

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

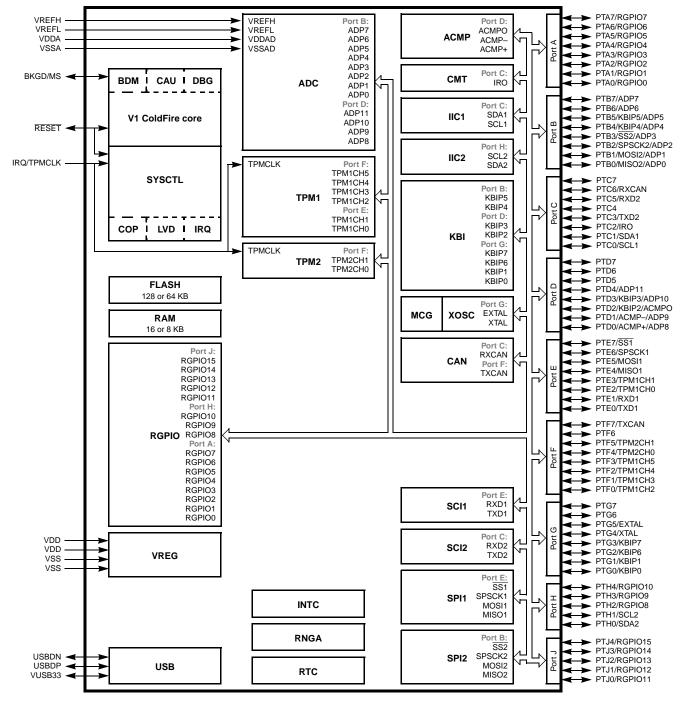
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

2010	
Product Status	Active
Core Processor	Coldfire V1
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	CANbus, I ² C, SCI, SPI, USB OTG
Peripherals	LVD, PWM, WDT
Number of I/O	51
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-QFP
Supplier Device Package	64-QFP (14x14)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcf51jm32vqh

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

² Up to 16 pins on Ports A, H, and J are shared with the ColdFire Rapid GPIO module.

1.2 Block Diagram

Figure 1 shows the connections between the MCF51JM128 series pins and modules.

1.3 Features

Table 2 describes the functional units of the MCF51JM128 series.

Unit	Function
CF1CORE (V1 ColdFire core)	Executes programs and interrupt handlers
BDM (background debug module)	Provides a single-pin debugging interface (part of the V1 ColdFire core)
DBG (debug)	Provides debugging and emulation capabilities (part of the V1 ColdFire core)
SYSCTL (system control)	Provides LVD, COP, external interrupt request, and so on
FLASH (flash memory)	Provides storage for program code and constants
RAM (random-access memory)	Provides storage for program code, constants, and variables
RGPIO (rapid general-purpose input/output)	Allows I/O port access at CPU clock speeds
VREG (voltage regulator)	Controls power management throughout the device
USBOTG (USB On-The-Go)	Supports the USB On-The-Go dual-role controller
ADC (analog-to-digital converter)	Measures analog voltages at up to 12 bits of resolution
TPM1, TPM2 (timer/pulse-width modulators)	Provide a variety of timing-based features
CF1_INTC (interrupt controller)	Controls and prioritizes all device interrupts
CAU (cryptographic acceleration unit)	Co-processor support for DES, 3DES, AES, MD5, and SHA-1
RNGA (random number generator accelerator)	32-bit random number generator that complies with FIPS-140
RTC (real-time counter)	Provides a constant-time base with optional interrupt
ACMP (analog comparator)	Compares two analog inputs
CMT (carrier modulator timer)	Infrared output used for the Remote Controller
IIC1, IIC2 (inter-integrated circuits)	Supports the standard IIC communications protocol
KBI (keyboard interrupt)	Provides pin interrupt capabilities
MCG (multipurpose clock generator)	Provides clocking options for the device, including a phase-locked loop (PLL) and frequency-locked loop (FLL) for multiplying slower reference clock sources
XOSC (crystal oscillator)	Supports low/high range crystals
CAN (controller area network)	Supports standard CAN communications protocol
SCI1, SCI2 (serial communications interfaces)	Serial communications UARTs that can support RS-232 and LIN protocols
SPI1, SPI2 (serial peripheral interfaces)	Provide a 4-pin synchronous serial interface

