

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Obsolete
Core Processor	Coldfire V1
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	CANbus, I ² C, SCI, SPI, USB OTG
Peripherals	LVD, PWM, WDT
Number of I/O	51
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcf51jm32evlh

Email: info@E-XFL.COM

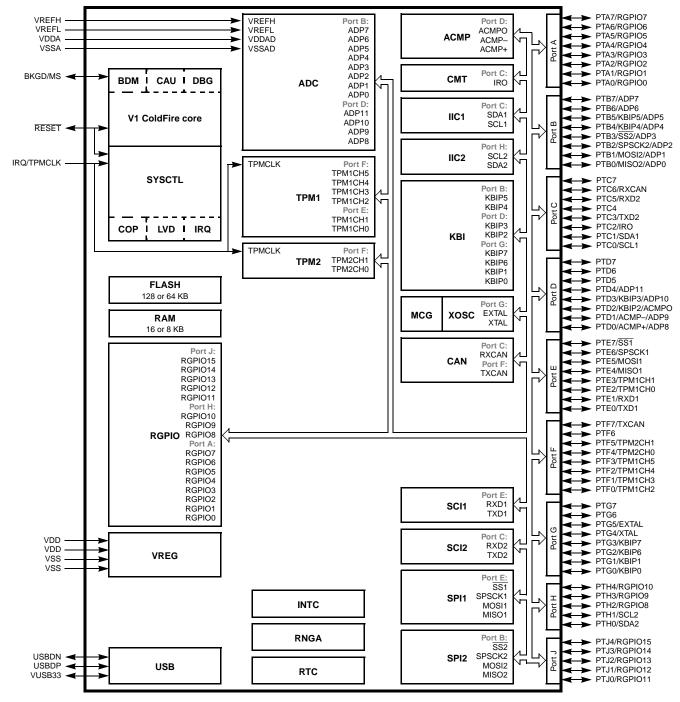
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1 Device Comparison

The MCF51JM128 series consists of the devices compared in Table 1.

Table 1. MCF51JM128 Series Device Comparison

Facture	М	CF51JM1	28	MCF51JM64			MCF51JM32		
Feature	80-pin	64-pin	44-pin	80-pin	64-pin	44-pin	80-pin	64-pin	44-pin
Flash memory size (KB)		128			64			32	
RAM size (KB)		16			16			16	
V1 ColdFire core with BDM (background debug module)					Yes				
ACMP (analog comparator)					Yes				
ADC channels (12-bit)	1	2	8	1	2	8	1	2	8
CAN (controller area network)	Yes	Yes	No	Yes	Yes	No	Yes	Yes	No
RNGA + CAU		1		1	Yes ¹	1	1		
CMT (carrier modulator timer)					Yes				
COP (computer operating properly)					Yes				
IIC1 (inter-integrated circuit)					Yes				
IIC2	Yes	N	0	Yes	No		Yes	Yes No	
IRQ (interrupt request input)		1		1	Yes		1		
KBI (keyboard interrupts)	8	8	6	8	8	6	8	8	6
LVD (low-voltage detector)	Yes								
MCG (multipurpose clock generator)				Yes					
Port I/O ²	66	51	33	66	51	33	66	51	33
RGPIO (rapid general-purpose I/O)	16	6	0	16	6	0	16	6	0
RTC (real-time counter)				1	Yes	1			
SCI1 (serial communications interface)					Yes				
SCI2					Yes				
SPI1 (serial peripheral interface)					Yes				
SPI2	Yes								
TPM1 (timer/pulse-width modulator) channels	6	6	4	6	6	4	6	6	4
TPM2 channels	2								
USBOTG (USB On-The-Go dual-role controller)	Yes								
XOSC (crystal oscillator)					Yes				


¹ Only existed on special part number

² Up to 16 pins on Ports A, H, and J are shared with the ColdFire Rapid GPIO module.

1.2 Block Diagram

Figure 1 shows the connections between the MCF51JM128 series pins and modules.

1.3 Features

Table 2 describes the functional units of the MCF51JM128 series.

