

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

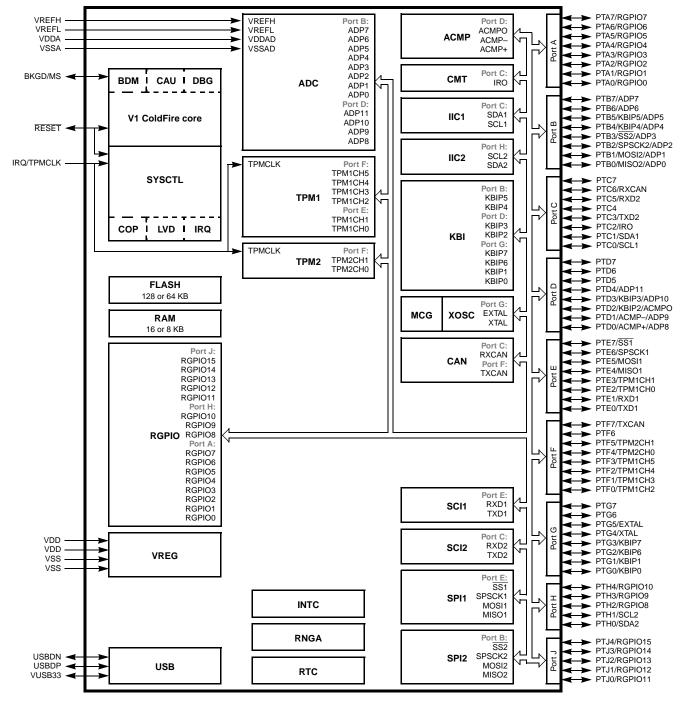
Details

E·XFI

Product Status	Obsolete
Core Processor	Coldfire V1
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	CANbus, I ² C, SCI, SPI, USB OTG
Peripherals	LVD, PWM, WDT
Number of I/O	51
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-QFP
Supplier Device Package	64-QFP (14x14)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcf51jm32evqh

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



MCF51JM128 Family Configurations

² Up to 16 pins on Ports A, H, and J are shared with the ColdFire Rapid GPIO module.

1.2 Block Diagram

Figure 1 shows the connections between the MCF51JM128 series pins and modules.

MCF51JM128 Family Configurations

1.3 Features

Table 2 describes the functional units of the MCF51JM128 series.

Unit	Function
CF1CORE (V1 ColdFire core)	Executes programs and interrupt handlers
BDM (background debug module)	Provides a single-pin debugging interface (part of the V1 ColdFire core)
DBG (debug)	Provides debugging and emulation capabilities (part of the V1 ColdFire core)
SYSCTL (system control)	Provides LVD, COP, external interrupt request, and so on
FLASH (flash memory)	Provides storage for program code and constants
RAM (random-access memory)	Provides storage for program code, constants, and variables
RGPIO (rapid general-purpose input/output)	Allows I/O port access at CPU clock speeds
VREG (voltage regulator)	Controls power management throughout the device
USBOTG (USB On-The-Go)	Supports the USB On-The-Go dual-role controller
ADC (analog-to-digital converter)	Measures analog voltages at up to 12 bits of resolution
TPM1, TPM2 (timer/pulse-width modulators)	Provide a variety of timing-based features
CF1_INTC (interrupt controller)	Controls and prioritizes all device interrupts
CAU (cryptographic acceleration unit)	Co-processor support for DES, 3DES, AES, MD5, and SHA-1
RNGA (random number generator accelerator)	32-bit random number generator that complies with FIPS-140
RTC (real-time counter)	Provides a constant-time base with optional interrupt
ACMP (analog comparator)	Compares two analog inputs
CMT (carrier modulator timer)	Infrared output used for the Remote Controller
IIC1, IIC2 (inter-integrated circuits)	Supports the standard IIC communications protocol
KBI (keyboard interrupt)	Provides pin interrupt capabilities
MCG (multipurpose clock generator)	Provides clocking options for the device, including a phase-locked loop (PLL) and frequency-locked loop (FLL) for multiplying slower reference clock sources
XOSC (crystal oscillator)	Supports low/high range crystals
CAN (controller area network)	Supports standard CAN communications protocol
SCI1, SCI2 (serial communications interfaces)	Serial communications UARTs that can support RS-232 and LIN protocols
SPI1, SPI2 (serial peripheral interfaces)	Provide a 4-pin synchronous serial interface

MCF51JM128 Family Configurations

- RTC
 - 8-bit modulus counter with binary- or decimal-based prescaler
 - External clock source for precise time base, time-of-day, calendar or task scheduling functions
 - Free running on-chip low power oscillator (1 kHz) for cyclic wake-up without external components
- Carrier modulator timer (CMT)
 - carrier generator, modulator, and transmitter drive the infrared out (IRO) pin
 - operation in independent high/low time control, baseband, FSK, and direct IRO control modes
- Input/Output
 - 66 GPIOs
 - Eight keyboard interrupt pins with selectable polarity
 - Hysteresis and configurable pull-up device on all input pins; configurable slew rate and drive strength on all output pins
 - 16 bits of Rapid GPIO connected to the processor's local 32-bit platform bus with set, clear, and faster toggle functionality