- RTC
 - 8-bit modulus counter with binary- or decimal-based prescaler
 - External clock source for precise time base, time-of-day, calendar or task scheduling functions
 - Free running on-chip low power oscillator (1 kHz) for cyclic wake-up without external components
- Carrier modulator timer (CMT)
 - carrier generator, modulator, and transmitter drive the infrared out (IRO) pin
 - operation in independent high/low time control, baseband, FSK, and direct IRO control modes
- Input/Output
 - 66 GPIOs
 - Eight keyboard interrupt pins with selectable polarity
 - Hysteresis and configurable pull-up device on all input pins; configurable slew rate and drive strength on all output pins
 - 16 bits of Rapid GPIO connected to the processor's local 32-bit platform bus with set, clear, and faster toggle functionality

1.4 Part Numbers

Table 3. Orderable Part Number Summary

Freescale Part Number	Description	Flash / SRAM (KB)	Package	Temperature
MCF51JM128EVLK	MCF51JM128 ColdFire Microcontroller with CAU and RNGA Enabled	128 / 16	80 LQFP	–40 to +105 °C
MCF51JM128VLK	MCF51JM128 ColdFire Microcontroller	128 / 16	80 LQFP	–40 to +105 °C
MCF51JM128EVLH	MCF51JM128 ColdFire Microcontroller with CAU and RNGA Enabled	128 / 16	64 LQFP	–40 to +105 °C
MCF51JM128VLH	MCF51JM128 ColdFire Microcontroller	128 / 16	64 LQFP	–40 to +105 °C
MCF51JM128EVQH	MCF51JM128 ColdFire Microcontroller with CAU and RNGA Enabled	128 / 16	64 QFP	–40 to +105 °C
MCF51JM128VQH	MCF51JM128 ColdFire Microcontroller	128 / 16	64 QFP	–40 to +105 °C
MCF51JM128EVLD	MCF51JM128 ColdFire Microcontroller with CAU and RNGA Enabled	128 / 16	44 LQFP	–40 to +105 °C
MCF51JM128VLD	MCF51JM128 ColdFire Microcontroller	128 / 16	44 LQFP	–40 to +105 °C
MCF51JM64EVLK	MCF51JM64 ColdFire Microcontroller with CAU and RNGA Enabled	64 / 16	80 LQFP	–40 to +105 °C
MCF51JM64VLK	MCF51JM64 ColdFire Microcontroller	64 / 16	80 LQFP	–40 to +105 °C
MCF51JM64EVLH	MCF51JM64 ColdFire Microcontroller with CAU and RNGA Enabled	64 / 16	64 LQFP	–40 to +105 °C
MCF51JM64VLH	MCF51JM64 ColdFire Microcontroller	64 / 16	64 LQFP	–40 to +105 °C
MCF51JM64EVQH	MCF51JM64 ColdFire Microcontroller with CAU and RNGA Enabled	64 / 16	64 QFP	−40 to +105 °C
MCF51JM64VQH	MCF51JM64 ColdFire Microcontroller	64 / 16	64 QFP	–40 to +105 °C

MCF51JM64EVLD	MCF51JM64 ColdFire Microcontroller	64 / 16	44 LQFP	–40 to +105 °C
	with CAU and RNGA Enabled			
MCF51JM64VLD	MCF51JM64 ColdFire Microcontroller	64 / 16	44 LQFP	–40 to +105 °C
MCF51JM32EVLK	MCF51JM32 ColdFire Microcontroller with CAU and RNGA Enabled	32 / 16	80 LQFP	–40 to +105 °C
MCF51JM32VLK	MCF51JM32 ColdFire Microcontroller	32 / 16	80 LQFP	–40 to +105 °C
MCF51JM32EVLH	MCF51JM32 ColdFire Microcontroller with CAU and RNGA Enabled	32 / 16	64 LQFP	–40 to +105 °C
MCF51JM32VLH	MCF51JM32 ColdFire Microcontroller	32 / 16	64 LQFP	–40 to +105 °C
MCF51JM32EVQH	MCF51JM32 ColdFire Microcontroller with CAU and RNGA Enabled	32 / 16	64 QFP	–40 to +105 °C
MCF51JM32VQH	MCF51JM32 ColdFire Microcontroller	32 / 16	64 QFP	–40 to +105 °C
MCF51JM32EVLD	MCF51JM32 ColdFire Microcontroller with CAU and RNGA Enabled	32 / 16	44 LQFP	–40 to +105 °C
MCF51JM32VLD	MCF51JM32 ColdFire Microcontroller	32 / 16	44 LQFP	–40 to +105 °C

Figure 3 shows the pinout of the 64-pin LQFP and QFP.