Unit	Function
CF1CORE (V1 ColdFire core)	Executes programs and interrupt handlers
BDM (background debug module)	Provides a single-pin debugging interface (part of the V1 ColdFire core)
DBG (debug)	Provides debugging and emulation capabilities (part of the V1 ColdFire core)
SYSCTL (system control)	Provides LVD, COP, external interrupt request, and so on
FLASH (flash memory)	Provides storage for program code and constants
RAM (random-access memory)	Provides storage for program code, constants, and variables
RGPIO (rapid general-purpose input/output)	Allows I/O port access at CPU clock speeds
VREG (voltage regulator)	Controls power management throughout the device
USBOTG (USB On-The-Go)	Supports the USB On-The-Go dual-role controller
ADC (analog-to-digital converter)	Measures analog voltages at up to 12 bits of resolution
TPM1, TPM2 (timer/pulse-width modulators)	Provide a variety of timing-based features
CF1_INTC (interrupt controller)	Controls and prioritizes all device interrupts
CAU (cryptographic acceleration unit)	Co-processor support for DES, 3DES, AES, MD5, and SHA-1
RNGA (random number generator accelerator)	32-bit random number generator that complies with FIPS-140
RTC (real-time counter)	Provides a constant-time base with optional interrupt
ACMP (analog comparator)	Compares two analog inputs
CMT (carrier modulator timer)	Infrared output used for the Remote Controller
IIC1, IIC2 (inter-integrated circuits)	Supports the standard IIC communications protocol
KBI (keyboard interrupt)	Provides pin interrupt capabilities
MCG (multipurpose clock generator)	Provides clocking options for the device, including a phase-locked loop (PLL) and frequency-locked loop (FLL) for multiplying slower reference clock sources
XOSC (crystal oscillator)	Supports low/high range crystals
CAN (controller area network)	Supports standard CAN communications protocol
SCI1, SCI2 (serial communications interfaces)	Serial communications UARTs that can support RS-232 and LIN protocols
SPI1, SPI2 (serial peripheral interfaces)	Provide a 4-pin synchronous serial interface

Figure 4 shows the pinout of the 44-pin LQFP.

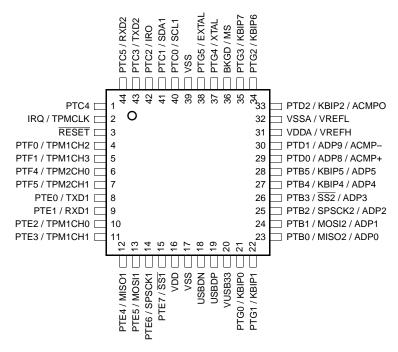


Figure 4. 44-pin LQFP

Table 4 shows the package pin assignments.

Pin	Num	ber	< Lov	< Lowest Priority > Highest			
80	64	44	Port Pin	Alt 1	Alt 2		
1	1	1	PTC4		_		
2	2	2	_	IRQ	TPMCLK		
3	3	3	—	RESET	_		
4	4	4	PTF0	TPM1CH2	_		
5	5	5	PTF1	TPM1CH3	_		
6	6	_	PTF2	TPM1CH4	_		
7	7		PTF3	TPM1CH5	_		
8	8	6	PTF4	TPM2CH0	BUSCLK_OUT		
9	9		PTC6	RXCAN	—		
10	10	—	PTF7	TXCAN	_		
11	11	7	PTF5	TPM2CH1	_		
12	12	_	PTF6	—	—		
13	13	8	PTE0	TXD1	_		
14	14	9	PTE1	RXD1			
15	15	10	PTE2	TPM1CH0			

Pin	Num	ber	< Lov	< Lowest Priority > Highest			
80	64	44	Port Pin	Alt 1	Alt 2		
49	41		PTB7	ADP7			
50	42	29	PTD0	ADP8	ACMP+		
51	43	30	PTD1	ADP9	ACMP-		
52	44	31	_	—	VDDA		
53	45		_	—	VREFH		
54	46	32	_	—	VREFL		
55	47		_	—	VSSA		
56	48	33	PTD2	KBIP2	ACMPO		
57	—	—	PTJ0	RGPIO11	—		
58	—	—	PTJ1	RGPIO12	—		
59	—	—	PTJ2	RGPIO13	—		
60	—	—	PTJ3	RGPIO14	—		
61	—	—	PTJ4	RGPIO15	—		
62	49	—	PTD3	KBIP3	ADP10		
63	50	—	PTD4	ADP11	_		
64	51	—	PTD5	_	_		
65	52	—	PTD6		_		
66	53	—	PTD7	_	_		
67	54	34	PTG2	KBIP6			
68	55	35	PTG3	KBIP7	—		
69	56	36	_	BKGD	MS		
70	57	37	PTG4	XTAL			
71	58	38	PTG5	EXTAL			
72	59	39		—	VSS		
73	—	—		—	VDD		
74	—	—	PTG6	—	—		
75	—		PTG7	—	—		
76	60	40	PTC0	SCL1	—		
77	61	41	PTC1	SDA1	—		
78	62	42	PTC2	IRO	—		
79	63	43	PTC3	TXD2	—		
80	64	44	PTC5	RXD2	—		

Table 4. Pin Assignments by Package and Pin Sharing Priority (continued)

2 **Preliminary Electrical Characteristics**

This section contains electrical specification tables and reference timing diagrams for the MCF51JM128 microcontroller, including detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications.

