _{prog/erase}	2.7		5.5	V
2		Supply voltage for read operation	V _{Read}	2.7		5.5	V
3		Internal FCLK frequency ²	f _{FCLK}	150		200	kHz
4		Internal FCLK period (1/FCLK)	t _{Fcyc}	5		6.67	μs
5		Byte program time (random location) ⁽²⁾	t _{prog}	9			t _{Fcyc}
6		Byte program time (burst mode) ⁽²⁾	t _{Burst}	4			t _{Fcyc}
7		Page erase time ³	t _{Page}	4000			t _{Fcyc}
8		Mass erase time ⁽²⁾	t _{Mass}	20,000			t _{Fcyc}
9	с	Program/erase endurance ⁴ T _L to T _H = -40° C to + 105° C T = 25° C		10,000	 100,000		cycles
10		Data retention ⁵	t _{D_ret}	15	100	_	years

¹ Typical values are based on characterization data at $V_{DD} = 5.0 \text{ V}$, 25°C unless otherwise stated.

² The frequency of this clock is controlled by a software setting.

- ³ These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase.
- ⁴ Typical endurance for Flash was evaluated for this product family on the 9S12Dx64. For additional information on how Freescale Semiconductor defines typical endurance, please refer to Engineering Bulletin EB619/D, *Typical Endurance for Nonvolatile Memory*.
- ⁵ Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale Semiconductor defines typical data retention, please refer to Engineering Bulletin EB618/D, Typical Data Retention for Nonvolatile Memory.

2.14 USB Electricals

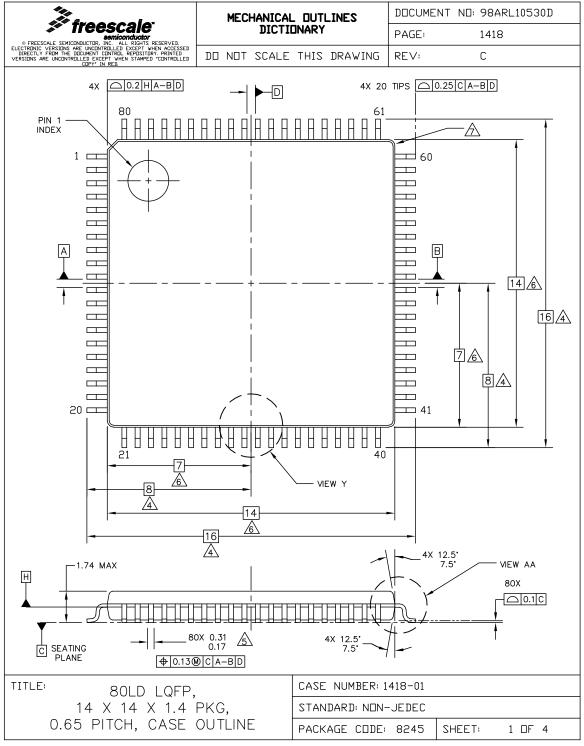
The USB electricals for the USBOTG module conform to the standards documented by the Universal Serial Bus Implementers Forum. For the most up-to-date standards, visit http://www.usb.org.

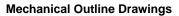
If the Freescale USBOTG implementation requires additional or deviant electrical characteristics, this space would be used to communicate that information.