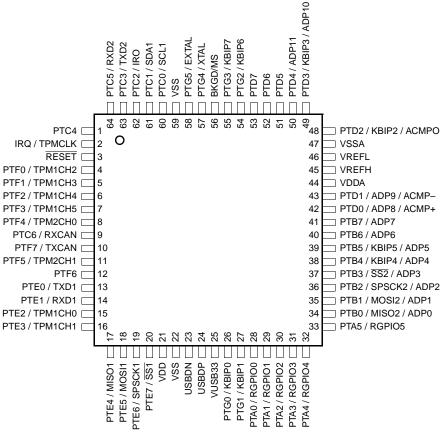


Figure 3. 64-pin QFP and LQFP

Pin Number < Lowest					
80	64	44	Port Pin	Alt 1	Alt 2
16	16	11	PTE3	TPM1CH1	—
17		—	PTC7	_	—
18	—	_	PTH0	SDA2	—
19			PTH1	SCL2	—
20		_	PTH2	RGPIO8	—
21	_	_	PTH3	RGPIO9	—
22			PTH4	RGPIO10	—
23	17	12	PTE4	MISO1	—
24	18	13	PTE5	MOSI1	—
25	19	14	PTE6	SPSCK1	—
26	20	15	PTE7	SS1	—
27	21	16	_	_	VDD
28	22	17	_	_	VSS
29	23	18	_	_	USBDN
30	24	19	_	_	USBDP
31	25	20	_	_	VUSB33
32	26	21	PTG0	KBIP0	USB_ALT_CLK
33	27	22	PTG1	KBIP1	—
34	28		PTA0	RGPIO0	USB_SESSVLD
35	29		PTA1	RGPIO1	USB_SESSEND
36	30	_	PTA2	RGPIO2	USB_VBUSVLD
37	31	_	PTA3	RGPIO3	USB_PULLUP(D+)
38	32	_	PTA4	RGPIO4	USB_DM_DOWN
39	33	_	PTA5	RGPIO5	USB_DP_DOWN
40		_	PTA6	RGPIO6	USB_ID
41	—	—	PTA7	RGPI07	—
42	34	23	PTB0	MISO2	ADP0
43	35	24	PTB1	MOSI2	ADP1
44	36	25	PTB2	SPSCK2	ADP2
45	37	26	PTB3	SS2	ADP3
46	38	27	PTB4	KBIP4	ADP4
47	39	28	PTB5	KBIP5	ADP5
48	40	—	PTB6	ADP6	

Table 4. Pin Assignments by Package and Pin Sharing Priority (continued)

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to + 5.8	V
Input voltage	V _{In}	– 0.3 to V _{DD} + 0.3	V
Instantaneous maximum current Single pin limit (applies to all port pins) ¹ , ² , ³	I _D	± 25	mA
Maximum current into V _{DD}	I _{DD}	120	mA
Storage temperature	T _{stg}	-55 to +150	°C
Maximum junction temperature	Τ _J	150	°C

Table 6. Absolute Maximum Ratings

¹ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

- 2 All functional non-supply pins are internally clamped to V_{SS} and V_{DD}.
- ³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load shunt current is greater than maximum injection current. This is the greatest risk when the MCU is not consuming power. Examples: if no system clock is present or if the clock rate is low, which would reduce overall power consumption.

2.3 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} is small.

Rating	Symbol	Value	Unit
Operating temperature range (packaged)	T _A	-40 to +105	°C
Thermal resistance ^{1,2,3,4}			
80-pin LQFP			
1:		52	
2s2		40	
64-pin LQFP			
1:		65	
2s2	θ_{JA}	47	°C/W
64-pin QFP			
1:		54	
2s2		40	
44-pin LQFP			
1:		69	
2s2j)	48	

Table 7. Thermal Characteristics	Table	7.	Thermal	Characteristics
----------------------------------	-------	----	---------	-----------------

Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

² Junction to Ambient Natural Convection

- ³ 1s Single Layer Board, one signal layer
- ⁴ 2s2p Four Layer Board, 2 signal and 2 power layers

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 1

where:

 T_A = Ambient temperature, $^{\circ}C\theta_{JA}$ = Package thermal resistance, junction-to-ambient, $^{\circ}C/WP_D = P_{int} + P_{I/O}P_{int} = I_{DD} \times V_{DD}$, Watts — chip internal power $P_{I/O}$ = Power dissipation on input and output pins — user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C)$$
 Eqn. 2

Solving equations 1 and 2 for K gives:

$$K = P_D \times (T_A + 273^{\circ}C) + \theta_{JA} \times (P_D)^2$$
 Eqn. 3

where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving equations 1 and 2 iteratively for any value of T_A .