The electrical specifications are preliminary and are from previous designs or design simulations. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle. These specifications will, however, be met for production silicon. Finalized specifications will be published after complete characterization and device qualifications have been completed.

NOTE

The parameters specified in this data sheet supersede any values found in the module specifications.

2.1 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Table 5.	. Parameter Classifications	

Р	Those parameters are guaranteed during production testing on each individual device.
с	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled C in the parameter tables where appropriate.

2.2 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 6 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, V_{SS} or V_{DD}).

- ³ 1s Single Layer Board, one signal layer
- ⁴ 2s2p Four Layer Board, 2 signal and 2 power layers

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 1

where:

 T_A = Ambient temperature, $^{\circ}C\theta_{JA}$ = Package thermal resistance, junction-to-ambient, $^{\circ}C/WP_D = P_{int} + P_{I/O}P_{int} = I_{DD} \times V_{DD}$, Watts — chip internal power $P_{I/O}$ = Power dissipation on input and output pins — user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C)$$
 Eqn. 2

Solving equations 1 and 2 for K gives:

$$K = P_D \times (T_A + 273^{\circ}C) + \theta_{JA} \times (P_D)^2$$
 Eqn. 3

where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving equations 1 and 2 iteratively for any value of T_A .

2.4 Electrostatic Discharge (ESD) Protection Characteristics

Although damage from static discharge is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with CDF-AEC-Q00 Stress Test Qualification for Automotive Grade Integrated Circuits. (http://www.aecouncil.com/) This device was qualified to AEC-Q100 Rev E.

A device is considered to have failed if, after exposure to ESD pulses, the device no longer meets the device specification requirements. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Model	Description	Symbol	Value	Unit
	Series Resistance	R1	1500	Ω
Human Body	dy Storage Capacitance	С	100	pF
	Number of Pulse per pin	_	3	
Latch-up	Minimum input voltage limit		-2.5	V
	Maximum input voltage limit		7.5	V

Table 8. ESD and Latch-up Test Conditions

Num	С	Parameter	Symbol	Min	Typ ¹	Max	Unit
7	Ρ	Input low voltage; all digital inputs $V_{DD} = 5V$ $V_{DD} = 3V$	V _{IL}		_	1.75 1.05	v
8	Ρ	Input hysteresis; all digital inputs	V _{hys}	0.06 x V _{DD}			mV
9	Ρ	Input leakage current; input only pins ³	I _{In}	_	0.1	1	μA
10	Ρ	High Impedance (off-state) leakage current ³	I _{OZ}		0.1	1	μA
11	Ρ	Internal pullup resistors ⁴	R _{PU}	20	45	65	kΩ
12	Ρ	Internal pulldown resistors ⁵	R _{PD}	20	45	65	kΩ
13		Internal pullup resistor to USBDP (to V _{USB33}) Idle Transmit	R _{PUPD}	900 1425	1300 2400	1575 3090	kΩ
14	С	Input Capacitance; all non-supply pins	C _{In}	_	—	8	pF
15	D	RAM retention voltage ⁶	V _{RAM}	_	0.6	1.0	V
16	Ρ	POR rearm voltage	V _{POR}	0.9	1.4	2.0	V
17	D	POR rearm time	t _{POR}	10	—	_	μs
18	Ρ	Low-voltage detection threshold — high range V _{DD} falling V _{DD} rising	V _{LVD1}	3.9 4.0	4.0 4.1	4.1 4.2	V
19	Ρ	Low-voltage detection threshold — low range V _{DD} falling V _{DD} rising	V _{LVD0}	2.48 2.54	2.56 2.62	2.64 2.70	V
20	с	Low-voltage warning threshold — high range 1 V _{DD} falling V _{DD} rising	V _{LVW3}	4.5 4.6	4.6 4.7	4.7 4.8	V
21	Ρ	Low-voltage warning threshold — high range 0 V _{DD} falling V _{DD} rising	V _{LVW2}	4.2 4.3	4.3 4.4	4.4 4.5	V
22	Ρ	Low-voltage warning threshold low range 1 V _{DD} falling V _{DD} rising	V _{LVW1}	2.84 2.90	2.92 2.98	3.00 3.06	V
23	С	Low-voltage warning threshold — low range 0 V _{DD} falling V _{DD} rising	V _{LVW0}	2.66 2.72	2.74 2.80	2.82 2.88	V
24	Т	Low-voltage inhibit reset/recover hysteresis 5 V 3 V	V _{hys}		100 60	_	mV