Mechanical Outline Drawings

3 Mechanical Outline Drawings

3.1 80-pin LQFP




Figure 18. 80-pin LQFP Diagram - I

N

***	MECHANICAL OUTLINES		DOCUMENT NO: 98ARL10530D					
	DICTI	ONARY	PAGE:		1418			
 FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROL REPOSITORY. PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED. 	DO NOT SCALE	THIS DRAWING	REV:		С			
NOTES:								
1. DIMENSIONS ARE IN MILLIMETERS.								
2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.								
3. DATUMS A, B AND D TO BE DETERMINED AT DATUM PLANE H.								
A DIMENSIONS TO BE DETERMINED AT SEATING PLANE C.								
THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE UPPER LIMIT BY MORE THAN 0.08 mm AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD SHALL NOT BE LESS THAN 0.07 mm.								
6 THIS DIMENSION DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 mm PER SIDE. THIS DIMENSION IS MAXIMUM PLASTIC BODY SIZE DIMENSION INCLUDING MOLD MISMATCH.								
A EXACT SHAPE OF EACH CORNER IS C	OPTIONAL.							
1 THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.1 mm								
AND 0.25 mm FROM THE LEAD TIP.								
TITLE: 80LD LQFP,	PKG,	CASE NUMBER: 1	418-01					
14 X 14 X 1.4		STANDARD: NON-	-JEDEC					
0.65 PITCH, CASE		PACKAGE CODE:	8245	SHEET	: 3	OF 4		

Figure 20. 80-pin LQFP Diagram - III

	MECHANICAL OUTLINES DICTIONARY		DOCUMENT NO: 98ASS23234W					
Treescale semiconductor FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.			PAGE:	840F				
DIFFEESANCE SEMICONCINE, INC. ALL KINH'S KESENCE ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROL REPOSITORY. PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED.	DO NOT SCALE	THIS DRAWING	REV:	E				
NOTES:								
1. DIMENSIONS ARE IN MILLIMETERS.								
2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.								
3. DATUMS A, B AND D T	3. DATUMS A, B AND D TO BE DETERMINED AT DATUM PLANE H.							
A DIMENSIONS TO BE DE	\triangle dimensions to be determined at seating plane c.							
THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE UPPER LIMIT BY MORE THAN 0.08 mm AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD SHALL NOT BE LESS THAN 0.07 mm.								
THIS DIMENSION DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 mm PER SIDE. THIS DIMENSION IS MAXIMUM PLASTIC BODY SIZE DIMENSION INCLUDING MOLD MISMATCH.								
\triangle exact shape of each	\triangle exact shape of each corner is optional.							
A THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.1 mm AND 0.25 mm FROM THE LEAD TIP.								
TITLE: 64LD LQFP	PKG,	CASE NUMBER: 840F-02						
10 X 10 X 1.4		STANDARD: JEDEC MS-026 BCD						
0.5 PITCH, CASE	UUILINE	PACKAGE CODE:	8426	SHEET: 3				

Figure 23. 64-pin LQFP Diagram - III

MCF51JM128 ColdFire Microcontroller, Rev. 4

NP

NP

Mechanical Outline Drawings

3.3 64-pin QFP

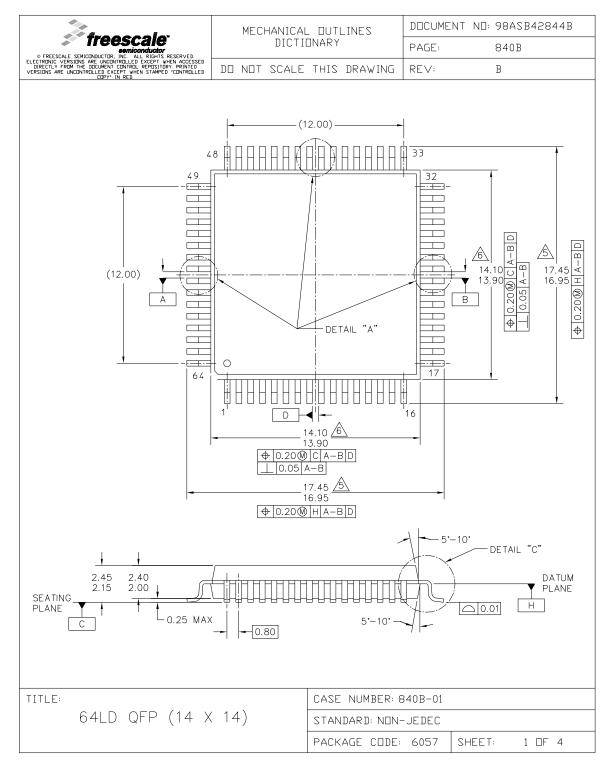


Figure 24. 64-pin QFP Diagram - I