2.4 Electrostatic Discharge (ESD) Protection Characteristics

Although damage from static discharge is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with CDF-AEC-Q00 Stress Test Qualification for Automotive Grade Integrated Circuits. (http://www.aecouncil.com/) This device was qualified to AEC-Q100 Rev E.

A device is considered to have failed if, after exposure to ESD pulses, the device no longer meets the device specification requirements. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Model Description		Symbol	Value	Unit
	Series Resistance	R1	1500	Ω
Human Body	Storage Capacitance	С	100	pF
	Number of Pulse per pin	_	3	
Latch-up	Minimum input voltage limit		-2.5	V
	Maximum input voltage limit		7.5	V

Table 8. ESD and Latch-up Test Conditions

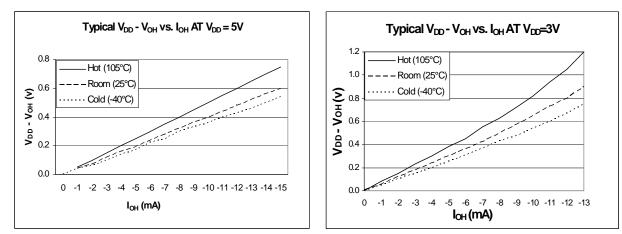


Figure 7. Typical High-side Drive (source) characteristics – High Drive (PTxDSn = 1)

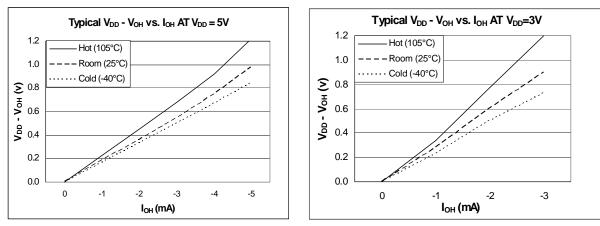


Figure 8. Typical High-side Drive (source) characteristics – Low Drive (PTxDSn = 0)

2.6 Supply Current Characteristics

Table 11. Supply Current Characteristics

Num	С	Parameter		Symbol	V _{DD} (V)	Typical ¹	Max ²	Unit
1	С		(CPU clock =		5	4.0	7	
	2 MHz, f _{Bus} = 1 MHz)			3	4.0	7	mA	
2	Р		(CPU clock =	RI _{DD}	5	19	30	
		16 MHz, f _{Bus} = 8 MHz)		3	18.7	30	mA	
3	С		(CPU clock =		5	45	70	
		48 MHz, f _{Bus} = 24 MHz)			3	44	70	mA

2.7 Analog Comparator (ACMP) Electricals

Num	С	Rating	Symbol	Min	Typical	Мах	Unit
1		Supply voltage	V _{DD}	2.7	—	5.5	V
2		Supply current (active)	I _{DDAC}	—	20	35	μΑ
3		Analog input voltage	V _{AIN}	$V_{SS} - 0.3$	_	V _{DD}	V
4		Analog input offset voltage	V _{AIO}		20	40	mV
5		Analog Comparator hysteresis	V _H	3.0	6.0	20.0	mV
6		Analog input leakage current	I _{ALKG}			1.0	μΑ
7		Analog Comparator initialization delay	t _{AINIT}	_	_	1.0	μS
8		Bandgap Voltage Reference Factory trimmed at V_{DD} = 3.0 V, Temp = 25°C	V _{BG}	1.19	1.20	1.21	V

2.8 ADC Characteristics

Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
Supply voltage	Absolute	V _{DDA}	2.7	_	5.5	V	
	Delta to V _{DD} (V _{DD} -V _{DDA}) ²	ΔV_{DDA}	-100	0	+100	mV	
Ground voltage	Delta to V _{SS} (V _{SS} -V _{SSA}) ²	ΔV_{SSA}	-100	0	+100	mV	
Ref Voltage High		V _{REFH}	2.7	V _{DDA}	V _{DDA}	V	
Ref Voltage Low		V _{REFL}	V _{SSA}	V _{SSA}	V _{SSA}	V	
Input Voltage		V _{ADIN}	V _{REFL}	_	V _{REFH}	V	
Input Capacitance		C _{ADIN}	_	4.5	5.5	pF	
Input Resistance		R _{ADIN}	—	3	5	kΩ	
Analog Source Resistance	12 bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz	R _{AS}	_		2 5	kΩ	External to MCU
	10 bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz		_	_	5 10		
	8 bit mode (all valid f _{ADCK})	1	—	—	10		
ADC Conversion	High Speed (ADLPC=0)	f _{ADCK}	0.4		8.0	MHz	
Clock Freq.	Low Power (ADLPC=1)		0.4	—	4.0		

¹ Typical values assume V_{DDA} = 5.0V, Temp = 25°C, f_{ADCK}=1.0MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² DC potential difference.