1.4 Part Numbers

Table 3. Orderable Part Number Summary

Freescale Part Number	Description	Flash / SRAM (KB)	Package	Temperature
MCF51JM128EVLK	MCF51JM128 ColdFire Microcontroller with CAU and RNGA Enabled	128 / 16	80 LQFP	–40 to +105 °C
MCF51JM128VLK	MCF51JM128 ColdFire Microcontroller	128 / 16	80 LQFP	–40 to +105 °C
MCF51JM128EVLH	MCF51JM128 ColdFire Microcontroller with CAU and RNGA Enabled	128 / 16	64 LQFP	–40 to +105 °C
MCF51JM128VLH	MCF51JM128 ColdFire Microcontroller	128 / 16	64 LQFP	–40 to +105 °C
MCF51JM128EVQH	MCF51JM128 ColdFire Microcontroller with CAU and RNGA Enabled	128 / 16	64 QFP	–40 to +105 °C
MCF51JM128VQH	MCF51JM128 ColdFire Microcontroller	128 / 16	64 QFP	–40 to +105 °C
MCF51JM128EVLD	MCF51JM128 ColdFire Microcontroller with CAU and RNGA Enabled	128 / 16	44 LQFP	–40 to +105 °C
MCF51JM128VLD	MCF51JM128 ColdFire Microcontroller	128 / 16	44 LQFP	–40 to +105 °C
MCF51JM64EVLK	MCF51JM64 ColdFire Microcontroller with CAU and RNGA Enabled	64 / 16	80 LQFP	–40 to +105 °C
MCF51JM64VLK	MCF51JM64 ColdFire Microcontroller	64 / 16	80 LQFP	–40 to +105 °C
MCF51JM64EVLH	MCF51JM64 ColdFire Microcontroller with CAU and RNGA Enabled	64 / 16	64 LQFP	–40 to +105 °C
MCF51JM64VLH	MCF51JM64 ColdFire Microcontroller	64 / 16	64 LQFP	–40 to +105 °C
MCF51JM64EVQH	MCF51JM64 ColdFire Microcontroller with CAU and RNGA Enabled	64 / 16	64 QFP	−40 to +105 °C
MCF51JM64VQH	MCF51JM64 ColdFire Microcontroller	64 / 16	64 QFP	–40 to +105 °C

MCF51JM64EVLD	MCF51JM64 ColdFire Microcontroller	64 / 16	44 LQFP	–40 to +105 °C
	with CAU and RNGA Enabled			
MCF51JM64VLD	MCF51JM64 ColdFire Microcontroller	64 / 16	44 LQFP	–40 to +105 °C
MCF51JM32EVLK	MCF51JM32 ColdFire Microcontroller with CAU and RNGA Enabled	32 / 16	80 LQFP	–40 to +105 °C
MCF51JM32VLK	MCF51JM32 ColdFire Microcontroller	32 / 16	80 LQFP	–40 to +105 °C
MCF51JM32EVLH	MCF51JM32 ColdFire Microcontroller with CAU and RNGA Enabled	32 / 16	64 LQFP	–40 to +105 °C
MCF51JM32VLH	MCF51JM32 ColdFire Microcontroller	32 / 16	64 LQFP	–40 to +105 °C
MCF51JM32EVQH	MCF51JM32 ColdFire Microcontroller with CAU and RNGA Enabled	32 / 16	64 QFP	–40 to +105 °C
MCF51JM32VQH	MCF51JM32 ColdFire Microcontroller	32 / 16	64 QFP	–40 to +105 °C
MCF51JM32EVLD	MCF51JM32 ColdFire Microcontroller with CAU and RNGA Enabled	32 / 16	44 LQFP	–40 to +105 °C
MCF51JM32VLD	MCF51JM32 ColdFire Microcontroller	32 / 16	44 LQFP	–40 to +105 °C

Figure 3 shows the pinout of the 64-pin LQFP and QFP.

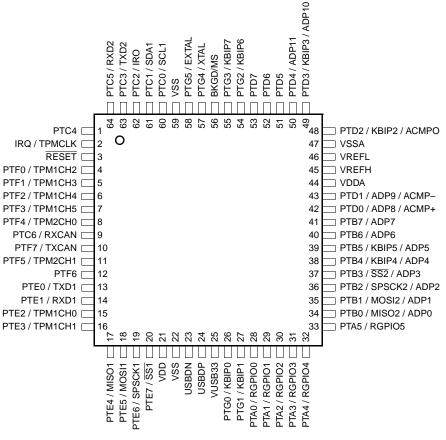


Figure 3. 64-pin QFP and LQFP

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to + 5.8	V
Input voltage	V _{In}	– 0.3 to V _{DD} + 0.3	V
Instantaneous maximum current Single pin limit (applies to all port pins) ¹ , ² , ³	I _D	± 25	mA
Maximum current into V _{DD}	I _{DD}	120	mA
Storage temperature	T _{stg}	-55 to +150	°C
Maximum junction temperature	Τ _J	150	°C

Table 6. Absolute Maximum Ratings

¹ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

- 2 All functional non-supply pins are internally clamped to V_{SS} and V_{DD}.
- ³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load shunt current is greater than maximum injection current. This is the greatest risk when the MCU is not consuming power. Examples: if no system clock is present or if the clock rate is low, which would reduce overall power consumption.