Table 10. DC Characteristics	(continued)
------------------------------	-------------

2.7 Analog Comparator (ACMP) Electricals

Num	С	Rating	Symbol	Min	Typical	Мах	Unit
1		Supply voltage	V _{DD}	2.7	—	5.5	V
2		Supply current (active)	I _{DDAC}	—	20	35	μΑ
3		Analog input voltage	V _{AIN}	$V_{SS} - 0.3$	_	V _{DD}	V
4		Analog input offset voltage	V _{AIO}		20	40	mV
5		Analog Comparator hysteresis	V _H	3.0	6.0	20.0	mV
6		Analog input leakage current	I _{ALKG}			1.0	μΑ
7		Analog Comparator initialization delay	t _{AINIT}	_	_	1.0	μS
8		Bandgap Voltage Reference Factory trimmed at V_{DD} = 3.0 V, Temp = 25°C	V _{BG}	1.19	1.20	1.21	V

2.8 ADC Characteristics

Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
Supply voltage	Absolute	V _{DDA}	2.7	_	5.5	V	
	Delta to V _{DD} (V _{DD} -V _{DDA}) ²	ΔV_{DDA}	-100	0	+100	mV	
Ground voltage	Delta to V _{SS} (V _{SS} -V _{SSA}) ²	ΔV_{SSA}	-100	0	+100	mV	
Ref Voltage High		V _{REFH}	2.7	V _{DDA}	V _{DDA}	V	
Ref Voltage Low		V _{REFL}	V _{SSA}	V _{SSA}	V _{SSA}	V	
Input Voltage		V _{ADIN}	V _{REFL}	_	V _{REFH}	V	
Input Capacitance		C _{ADIN}	_	4.5	5.5	pF	
Input Resistance		R _{ADIN}	—	3	5	kΩ	
Analog Source Resistance	12 bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz	R _{AS}	_		2 5	kΩ	External to MCU
	10 bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz		_	_	5 10		
	8 bit mode (all valid f _{ADCK})	1	—	—	10		
ADC Conversion	High Speed (ADLPC=0)	f _{ADCK}	0.4		8.0	MHz	
Clock Freq.	Low Power (ADLPC=1)	1	0.4	—	4.0		

¹ Typical values assume V_{DDA} = 5.0V, Temp = 25°C, f_{ADCK}=1.0MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² DC potential difference.

Preliminary Electrical Characteristics

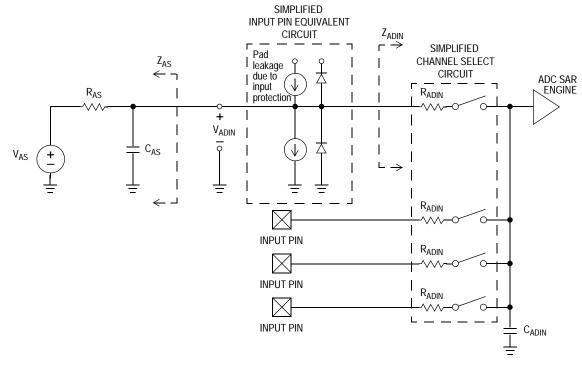


Figure 9. ADC Input Impedance Equivalency Diagram

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit	Comment
Supply Current ADLPC=1 ADLSMP=1 ADCO=1		Т	I _{DDAD}	_	133	_	μΑ	
Supply Current ADLPC=1 ADLSMP=0 ADCO=1		T	I _{DDAD}	_	218	_	μΑ	
Supply Current ADLPC=0 ADLSMP=1 ADCO=1		Т	I _{DDAD}	—	327	—	μA	
Supply Current ADLPC=0 ADLSMP=0 ADCO=1		Р	I _{DDAD}		0.582	1	mA	
Supply Current	Stop, Reset, Module Off		I _{DDAD}		0.011	1	μΑ	
ADC	High Speed (ADLPC=0)	Т	f _{ADACK}	2	3.3	5	MHz	t _{ADACK} =
Asynchronous Clock Source	Low Power (ADLPC=1)			1.25	2	3.3		1/f _{ADACK}

Table 14. 5 Volt 12-bit ADC Characteristics	(V _{REFH} = V _{DDA}	, V _{REFL} = V _{SSA})
---	---------------------------------------	--