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit	Comment
Conversion Time	Short Sample (ADLSMP=0)	Т	t _{ADC}	_	20	_	ADCK	See Table 9 for
(Including sample time)	Long Sample (ADLSMP=1)			_	40		cycles	conversion time variances
Sample Time	Short Sample (ADLSMP=0)	Т	t _{ADS}	_	3.5		ADCK	
	Long Sample (ADLSMP=1)				23.5	_	cycles	
Total Unadjusted	12 bit mode	Т	E _{TUE}	_	±3.0	_	LSB ²	Includes
Error	10 bit mode	Р		_	±1	±2.5		quantization
	8 bit mode	Т			±0.5	±1.0		
Differential	12 bit mode	Т	DNL	—	±1.75		LSB ²	
Non-Linearity	10 bit mode ³	Р		—	±0.5	±1.0		
	8 bit mode ³	Т		—	±0.3	±0.5		
Integral	12 bit mode	Т	INL	—	±1.5	_	LSB ²	
Non-Linearity	10 bit mode	Т		—	±0.5	±1.0		
	8 bit mode	Т	-	_	±0.3	±0.5		
Zero-Scale Error	12 bit mode	Т	E _{ZS}	_	±1.5	_	LSB ²	$V_{ADIN} = V_{SSAD}$
	10 bit mode	Р		—	±0.5	±1.5		
	8 bit mode	Т	-	_	±0.5	±0.5		
Full-Scale Error	12 bit mode	Т	E _{FS}	_	±1	_	LSB ²	$V_{ADIN} = V_{DDAD}$
	10 bit mode	Т		—	±0.5	±1		
	8 bit mode	Т		—	±0.5	±0.5		
Quantization	12 bit mode	D	EQ	—	-1 to 0		LSB ²	
Error	10 bit mode			—	—	±0.5		
	8 bit mode			—	—	±0.5		
Input Leakage	12 bit mode	D	E _{IL}	—	±1		LSB ²	Pad leakage ⁴ *
Error	10 bit mode			—	±0.2	±2.5		R _{AS}
	8 bit mode			_	±0.1	±1	-	
Temp Sensor Voltage	25°C	D	V _{TEMP25}	—	1.396	—	V	
Temp Sensor	-40°C - 25°C	D	m	_	3.266		mV/ºC	
Slope	25°C - 125°C			_	3.638	_	1	

Table 14. 5 Volt 12-bit ADC Characteristics (V_{REFH} = V_{DDA}, V_{REFL} = V_{SSA}) (continued)

¹ Typical values assume V_{DDA} = 5.0V, Temp = 25°C, f_{ADCK}=1.0MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² 1 LSB = $(V_{REFH} - V_{REFL})/2^{N}$

³ Monotonicity and No-Missing-Codes guaranteed in 10 bit and 8 bit modes

⁴ Based on input pad leakage current. Refer to pad electricals.

Preliminary Electrical Characteristics

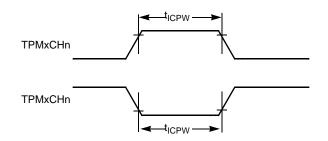
2.9 External Oscillator (XOSC) Characteristics

Table 15. Oscillator Electrical Specifications (Temperature Range = -40 to 105°C Ambient)

Num	С	Rating	Syn	nbol	Min	Typ ¹	Max	Unit
1		Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) • Low range (RANGE = 0) • High range (RANGE = 1) FEE or FBE mode ² • High range (RANGE = 1) PEE or PBE mode ³ • High range (RANGE = 1, HGO = 1) BLPE mode • High range (RANGE = 1, HGO = 0) BLPE mode	f _h f _{hi} f _{hi-}	io ii-fll i-pll -hgo ii-lp	32 1 1 1 1	 	38.4 5 16 16 8	kHz MHz MHz MHz MHz
2		Load capacitors		C ₁ C ₂			or resonato commend	
3		Feedback resistor • Low range (32 kHz to 38.4 kHz) • High range (1 MHz to 16 MHz)	F	۲ _F		10 1		ΜΩ ΜΩ
4		Series resistor • Low range, low gain (RANGE = 0, HGO = 0) • Low range, high gain (RANGE = 0, HGO = 1) $\geq 8 M$ 4 M 1 M • High range, low gain (RANGE = 1, HGO = 0) • High range, high gain (RANGE = 1, HGO = 1) $\geq 8 M$ 4 M 1 M	Hz Hz Hz Hz	₹s	 	0 100 0 0 0	 0 10 20	kΩ
5	т	Crystal start-up time ⁴ • Low range, low gain (RANGE = 0, HGO = 0) • Low range, high gain (RANGE = 0, HGO = 1) • High range, low gain (RANGE = 1, HG0 = 0) ⁵ • High range, high gain (RANGE = 1, HG0 = 1) ⁵	t t	TL-LP L-HGO TH-LP H-HGO	 	200 400 5 15	 	ms
6	т	Square wave input clock frequency (EREFS = 0, ERCLKEN = ⁻ • FEE or FBE mode ² • PEE or PBE mode ³ • BLPE mode		xtal	0.03125 1 0		5 16 40	MHz MHz MHz