2.3 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} is small.

Rating	Symbol	Value	Unit
Operating temperature range (packaged)	T _A	-40 to +105	°C
Thermal resistance ^{1,2,3,4}			
80-pin LQFP			
1:		52	
2s2		40	
64-pin LQFP			
1:		65	
2s2	θ_{JA}	47	°C/W
64-pin QFP			
1:		54	
2s2		40	
44-pin LQFP			
1:		69	
2s2j)	48	

Table 7. Thermal Characteristics	Table	7.	Thermal	Characteristics
----------------------------------	-------	----	---------	-----------------

Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

² Junction to Ambient Natural Convection

Preliminary Electrical Characteristics

Num	Rating	Symbol	Min	Max	Unit
1	Human Body Model (HBM)	V _{HBM}	+/- 2000	_	V
2	Charge Device Model (CDM)	V _{CDM}	+/- 500	_	V
3	Latch-up Current at $T_A = 105^{\circ}C$	I _{LAT}	+/- 100	_	mA

2.5 DC Characteristics

This section includes information about power supply requirements, I/O pin characteristics, and power supply current in various operating modes.

Num	С	Parameter	Symbol	Min	Typ ¹	Max	Unit
1		Operating voltage ²		2.7	_	5.5	V
		Output high voltage — Low Drive (PTxDSn = 0) 5 V, I _{Load} = -4 mA 3 V, I _{Load} = -2 mA 5 V, I _{Load} = -2 mA 3 V, I _{Load} = -1 mA		V _{DD} – 1.5 V _{DD} – 1.5 V _{DD} – 0.8 V _{DD} – 0.8			
2	Ρ	Output high voltage — High Drive (PTxDSn = 1) 5 V, I _{Load} = -15 mA 3 V, I _{Load} = -8 mA 5 V, I _{Load} = -8 mA 3 V, I _{Load} = -4 mA	V _{OH}	V _{DD} - 1.5 V _{DD} - 1.5 V _{DD} - 0.8 V _{DD} - 0.8			V
3	Ρ	Output low voltage — Low Drive (PTxDSn = 0) $5 \text{ V}, \text{ I}_{\text{Load}} = 4\text{mA}$ $3 \text{ V}, \text{ I}_{\text{Load}} = 2 \text{ mA}$ $5 \text{ V}, \text{ I}_{\text{Load}} = 2 \text{ mA}$ $3 \text{ V}, \text{ I}_{\text{Load}} = 1 \text{ mA}$	V _{OL}			1.5 1.5 0.8 0.8	V
		Output low voltage — High Drive (PTxDSn = 1) $5 \text{ V}, \text{ I}_{\text{Load}} = 15 \text{ mA}$ $3 \text{ V}, \text{ I}_{\text{Load}} = 8 \text{ mA}$ $5 \text{ V}, \text{ I}_{\text{Load}} = 8 \text{ mA}$ $3 \text{ V}, \text{ I}_{\text{Load}} = 4 \text{ mA}$	*			1.5 1.5 0.8 0.8	
4	Ρ	Output high current — Max total I _{OH} for all ports 5V 3V	I _{OHT}			100 60	mA
5	Ρ	Output low current — Max total I _{OL} for all ports 5V 3V	I _{OLT}		_	100 60	mA
6	Ρ	Input high voltage; all digital inputs					
		$V_{DD} = 5V$ $V_{DD} = 3V$	V _{IH}	3.25 2.10	_	 	V

Table 10. DC Characteristics

Preliminary Electrical Characteristics

- ¹ Typical values are based on characterization data at 25°C unless otherwise stated.
- ² Operating voltage with USB enabled can be found in Section 2.14, "USB Electricals."
- ³ Measured with $V_{In} = V_{DD}$ or V_{SS} .
- ⁴ Measured with $V_{In} = V_{SS}$.
- ⁵ Measured with $V_{In} = V_{DD}$.
- ⁶ This is the voltage below which the contents of RAM are not guaranteed to be maintained.

