

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	Coldfire V1
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	CANbus, I ² C, SCI, SPI, USB OTG
Peripherals	LVD, PWM, WDT
Number of I/O	51
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcf51jm64evlhr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 MCF51JM128 Family Configurations

1.1 Device Comparison

The MCF51JM128 series consists of the devices compared in Table 1.

Table 1. MCF51JM128 Series Device Comparison

Footure	M	CF51JM1	28	MCF51JM64			MCF51JM32			
Feature	80-pin	64-pin	44-pin	80-pin	64-pin	44-pin	80-pin	64-pin	44-pin	
Flash memory size (KB)		128			64	I		32	I	
RAM size (KB)		16			16			16		
V1 ColdFire core with BDM (background debug module)				I	Yes		I			
ACMP (analog comparator)					Yes					
ADC channels (12-bit)	1	2	8	1	2	8	1	2	8	
CAN (controller area network)	Yes	Yes	No	Yes	Yes	No	Yes	Yes	No	
RNGA + CAU			I	I	Yes ¹		I			
CMT (carrier modulator timer)					Yes					
COP (computer operating properly)					Yes					
IIC1 (inter-integrated circuit)		Yes								
IIC2	Yes	N	lo	Yes	s No		Yes No		lo	
IRQ (interrupt request input)		I		I	Yes		I	I		
KBI (keyboard interrupts)	8	8	6	8	8	6	8	8	6	
LVD (low-voltage detector)	Yes									
MCG (multipurpose clock generator)					Yes					
Port I/O ²	66	51	33	66	51	33	66	51	33	
RGPIO (rapid general-purpose I/O)	16	6	0	16	6	0	16	6	0	
RTC (real-time counter)		I		I	Yes	I	I	I	I	
SCI1 (serial communications interface)	Yes									
SCI2	Yes									
SPI1 (serial peripheral interface)					Yes					
SPI2					Yes					
TPM1 (timer/pulse-width modulator) channels	6	6	4	6	6	4	6	6	4	
TPM2 channels	2									
USBOTG (USB On-The-Go dual-role controller)	o dual-role Yes									
XOSC (crystal oscillator)					Yes					
4										

Only existed on special part number

1.3 Features

Table 2 describes the functional units of the MCF51JM128 series.

Table 2. MCF51JM128 Series Functional Units

Unit	Function
CF1CORE (V1 ColdFire core)	Executes programs and interrupt handlers
BDM (background debug module)	Provides a single-pin debugging interface (part of the V1 ColdFire core)
DBG (debug)	Provides debugging and emulation capabilities (part of the V1 ColdFire core)
SYSCTL (system control)	Provides LVD, COP, external interrupt request, and so on
FLASH (flash memory)	Provides storage for program code and constants
RAM (random-access memory)	Provides storage for program code, constants, and variables
RGPIO (rapid general-purpose input/output)	Allows I/O port access at CPU clock speeds
VREG (voltage regulator)	Controls power management throughout the device
USBOTG (USB On-The-Go)	Supports the USB On-The-Go dual-role controller
ADC (analog-to-digital converter)	Measures analog voltages at up to 12 bits of resolution
TPM1, TPM2 (timer/pulse-width modulators)	Provide a variety of timing-based features
CF1_INTC (interrupt controller)	Controls and prioritizes all device interrupts
CAU (cryptographic acceleration unit)	Co-processor support for DES, 3DES, AES, MD5, and SHA-1
RNGA (random number generator accelerator)	32-bit random number generator that complies with FIPS-140
RTC (real-time counter)	Provides a constant-time base with optional interrupt
ACMP (analog comparator)	Compares two analog inputs
CMT (carrier modulator timer)	Infrared output used for the Remote Controller
IIC1, IIC2 (inter-integrated circuits)	Supports the standard IIC communications protocol
KBI (keyboard interrupt)	Provides pin interrupt capabilities
MCG (multipurpose clock generator)	Provides clocking options for the device, including a phase-locked loop (PLL) and frequency-locked loop (FLL) for multiplying slower reference clock sources
XOSC (crystal oscillator)	Supports low/high range crystals
CAN (controller area network)	Supports standard CAN communications protocol
SCI1, SCI2 (serial communications interfaces)	Serial communications UARTs that can support RS-232 and LIN protocols
SPI1, SPI2 (serial peripheral interfaces)	Provide a 4-pin synchronous serial interface
	•