¹ Data in Typical column was characterized at 5.0 V, 25°C or is typical recommended value.

² When MCG is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz.


³ When MCG is configured for PEE or PBE mode, input clock source must be divisible using RDIV to within the range of 1 MHz to 2 MHz.

⁴ This parameter is characterized and not tested on each device. Proper PC board-layout procedures must be followed to achieve specifications.

⁵ 4 MHz crystal

Preliminary Electrical Characteristics

Figure 13. Timer Input Capture Pulse

2.11.3 MSCAN

Table 19. MSCAN Wake-up Pulse Characteristics

Num	С	Parameter	Symbol	Min	Typ ¹	Max	Unit
1	D	MSCAN Wake-up dominant pulse filtered	t _{WUP}			2	μs
2	D	MSCAN Wake-up dominant pulse pass	t _{WUP}	5		5	μS

¹ Typical values are based on characterization data at V_{DD} = 5.0V, 25°C unless otherwise stated.

2.12 SPI Characteristics

Table 20 and Figure 14 through Figure 17 describe the timing requirements for the SPI system.

No.	С	Function	Symbol	Min	Max	Unit
_	D	Operating frequency Master Slave	f _{op}	f _{Bus} /2048 0	f _{Bus} /2 f _{Bus} /4	Hz
1	D	SPSCK period Master Slave	t _{SPSCK}	2 4	2048 —	t _{cyc} t _{cyc}
2	D	Enable lead time Master Slave	t _{Lead}	1/2 1		t _{SPSCK} t _{сус}
3	D	Enable lag time Master Slave	t _{Lag}	1/2 1		t _{SPSCK} t _{сус}
4	D	Clock (SPSCK) high or low time Master Slave	t _{WSPSCK}	$\begin{array}{c}t_{cyc}-30\\t_{cyc}-30\end{array}$	1024 t _{cyc}	ns ns
5	D	Data setup time (inputs) Master Slave	t _{SU}	15 15	_	ns ns
6	D	Data hold time (inputs) Master Slave	t _{HI}	0 25	_	ns ns
7	D	Slave access time	t _a	—	1	t _{cyc}
8	D	Slave MISO disable time	t _{dis}	—	1	t _{cyc}
9	D	Data valid (after SPSCK edge) Master Slave	t _v		25 25	ns ns
10	D	Data hold time (outputs) Master Slave	t _{HO}	0 0		ns ns
11	D	Rise time Input Output	t _{RI} t _{RO}	_	t _{cyc} – 25 25	ns ns
12	D	Fall time Input Output	t _{FI} t _{FO}	_	t _{cyc} – 25 25	ns ns