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit	Comment	
Conversion Time	Short Sample (ADLSMP=0)	Т	t _{ADC}	_	20	_	ADCK	See Table 9 for	
(Including sample time)	Long Sample (ADLSMP=1)			_	40		cycles	conversion time variances	
Sample Time	Short Sample (ADLSMP=0)	Т	t _{ADS}	_	3.5		ADCK		
	Long Sample (ADLSMP=1)				23.5	_	cycles		
Total Unadjusted	12 bit mode	Т	E _{TUE}	_	±3.0	_	LSB ²	Includes	
Error	10 bit mode	Р		_	±1	±2.5		quantization	
	8 bit mode	Т			±0.5	±1.0			
Differential	12 bit mode	Т	DNL	—	±1.75		LSB ²		
Non-Linearity	10 bit mode ³	Р		—	±0.5	±1.0			
	8 bit mode ³	Т		—	±0.3	±0.5			
Integral	12 bit mode	Т	INL	—	±1.5		LSB ²		
Non-Linearity	10 bit mode	Т		—	±0.5	±1.0			
	8 bit mode	Т	-	_	±0.3	±0.5	-		
Zero-Scale Error	12 bit mode	Т	E _{ZS}	_	±1.5	_	LSB ²	$V_{ADIN} = V_{SSAD}$	
	10 bit mode	Р		—	±0.5	±1.5			
	8 bit mode	Т	-	_	±0.5	±0.5	-		
Full-Scale Error	12 bit mode	Т	E _{FS}	_	±1	_	LSB ²	$V_{ADIN} = V_{DDAD}$	
	10 bit mode	Т		—	±0.5	±1			
	8 bit mode	Т		—	±0.5	±0.5			
Quantization	12 bit mode	D	EQ	—	-1 to 0		LSB ²		
Error	10 bit mode			—	—	±0.5			
	8 bit mode			—	—	±0.5			
Input Leakage	12 bit mode	D	E _{IL}	—	±1		LSB ²	Pad leakage ⁴ *	
Error	10 bit mode			—	±0.2	±2.5	-	R _{AS}	
	8 bit mode			_	±0.1	±1			
Temp Sensor Voltage	25°C	D	V _{TEMP25}	—	1.396	—	V		
Temp Sensor	-40°C - 25°C	D	m	_	3.266		mV/ºC		
Slope	25°C - 125°C			_	3.638		1		

Table 14. 5 Volt 12-bit ADC Characteristics (V_{REFH} = V_{DDA}, V_{REFL} = V_{SSA}) (continued)

¹ Typical values assume V_{DDA} = 5.0V, Temp = 25°C, f_{ADCK}=1.0MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² 1 LSB = $(V_{REFH} - V_{REFL})/2^{N}$

³ Monotonicity and No-Missing-Codes guaranteed in 10 bit and 8 bit modes

⁴ Based on input pad leakage current. Refer to pad electricals.

Preliminary Electrical Characteristics

2.9 External Oscillator (XOSC) Characteristics

Table 15. Oscillator Electrical Specifications (Temperature Range = -40 to 105°C Ambient)

Num	С	Rating	Syn	nbol	Min	Typ ¹	Max	Unit
1		Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) • Low range (RANGE = 0) • High range (RANGE = 1) FEE or FBE mode ² • High range (RANGE = 1) PEE or PBE mode ³ • High range (RANGE = 1, HGO = 1) BLPE mode • High range (RANGE = 1, HGO = 0) BLPE mode	f _h f _{hi} f _{hi-}	io ii-fll i-pll -hgo ii-lp	32 1 1 1 1		38.4 5 16 16 8	kHz MHz MHz MHz MHz
2		Load capacitors		C ₁ C ₂			or resonato commend	
3		Feedback resistor • Low range (32 kHz to 38.4 kHz) • High range (1 MHz to 16 MHz)	F	۲ _F		10 1		ΜΩ ΜΩ
4		Series resistor • Low range, low gain (RANGE = 0, HGO = 0) • Low range, high gain (RANGE = 0, HGO = 1) $\geq 8 M$ 4 M 1 M • High range, low gain (RANGE = 1, HGO = 0) • High range, high gain (RANGE = 1, HGO = 1) $\geq 8 M$ 4 M 1 M	Hz Hz Hz Hz	₹s		0 100 0 0 0	 0 10 20	kΩ
5	т	Crystal start-up time ⁴ • Low range, low gain (RANGE = 0, HGO = 0) • Low range, high gain (RANGE = 0, HGO = 1) • High range, low gain (RANGE = 1, HG0 = 0) ⁵ • High range, high gain (RANGE = 1, HG0 = 1) ⁵	t t	TL-LP L-HGO TH-LP H-HGO	 	200 400 5 15	 	ms
6	т	Square wave input clock frequency (EREFS = 0, ERCLKEN = ⁻ • FEE or FBE mode ² • PEE or PBE mode ³ • BLPE mode		xtal	0.03125 1 0		5 16 40	MHz MHz MHz

¹ Data in Typical column was characterized at 5.0 V, 25°C or is typical recommended value.