MCF51JM128 Family Configurations

- Controller area network (MSCAN)
 - Implementation of the CAN protocol Version 2.0A/B
 - Five receive buffers with FIFO storage scheme
 - Three transmit buffers with internal prioritization using a "local priority" concept
 - Flexible maskable identifier filter programmable as 2x32-bit, 4x16-bit, or 8x8-bit
 - Programmable wakeup functionality with integrated low-pass filter
 - Programmable loopback mode supports self-test operation
 - Programmable bus-off recovery functionality
 - Internal timer for time-stamping of received and transmitted messages
- Cryptographic acceleration unit (CAU)
 - Co-processor support of DES, 3DES, AES, MD5, and SHA-1
- Random number generator accelerator (RNGA)
 - 32-bit random number generator that complies with FIPS-140
- Analog-to-digital converter (ADC)
 - 12-channel, 12-bit resolution
 - Output formatted in 12-, 10-, or 8-bit right-justified format
 - Single or continuous conversion, and selectable asynchronous hardware conversion trigger
 - Operation in Stop3 mode
 - Automatic compare function
 - Internal temperature sensor
- Analog comparators (ACMP)
 - Selectable interrupt on rising edge, falling edge, or either rising or falling edges of comparator output
 - Option to compare to fixed internal bandgap reference voltage
 - Option to route output to TPM module
 - Operation in Stop3 mode
- Inter-integrated circuit (IIC)
 - Up to 100 kbps with maximum bus loading
 - Multi-master operation
 - Programmable slave address
 - Supports broadcast mode and 10-bit address extension
- Serial communications interfaces (SCI)
 - Two SCIs with full-duplex, non-return-to-zero (NRZ) format
 - LIN master extended break generation
 - LIN slave extended break detection
 - Programmable 8-bit or 9-bit character length
 - Wake up on active edge
- Serial peripheral interfaces (SPI)
 - Two serial peripheral interfaces with full-duplex or single-wire bidirectional
 - Double-buffered transmit and receive
 - Programmable transmit bit rate, phase, polarity, and Slave Select output
 - MSB-first or LSB-first shifting
- Timer/pulse width modulator (TPM)
 - 16-bit free-running or modulo up/down count operation
 - Up to eight channels, where each channel can be an input capture, output compare, or edge-aligned PWM
 - One interrupt per channel plus terminal count interrupt

MCF51JM128 Family Configurations

Figure 4 shows the pinout of the 44-pin LQFP.

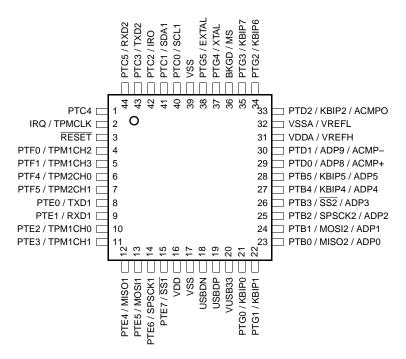


Figure 4. 44-pin LQFP

Table 4 shows the package pin assignments.

Table 4. Pin Assignments by Package and Pin Sharing Priority

Pin	Num	Number < Lowest Priority> Highest						
80	64	44	Port Pin	Alt 1	Alt 2			
1	1	1	PTC4		_			
2	2	2	_	IRQ	TPMCLK			
3	3	3	_	RESET	_			
4	4	4	PTF0	TPM1CH2	_			
5	5	5	PTF1	TPM1CH3	_			
6	6	_	PTF2	TPM1CH4	_			
7	7	_	PTF3	TPM1CH5	_			
8	8	6	PTF4	TPM2CH0	BUSCLK_OUT			
9	9	_	PTC6	RXCAN	_			
10	10	_	PTF7	TXCAN	_			
11	11	7	PTF5	TPM2CH1	_			
12	12	_	PTF6	_	_			
13	13	8	PTE0	TXD1	_			
14	14	9	PTE1	RXD1	_			
15	15	10	PTE2	TPM1CH0	_			

MCF51JM128 ColdFire Microcontroller, Rev. 4

Table 4. Pin Assignments by Package and Pin Sharing Priority (continued)