Table 20. SPI Timing

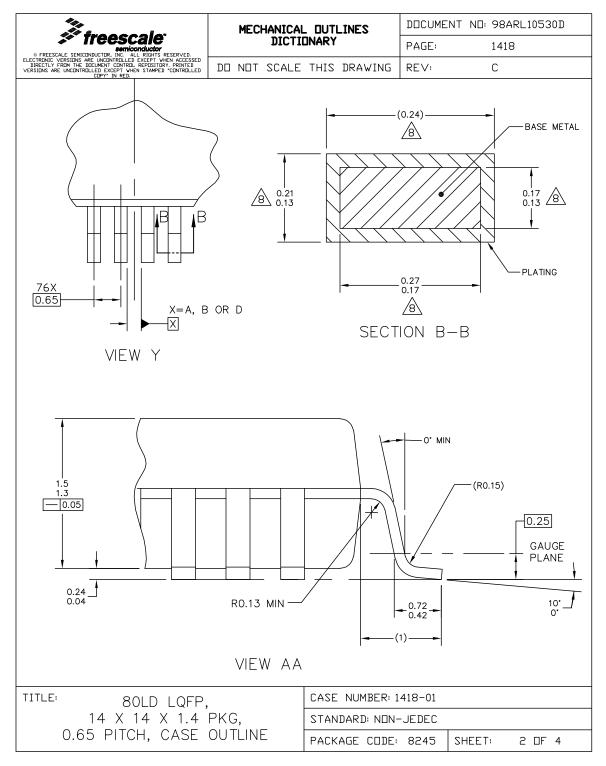


Figure 19. 80-pin LQFP Diagram - II

N

***	MECHANICA	_ OUTLINES	DOCUMENT NO: 98ARL10530D				
	DICTI	ONARY	PAGE:		1418		
 FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROL REPOSITORY. PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED. 	DO NOT SCALE	THIS DRAWING	REV:		С		
NOTES:							
1. DIMENSIONS ARE IN MILLIMETERS.							
2. DIMENSIONING AND TOLERANCING PER	8 ASME Y14.5M-1994.						
3. DATUMS A, B AND D TO BE DETERM	NED AT DATUM PLAN	Е Н.					
4. DIMENSIONS TO BE DETERMINED AT S	EATING PLANE C.						
5. THIS DIMENSION DOES NOT INCLUDE PROTRUSION SHALL NOT CAUSE THE BY MORE THAN 0.08 mm AT MAXIM LOCATED ON THE LOWER RADIUS OR PROTRUSION AND ADJACENT LEAD S	LEAD WIDTH TO EXC JM MATERIAL CONDITI THE FOOT. MINIMUM	EED THE UPPER LIMIT ON. DAMBAR CANNOT SPACE BETWEEN	BE				
6. THIS DIMENSION DOES NOT INCLUDE IS 0.25 mm PER SIDE. THIS DIMENSI INCLUDING MOLD MISMATCH.							
A EXACT SHAPE OF EACH CORNER IS C	OPTIONAL.						
8. THESE DIMENSIONS APPLY TO THE FL	AT SECTION OF THE	LEAD BETWEEN 0.1 m	m				
AND 0.25 mm FROM THE LEAD TIP.							
TITLE: 80LD LQFP,		CASE NUMBER: 1	418-01				
14 X 14 X 1.4	PKG,	STANDARD: NON-	-JEDEC				
0.65 PITCH, CASE	OUTLINE	PACKAGE CODE:	8245	SHEET	: 3	OF 4	