² When MCG is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz.

³ When MCG is configured for PEE or PBE mode, input clock source must be divisible using RDIV to within the range of 1 MHz to 2 MHz.

⁴ This parameter is characterized and not tested on each device. Proper PC board-layout procedures must be followed to achieve specifications.

⁵ 4 MHz crystal

2.10 MCG Specifications

Table 16. MCG Frequency Specifications (Temperature Range = -40 to 125°C Ambient)

Num	С	Rating		Symbol	Min	Typical ¹	Max	Unit
1	Ρ	Internal reference frequenc = 5 V and temperature = 25	f _{int_ft}	—	32.768	—	kHz	
2	Ρ	Average internal reference	frequency – untrimmed	f _{int_ut}	31.25		39.0625	kHz
3	Т	Internal reference startup ti	me	t _{irefst}	—	60	100	μs
	Ρ	DCO output frequency	Low range (DRS=00)		16	_	20	
4	Ρ	range - untrimmed ²	Mid range (DRS=01)	f _{dco_ut}	32	_	40	MHz
	Ρ		High range (DRS=10)		48		60	
	Ρ	DCO output frequency ²	Low range (DRS=00)		—	19.92	—	
5	Ρ	Reference =32768Hz	Mid range (DRS=01)	f _{dco_DMX32}	—	39.85	—	MHz
	Ρ	and DMX32 = 1	High range (DRS=10)		—	59.77	—	
6	D	Resolution of trimmed DCC voltage and temperature (u	,	$\Delta f_{dco_res_t}$	—	±0.1	±0.2	%f _{dco}
7	D	Resolution of trimmed DCC voltage and temperature (n	$\Delta f_{dco_res_t}$	_	±0.2	±0.4	%f _{dco}	
8	D	Total deviation of trimmed DCO output frequency over voltage and temperature		Δf_{dco_t}	—	0.5 -1.0	±2	%f _{dco}
9	D	Total deviation of trimmed DCO output frequency over fixed voltage and temperature range of $0 - 70 \degree$ C		Δf_{dco_t}	—	±0.5	±1	%f _{dco}
10	D	FLL acquisition time ³		t _{fll_acquire}	—	_	1	ms
11	D	PLL acquisition time ⁴		t _{pll_acquire}	—	_	1	ms
12	D	Long term Jitter of DCO ou 2ms interval) ⁵	put clock (averaged over	C _{Jitter}	_	0.02	0.2	%f _{dco}
13	D	VCO operating frequency		f _{vco}	7.0	_	55.0	MHz
14	D	Jitter of PLL output clock m		f _{pll_jitter_625ns}	—	0.566 ⁵	—	%f _{pll}
15	D	Lock entry frequency tolera		D _{lock}	±1.49	_	±2.98	%
16	D	Lock exit frequency tolerand	ce ⁸	D _{unl}	±4.47	_	±5.97	%
17	D	Lock time — FLL		t _{fll_lock}	_	_	t _{fll_acquire+} 1075(1/fint_t)	S
18	D	Lock time — PLL		t _{pll_lock}	_	_	t _{pll_acquire+} 1075(1/ ^f pll_r ef)	S
19	D	Loss of external clock minir = 0	num frequency – RANGE	f _{loc_low}	(3/5) x f _{int}	_	—	kHz

¹ Data in Typical column was characterized at 5.0 V, 25C or is typical recommended value

² The resulting bus clock frequency should not exceed the maximum specified bus clock frequency of the device.

³ This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

⁴ This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

2.12 SPI Characteristics

Table 20 and Figure 14 through Figure 17 describe the timing requirements for the SPI system.