Pin	Num	ber	< Lov	vest Priority >	Highest
80	64	44	Port Pin	Alt 1	Alt 2
16	16	11	PTE3	TPM1CH1	_
17	_	_	PTC7	_	_
18	_	_	PTH0	SDA2	_
19	_	_	PTH1	SCL2	_
20	_	_	PTH2	RGPIO8	_
21	_	_	PTH3	RGPIO9	_
22	_	_	PTH4	RGPIO10	_
23	17	12	PTE4	MISO1	_
24	18	13	PTE5	MOSI1	_
25	19	14	PTE6	SPSCK1	_
26	20	15	PTE7	SS1	_
27	21	16	_	_	VDD
28	22	17	_	_	VSS
29	23	18	_	_	USBDN
30	24	19	_	_	USBDP
31	25	20	_	_	VUSB33
32	26	21	PTG0	KBIP0	USB_ALT_CLK
33	27	22	PTG1	KBIP1	_
34	28	_	PTA0	RGPIO0	USB_SESSVLD
35	29	_	PTA1	RGPIO1	USB_SESSEND
36	30	_	PTA2	RGPIO2	USB_VBUSVLD
37	31	_	PTA3	RGPIO3	USB_PULLUP(D+)
38	32	_	PTA4	RGPIO4	USB_DM_DOWN
39	33	_	PTA5	RGPIO5	USB_DP_DOWN
40	_	_	PTA6	RGPIO6	USB_ID
41	_	_	PTA7	RGPIO7	_
42	34	23	PTB0	MISO2	ADP0
43	35	24	PTB1	MOSI2	ADP1
44	36	25	PTB2	SPSCK2	ADP2
45	37	26	PTB3	SS2	ADP3
46	38	27	PTB4	KBIP4	ADP4
47	39	28	PTB5	KBIP5	ADP5
48	40	_	PTB6	ADP6	_

Table 6. Absolute Maximum Ratings

Rating	Symbol	Value	Unit
Supply voltage	V_{DD}	-0.3 to + 5.8	V
Input voltage	V _{In}	-0.3 to $V_{DD} + 0.3$	V
Instantaneous maximum current Single pin limit (applies to all port pins) ¹ , ² , ³	I _D	± 25	mA
Maximum current into V _{DD}	I _{DD}	120	mA
Storage temperature	T _{stg}	-55 to +150	°C
Maximum junction temperature	T _J	150	°C

Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

2.3 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} is small.

Table 7. Thermal Characteristics

Rating	Symbol	Value	Unit	
Operating temperature range (packaged)		T _A	-40 to +105	°C
Thermal resistance 1,2,3,4				
80-pin LQFP				
	1s		52	
	2s2p		40	
64-pin LQFP				
	1s		65	
	2s2p	$\theta_{\sf JA}$	47	°C/W
64-pin QFP				
	1s		54	
	2s2p		40	
44-pin LQFP				
	1s		69	
	2s2p		48	

Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

 $^{^{2}}$ All functional non-supply pins are internally clamped to V_{SS} and V_{DD} .

Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load shunt current is greater than maximum injection current. This is the greatest risk when the MCU is not consuming power. Examples: if no system clock is present or if the clock rate is low, which would reduce overall power consumption.

Junction to Ambient Natural Convection

Table 9. ESD and Latch-Up Protection Characteristics

Num	Rating	Symbol	Min	Max	Unit
1	Human Body Model (HBM)	V_{HBM}	+/- 2000	1	V
2	Charge Device Model (CDM)	V _{CDM}	+/- 500	_	V
3	Latch-up Current at T _A = 105°C	I _{LAT}	+/- 100	_	mA

2.5 DC Characteristics

This section includes information about power supply requirements, I/O pin characteristics, and power supply current in various operating modes.