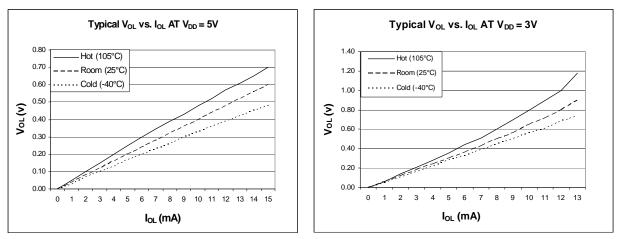


Figure 5. Typical Low-side Drive (sink) characteristics – High Drive (PTxDSn = 1)

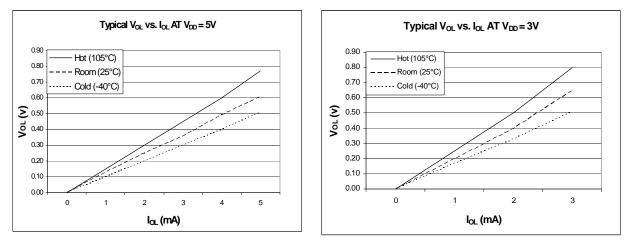


Figure 6. Typical Low-side Drive (sink) characteristics – Low Drive (PTxDSn = 0)

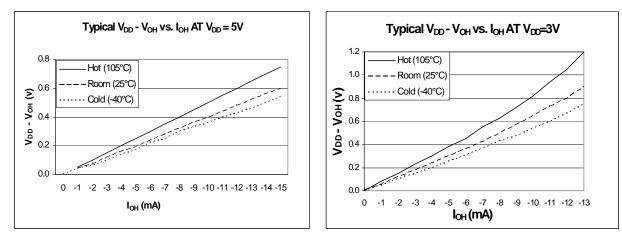


Figure 7. Typical High-side Drive (source) characteristics – High Drive (PTxDSn = 1)

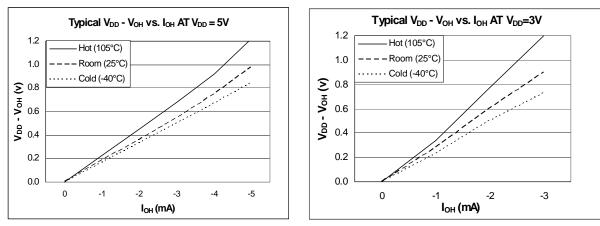


Figure 8. Typical High-side Drive (source) characteristics – Low Drive (PTxDSn = 0)

2.6 Supply Current Characteristics

Table 11. Supply Current Characteristics

Num	С	Parameter		Symbol	V _{DD} (V)	Typical ¹	Max ²	Unit
1	С				5	4.0	7	A
	2 MHz, f _{Bus} = 1 MHz)			3	4.0	7	mA	
2	P Run supply current ³ measured at (CPU clock =		(CPU clock =	RI _{DD}	5	19	30	
	16 M	16 MHz, f _{Bus} = 8 MHz)			3	18.7	30	mA
3	C Run supply current ³ measured at (CPU clock =		-	5	45	70		
		48 MHz, f _{Bus} = 24 MHz)			3	44	70	mA

2.7 Analog Comparator (ACMP) Electricals

Num	С	Rating	Symbol	Min	Typical	Мах	Unit
1		Supply voltage	V _{DD}	2.7	—	5.5	V
2		Supply current (active)	I _{DDAC}	—	20	35	μΑ
3		Analog input voltage	V _{AIN}	$V_{SS} - 0.3$	_	V _{DD}	V
4		Analog input offset voltage	V _{AIO}		20	40	mV
5		Analog Comparator hysteresis	V _H	3.0	6.0	20.0	mV
6		Analog input leakage current	I _{ALKG}			1.0	μΑ
7		Analog Comparator initialization delay	t _{AINIT}	_	_	1.0	μS
8		Bandgap Voltage Reference Factory trimmed at V_{DD} = 3.0 V, Temp = 25°C	V _{BG}	1.19	1.20	1.21	V

2.8 ADC Characteristics

Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
Supply voltage	Absolute	V _{DDA}	2.7	_	5.5	V	
	Delta to V _{DD} (V _{DD} -V _{DDA}) ²	ΔV_{DDA}	-100	0	+100	mV	
Ground voltage	Delta to V _{SS} (V _{SS} -V _{SSA}) ²	ΔV_{SSA}	-100	0	+100	mV	
Ref Voltage High		V _{REFH}	2.7	V _{DDA}	V _{DDA}	V	
Ref Voltage Low		V _{REFL}	V _{SSA}	V _{SSA}	V _{SSA}	V	
Input Voltage		V _{ADIN}	V _{REFL}	_	V _{REFH}	V	
Input Capacitance		C _{ADIN}	_	4.5	5.5	pF	
Input Resistance		R _{ADIN}	—	3	5	kΩ	
Analog Source Resistance	12 bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz	R _{AS}	_		2 5	kΩ	External to MCU
	10 bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz		_	_	5 10		
	8 bit mode (all valid f _{ADCK})	1	—	—	10		
ADC Conversion	High Speed (ADLPC=0)	f _{ADCK}	0.4		8.0	MHz	
Clock Freq.	Low Power (ADLPC=1)		0.4	—	4.0		

¹ Typical values assume V_{DDA} = 5.0V, Temp = 25°C, f_{ADCK}=1.0MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² DC potential difference.