No.	С	Function	Symbol	Min	Max	Unit
_	D	Operating frequency Master Slave	f _{op}	f _{Bus} /2048 0	f _{Bus} /2 f _{Bus} /4	Hz
1	D	SPSCK period Master Slave	t _{SPSCK}	2 4	2048 —	t _{cyc} t _{cyc}
2	D	Enable lead time Master Slave	t _{Lead}	1/2 1		t _{SPSCK} t _{сус}
3	D	Enable lag time Master Slave	t _{Lag}	1/2 1		t _{SPSCK} t _{сус}
4	D	Clock (SPSCK) high or low time Master Slave	t _{WSPSCK}	$\begin{array}{c}t_{cyc}-30\\t_{cyc}-30\end{array}$	1024 t _{cyc}	ns ns
5	D	Data setup time (inputs) Master Slave	t _{SU}	15 15	_	ns ns
6	D	Data hold time (inputs) Master Slave	t _{HI}	0 25	_	ns ns
7	D	Slave access time	t _a	—	1	t _{cyc}
8	D	Slave MISO disable time	t _{dis}	—	1	t _{cyc}
9	D	Data valid (after SPSCK edge) Master Slave	t _v		25 25	ns ns
10	D	Data hold time (outputs) Master Slave	t _{HO}	0 0		ns ns
11	D	Rise time Input Output	t _{RI} t _{RO}	_	t _{cyc} – 25 25	ns ns
12	D	Fall time Input Output	t _{FI} t _{FO}	_	t _{cyc} – 25 25	ns ns