Figure 20. 80-pin LQFP Diagram - III

3.2 64-pin LQFP

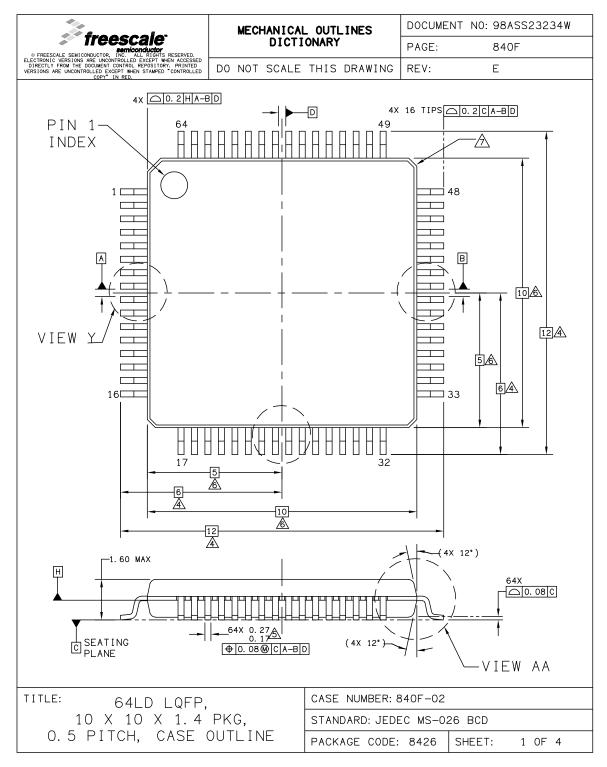


Figure 21. 64-pin LQFP Diagram - I

NP

Mechanical Outline Drawings

3.3 64-pin QFP

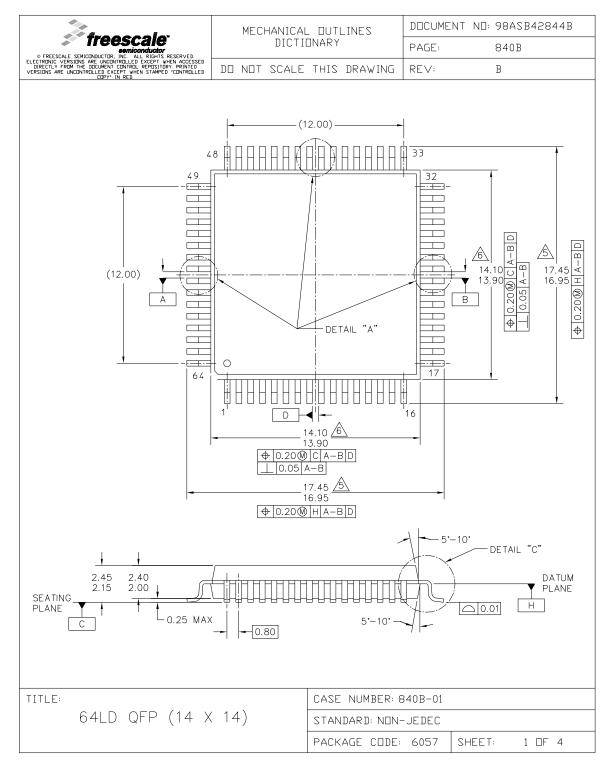


Figure 24. 64-pin QFP Diagram - I

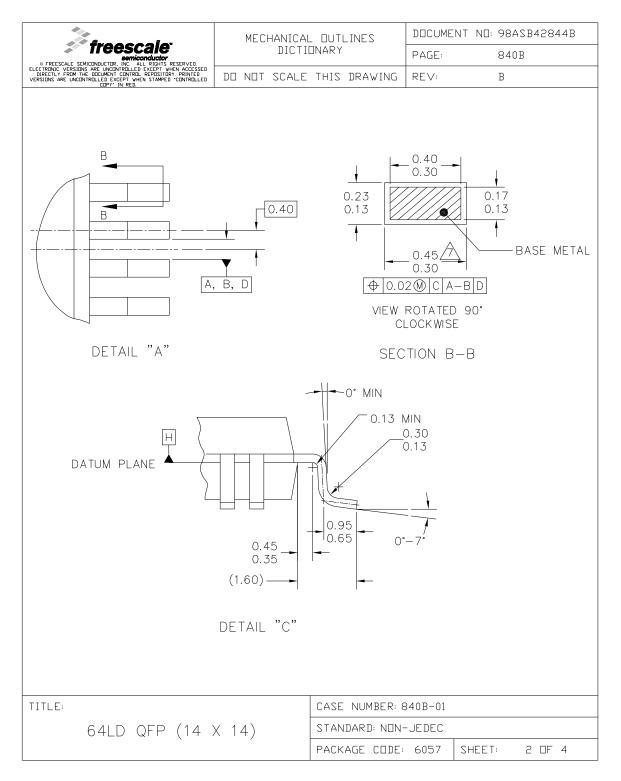


Figure 25. 64-pin QFP Diagram - II

3.4 44-pin LQFP

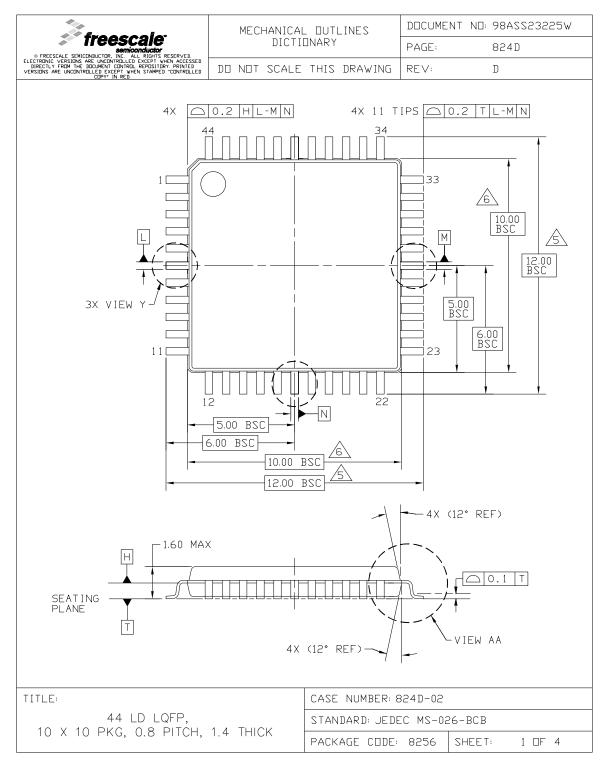


Figure 27. 44-pin LQFP Diagram - I