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit	Comment	
Conversion Time	Short Sample (ADLSMP=0)	Т	t _{ADC}	_	20	_	ADCK	See Table 9 fo	
(Including sample time)	Long Sample (ADLSMP=1)			_	40		cycles	conversion time variances	
Sample Time	Short Sample (ADLSMP=0)	Т	t _{ADS}	_	3.5		ADCK		
	Long Sample (ADLSMP=1)				23.5	_	cycles		
Total Unadjusted	12 bit mode	Т	E _{TUE}	_	±3.0	_	LSB ²	Includes	
Error	10 bit mode	Р		_	±1	±2.5		quantization	
	8 bit mode	Т			±0.5	±1.0			
Differential	12 bit mode	Т	DNL	—	±1.75		LSB ²		
Non-Linearity	10 bit mode ³	Р		—	±0.5	±1.0			
	8 bit mode ³	Т		—	±0.3	±0.5	-		
Integral	12 bit mode	Т	INL	—	±1.5		LSB ²		
Non-Linearity	10 bit mode	Т		—	±0.5	±1.0			
	8 bit mode	Т	-	_	±0.3	±0.5	-		
Zero-Scale Error	12 bit mode	Т	E _{ZS}	_	±1.5	_	LSB ²	$V_{ADIN} = V_{SSAD}$	
	10 bit mode	Р		—	±0.5	±1.5			
	8 bit mode	Т	-	_	±0.5	±0.5			
Full-Scale Error	12 bit mode	Т	E _{FS}	_	±1	_	LSB ²	$V_{ADIN} = V_{DDAD}$	
	10 bit mode	Т		—	±0.5	±1			
	8 bit mode	Т		—	±0.5	±0.5			
Quantization	12 bit mode	D	EQ	—	-1 to 0	_	LSB ²		
Error	10 bit mode			—	—	±0.5			
	8 bit mode			—	—	±0.5			
Input Leakage	12 bit mode	D	E _{IL}	—	±1	_	LSB ²	Pad leakage ⁴ *	
Error	10 bit mode			—	±0.2	±2.5	-	R _{AS}	
	8 bit mode			_	±0.1	±1			
Temp Sensor Voltage	25°C	D	V _{TEMP25}	—	1.396	—	V		
Temp Sensor	-40°C - 25°C	D	m	_	3.266		mV/ºC		
Slope	25°C - 125°C			_	3.638				

Table 14. 5 Volt 12-bit ADC Characteristics (V_{REFH} = V_{DDA}, V_{REFL} = V_{SSA}) (continued)

¹ Typical values assume V_{DDA} = 5.0V, Temp = 25°C, f_{ADCK}=1.0MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² 1 LSB = $(V_{REFH} - V_{REFL})/2^{N}$

³ Monotonicity and No-Missing-Codes guaranteed in 10 bit and 8 bit modes

⁴ Based on input pad leakage current. Refer to pad electricals.

Preliminary Electrical Characteristics

2.9 External Oscillator (XOSC) Characteristics

Table 15. Oscillator Electrical Specifications (Temperature Range = -40 to 105°C Ambient)

Num	С	Rating	Syn	nbol	Min	Typ ¹	Max	Unit
1		Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) • Low range (RANGE = 0) • High range (RANGE = 1) FEE or FBE mode ² • High range (RANGE = 1) PEE or PBE mode ³ • High range (RANGE = 1, HGO = 1) BLPE mode • High range (RANGE = 1, HGO = 0) BLPE mode	f _h f _{hi} f _{hi-}	io ii-fll i-pll -hgo ii-lp	32 1 1 1 1	 	38.4 5 16 16 8	kHz MHz MHz MHz MHz
2		Load capacitors		C ₁ C ₂			or resonato commend	
3		Feedback resistor • Low range (32 kHz to 38.4 kHz) • High range (1 MHz to 16 MHz)	F	۲ _F		10 1		ΜΩ ΜΩ
4		Series resistor • Low range, low gain (RANGE = 0, HGO = 0) • Low range, high gain (RANGE = 0, HGO = 1) $\geq 8 M$ 4 M 1 M • High range, low gain (RANGE = 1, HGO = 0) • High range, high gain (RANGE = 1, HGO = 1) $\geq 8 M$ 4 M 1 M	Hz Hz Hz Hz	₹s		0 100 0 0 0	 0 10 20	kΩ
5	т	Crystal start-up time ⁴ • Low range, low gain (RANGE = 0, HGO = 0) • Low range, high gain (RANGE = 0, HGO = 1) • High range, low gain (RANGE = 1, HG0 = 0) ⁵ • High range, high gain (RANGE = 1, HG0 = 1) ⁵	t t	TL-LP L-HGO TH-LP H-HGO	 	200 400 5 15	 	ms
6	т	Square wave input clock frequency (EREFS = 0, ERCLKEN = ⁻ • FEE or FBE mode ² • PEE or PBE mode ³ • BLPE mode		xtal	0.03125 1 0		5 16 40	MHz MHz MHz

¹ Data in Typical column was characterized at 5.0 V, 25°C or is typical recommended value.