Table 20. SPI Timing

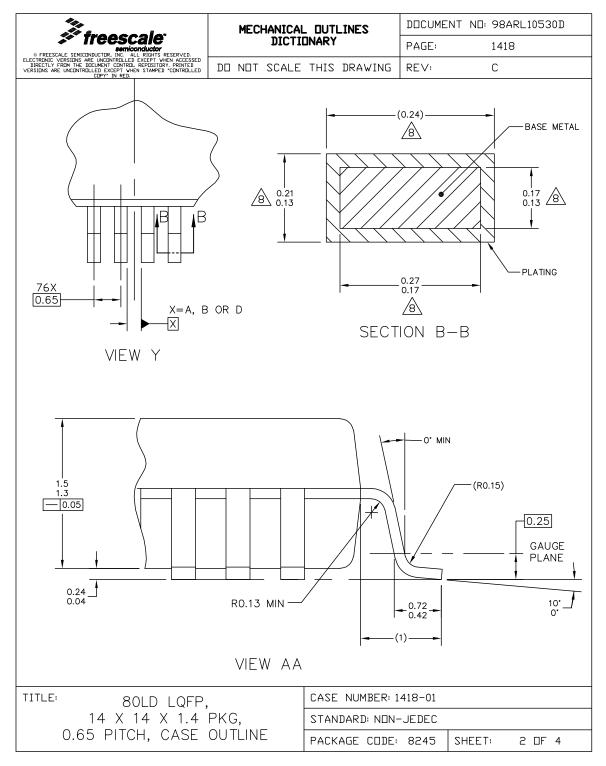


Figure 19. 80-pin LQFP Diagram - II

3.2 64-pin LQFP

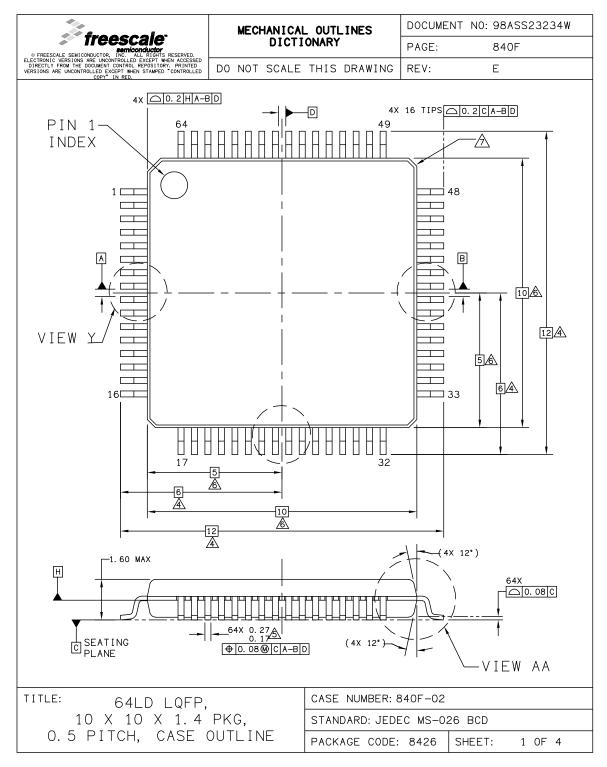


Figure 21. 64-pin LQFP Diagram - I

Mechanical Outline Drawings

N

		LOUTLINES	DOCUMENT NO: 98ASB42844B			
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	DICTI	ONARY	PAGE:	840B		
 FREESCALE SEVICONDUCTOR, INC. ALL RIGHTS RESERVED. ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROL REPOSITORY, PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED. 	DO NOT SCALE	THIS DRAWING	REV:	В		
NOTES:						
		14 514 1004				
1. DIMENSIONING AND TOLERANC		14.5M, 1994.				
2. CONTROLLING DIMENSION: MIL	LIMETER.					
3. DATUM PLANE -H- IS LOCA WHERE THE LEAD EXITS THE						
4. DATUMS A-B AND -D- TO	be deterMined A	T DATUM PLANE	-H			
A DIMENSIONS TO BE DETERMIN	ED AT SEATING F	PLANE -C				
DIMENSIONS DO NOT INCLUDE SIDE. DIMENSIONS DO INCLUE	MOLD PROTRUSI DE MOLD MISMATC	ON. ALLOWABLE F Ch and are dete	ROTRUSI	ON IS 0.25mm PER AT DATUM PLANE —H—.		
A DIMENSION DOES NOT INCLUD SHALL BE 0.08mm TOTAL IN CONDICTION. DAMBAR CANNO RADIUS OR THE FOOT.	EXCESS OF THE	DIMENSION AT M				
TITLE:		CASE NUMBER: 8	340B-01			
64LD QFP (14 X	14)	STANDARD: NON-	-JEDEC			
		PACKAGE CODE:	6057	SHEET: 3 OF 4		

Figure 26. 64-pin QFP Diagram - III

3.4 44-pin LQFP

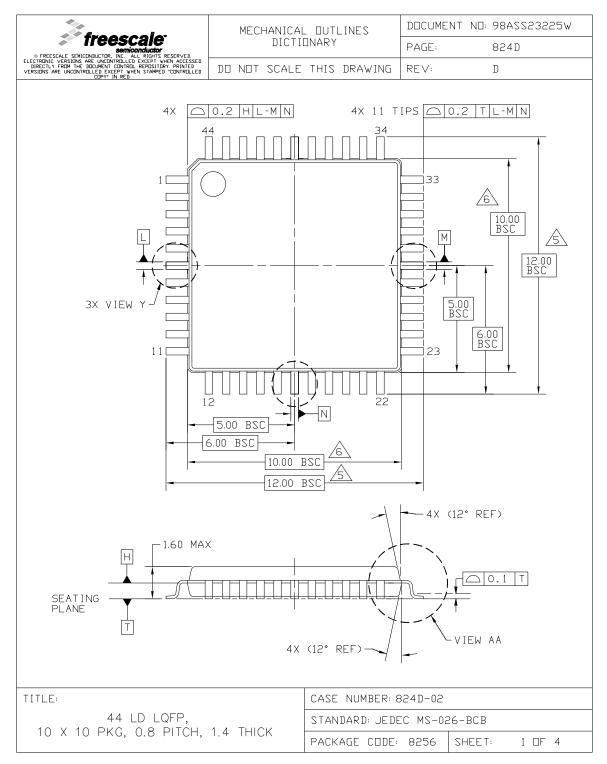
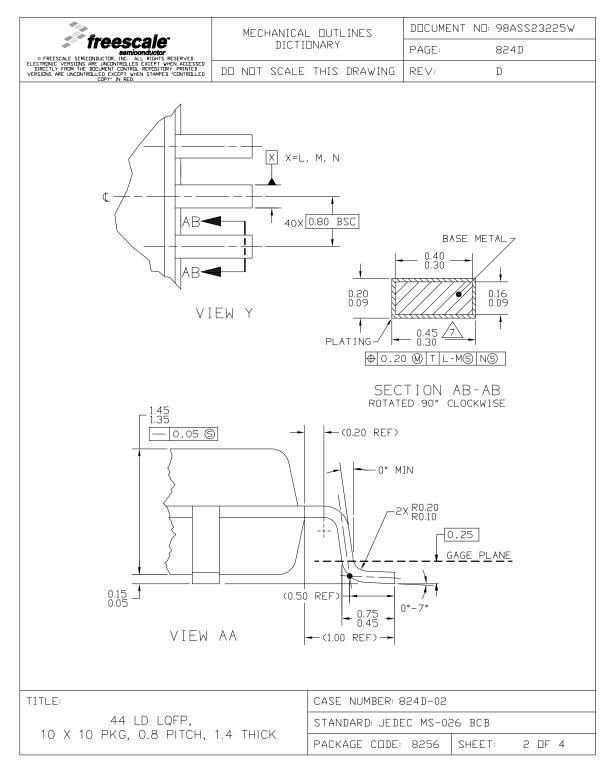



Figure 27. 44-pin LQFP Diagram - I

Mechanical Outline Drawings

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The described product contains a PowerPC processor core. The PowerPC name is a trademark of IBM Corp. and used under license. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008, 2009, 2010, 2011. All rights reserved.

MCF51JM128 Rev. 4 05/2012