² When MCG is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz.

³ When MCG is configured for PEE or PBE mode, input clock source must be divisible using RDIV to within the range of 1 MHz to 2 MHz.

⁴ This parameter is characterized and not tested on each device. Proper PC board-layout procedures must be followed to achieve specifications.

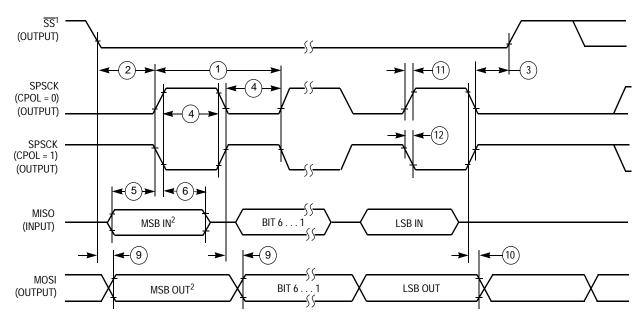
⁵ 4 MHz crystal

2.10 MCG Specifications

Table 16. MCG Frequency Specifications (Temperature Range = -40 to 125°C Ambient)

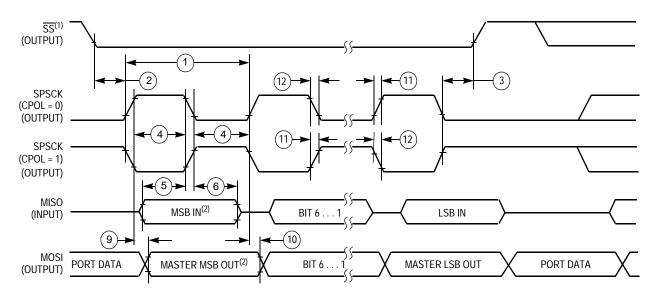
Num	С	Rati	ng	Symbol	Min	Typical ¹	Max	Unit
1	Ρ		Internal reference frequency - factory trimmed at V_DD = 5 V and temperature = 25 $^\circ\text{C}$			32.768	—	kHz
2	Ρ	Average internal reference	frequency – untrimmed	f _{int_ut}	31.25		39.0625	kHz
3	Т	Internal reference startup ti	me	t _{irefst}	—	60	100	μs
	Ρ	DCO output frequency	Low range (DRS=00)		16	_	20	
4	Ρ	range - untrimmed ²	Mid range (DRS=01)	f _{dco_ut}	32	_	40	MHz
	Ρ		High range (DRS=10)		48		60	
	Ρ	DCO output frequency ²	Low range (DRS=00)		—	19.92	—	
5	Ρ	Reference =32768Hz	Mid range (DRS=01)	f _{dco_DMX32}	—	39.85	—	MHz
	Ρ	and DMX32 = 1	High range (DRS=10)		—	59.77	—	
6	D	Resolution of trimmed DCC voltage and temperature (u	$\Delta f_{dco_res_t}$	—	±0.1	±0.2	%f _{dco}	
7	D	Resolution of trimmed DCO output frequency at fixed voltage and temperature (not using FTRIM)		$\Delta f_{dco_res_t}$	_	±0.2	±0.4	%f _{dco}
8	D	Total deviation of trimmed DCO output frequency over voltage and temperature		Δf_{dco_t}	—	0.5 -1.0	±2	%f _{dco}
9	D	Total deviation of trimmed DCO output frequency over fixed voltage and temperature range of $0 - 70 ^{\circ}\text{C}$		Δf_{dco_t}	—	±0.5	±1	%f _{dco}
10	D	FLL acquisition time ³		t _{fll_acquire}	—	_	1	ms
11	D	PLL acquisition time ⁴		t _{pll_acquire}	—	_	1	ms
12	D	Long term Jitter of DCO ou 2ms interval) ⁵	put clock (averaged over	C _{Jitter}	_	0.02	0.2	%f _{dco}
13	D	VCO operating frequency		f _{vco}	7.0	_	55.0	MHz
14	D	Jitter of PLL output clock m		f _{pll_jitter_625ns}	—	0.566 ⁵	—	%f _{pll}
15	D	Lock entry frequency tolera		D _{lock}	±1.49	_	±2.98	%
16	D	Lock exit frequency tolerand	ce ⁸	D _{unl}	±4.47	_	±5.97	%
17	D	Lock time — FLL		t _{fll_lock}	_	_	t _{fll_acquire+} 1075(1/fint_t)	S
18	D	Lock time — PLL		t _{pll_lock}	_	_	t _{pll_acquire+} 1075(1/ ^f pll_r ef)	S
19	D	Loss of external clock minir = 0	num frequency – RANGE	f _{loc_low}	(3/5) x f _{int}	_	—	kHz

¹ Data in Typical column was characterized at 5.0 V, 25C or is typical recommended value


² The resulting bus clock frequency should not exceed the maximum specified bus clock frequency of the device.

³ This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

⁴ This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

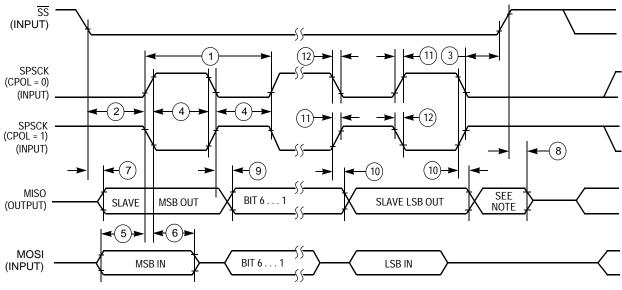

Preliminary Electrical Characteristics

NOTES:

- 1. \overline{SS} output mode (DDS7 = 1, SSOE = 1).
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

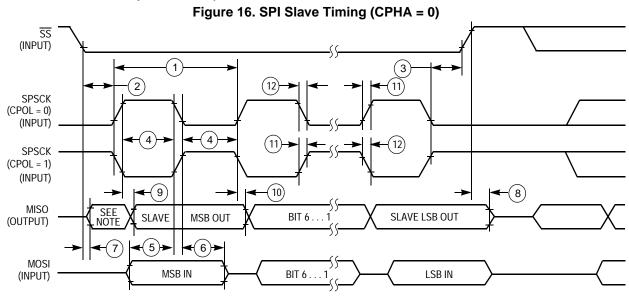
Figure 14. SPI Master Timing (CPHA = 0)

NOTES:


1. \overline{SS} output mode (DDS7 = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 15. SPI Master Timing (CPHA = 1)



Preliminary Electrical Characteristics

NOTE:

1. Not defined but normally MSB of character just received

NOTE:

1. Not defined but normally LSB of character just received

	Symbol	Unit	Min	Тур	Max
Regulator operating voltage	V _{regin}	V	3.9	—	5.5
Vreg output	V _{regout}	V	3	3.3	3.6
Vusb33 input with internal Vreg disabled	V _{usb33in}	V	3	3.3	3.6
VREG Quiescent Current	I _{VRQ}	mA		0.5	—

2.15 EMC Performance

Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

2.15.1 Radiated Emissions

Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM Cell method in accordance with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed with the microcontroller installed on a custom EMC evaluation board while running specialized EMC test software. The radiated emissions from the microcontroller are measured in a TEM cell in two package orientations (North and East). For more detailed information concerning the evaluation results, conditions and setup, please refer to the EMC Evaluation Report for this device.

3.2 64-pin LQFP

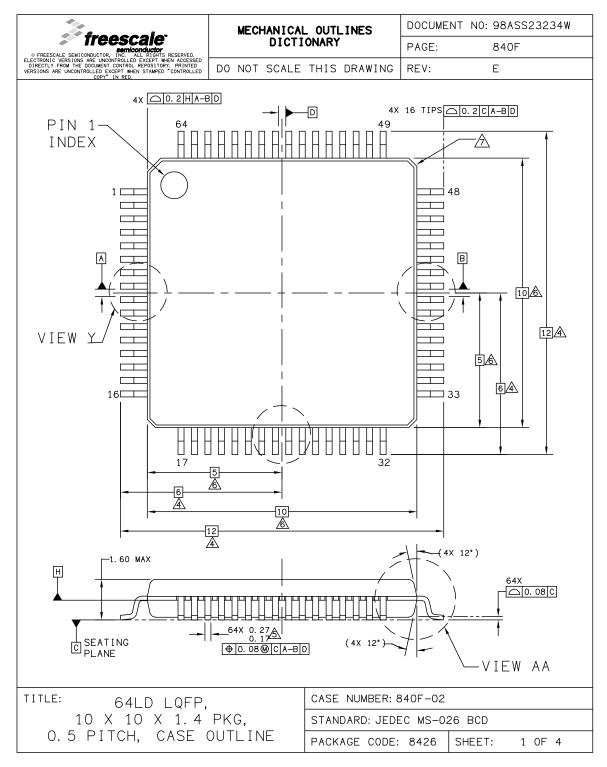
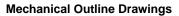



Figure 21. 64-pin LQFP Diagram - I

	MECHANICAL OUTLINES		DOCUMENT NO: 98ASS23234W						
Treescale somiconductor FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	DICTI	DICTIONARY		840F					
DIFFEESAGE SEMICONCOLOR, INC. ALL KINH'S RESERVED: ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROL REPOSITORY. PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED.	DO NOT SCALE	THIS DRAWING	REV:	E					
NOTES:									
1. DIMENSIONS ARE IN M	1. DIMENSIONS ARE IN MILLIMETERS.								
2. DIMENSIONING AND TO	LERANCING PER	ASME Y14.5M-19	994.						
3. DATUMS A, B AND D T	O BE DETERMINE	D AT DATUM PLA	ANE H.						
A DIMENSIONS TO BE DE	TERMINED AT SE	ATING PLANE C.							
THIS DIMENSION DOES PROTRUSION SHALL NO BY MORE THAN 0.08 m LOCATED ON THE LOWE PROTRUSION AND ADJA	T CAUSE THE LE m AT MAXIMUM M R RADIUS OR TH	AD WIDTH TO E> ATERIAL CONDIT E FOOT. MINIMU	KCEED TH FION. DA JM SPACE	HE UPPER LIMIT AMBAR CANNOT BE E BETWEEN					
A THIS DIMENSION DOES IS 0.25 mm PER SIDE DIMENSION INCLUDING	. THIS DIMENSI	ON IS MAXIMUM							
A EXACT SHAPE OF EACH	CORNER IS OPT	IONAL.							
	A THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.1 mm AND 0.25 mm FROM THE LEAD TIP.								
TITLE: 64LD LQFP	,	CASE NUMBER: 8	340F-02						
10 X 10 X 1.4	PKG,	STANDARD: JEDE	EDEC MS-026 BCD						
0.5 PITCH, CASE	UUILINE	PACKAGE CODE:	8426	SHEET: 3					

Figure 23. 64-pin LQFP Diagram - III

MCF51JM128 ColdFire Microcontroller, Rev. 4

NP

NP

Mechanical Outline Drawings

3.3 64-pin QFP

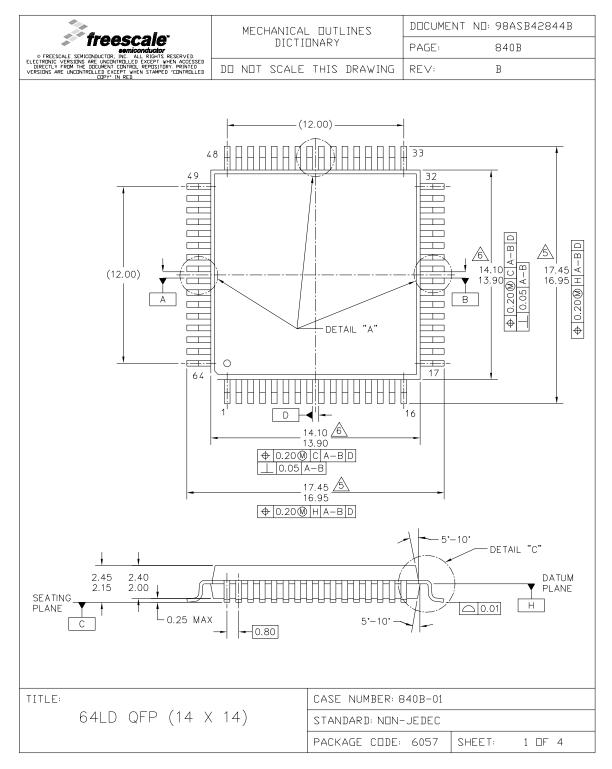
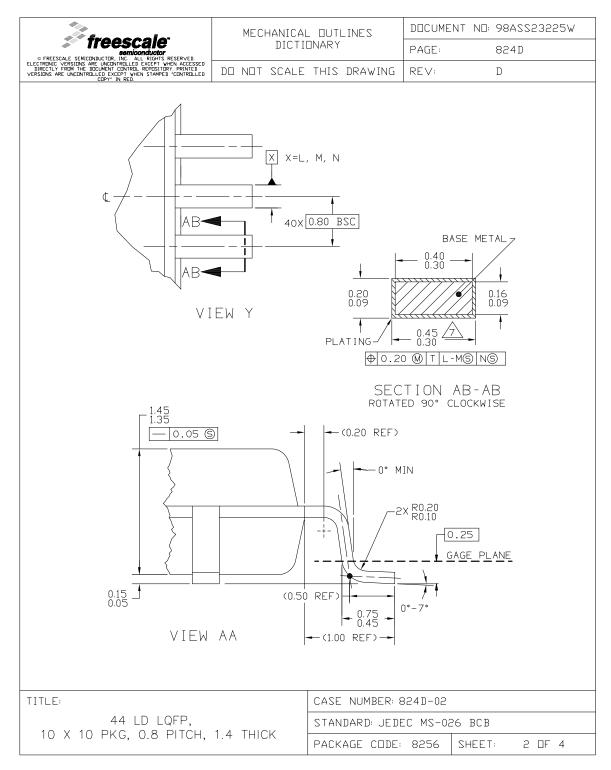



Figure 24. 64-pin QFP Diagram - I

Mechanical Outline Drawings