Table 10. DC Characteristics

Num	С	Parameter	Symbol	Min	Typ ¹	Max	Unit
1		Operating voltage ²		2.7	_	5.5	V
	0	Output high voltage — Low Drive (PTxDSn = 0) 5 V, I _{Load} = -4 mA 3 V, I _{Load} = -2 mA 5 V, I _{Load} = -2 mA 3 V, I _{Load} = -1 mA	V	V _{DD} - 1.5 V _{DD} - 1.5 V _{DD} - 0.8 V _{DD} - 0.8			
2	Р	Output high voltage — High Drive (PTxDSn = 1) 5 V, I _{Load} = -15 mA 3 V, I _{Load} = -8 mA 5 V, I _{Load} = -8 mA 3 V, I _{Load} = -4 mA	V _{ОН}	$V_{DD} - 1.5$ $V_{DD} - 1.5$ $V_{DD} - 0.8$ $V_{DD} - 0.8$		1111	V
3	Р	Output low voltage — Low Drive (PTxDSn = 0) 5 V, I _{Load} = 4mA 3 V, I _{Load} = 2 mA 5 V, I _{Load} = 2 mA 3 V, I _{Load} = 1 mA	V _{OL}		_ _ _ _	1.5 1.5 0.8 0.8	V
		Output low voltage — High Drive (PTxDSn = 1) 5 V, I _{Load} = 15 mA 3 V, I _{Load} = 8 mA 5 V, I _{Load} = 8 mA 3 V, I _{Load} = 4 mA			_ _ _ _	1.5 1.5 0.8 0.8	
4	P	Output high current — Max total I _{OH} for all ports 5V 3V	I _{OHT}			100 60	mA
5	Р	Output low current — Max total I _{OL} for all ports 5V 3V	I _{OLT}	_ _	_	100 60	mA
6	Р	Input high voltage; all digital inputs					
		$V_{DD} = 5V$ $V_{DD} = 3V$	V _{IH}	3.25 2.10	_ _	_ _	V

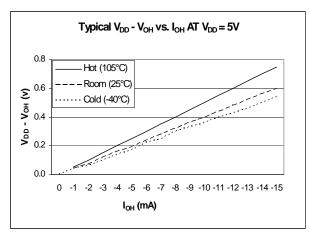


Table 10. DC Characteristics (continued)

Num	С	Parameter	Symbol	Min	Typ ¹	Max	Unit
7	Р	Input low voltage; all digital inputs					
		$V_{DD} = 5V$ $V_{DD} = 3V$	V _{IL}	_	_	1.75 1.05	V
8	Р	Input hysteresis; all digital inputs	V_{hys}	0.06 x V _{DD}			mV
9	Р	Input leakage current; input only pins ³	I _{In}	_	0.1	1	μА
10	Р	High Impedance (off-state) leakage current ³	I _{OZ}	_	0.1	1	μА
11	Р	Internal pullup resistors ⁴	R _{PU}	20	45	65	kΩ
12	Р	Internal pulldown resistors ⁵	R _{PD}	20	45	65	kΩ
13		Internal pullup resistor to USBDP (to V _{USB33}) Idle Transmit	R _{PUPD}	900 1425	1300 2400	1575 3090	kΩ
14	С	Input Capacitance; all non-supply pins	C _{In}	_	_	8	pF
15	D	RAM retention voltage ⁶	V_{RAM}	_	0.6	1.0	V
16	Р	POR rearm voltage	V _{POR}	0.9	1.4	2.0	V
17	D	POR rearm time	t _{POR}	10	_	_	μS
		Low-voltage detection threshold —	V_{LVD1}				V
18	Р	high range $V_{DD} \text{ falling} \\ V_{DD} \text{ rising}$		3.9 4.0	4.0 4.1	4.1 4.2	
		Low-voltage detection threshold —	V_{LVD0}				V
19	Р	low range V _{DD} falling V _{DD} rising		2.48 2.54	2.56 2.62	2.64 2.70	
		Low-voltage warning threshold —	V_{LVW3}				V
20	С	high range 1 V _{DD} falling V _{DD} rising		4.5 4.6	4.6 4.7	4.7 4.8	
		Low-voltage warning threshold —	V_{LVW2}				V
21	Р	high range 0 V _{DD} falling V _{DD} rising		4.2 4.3	4.3 4.4	4.4 4.5	
22	Р	Low-voltage warning threshold low range 1	V _{LVW1}	0.04	0.00	0.00	V
		V _{DD} falling V _{DD} rising		2.84 2.90	2.92 2.98	3.00 3.06	
		Low-voltage warning threshold — low range 0	V_{LVW0}				V
23	С	V _{DD} falling V _{DD} rising		2.66 2.72	2.74 2.80	2.82 2.88	
24	Т	Low-voltage inhibit reset/recover hysteresis 5 V 3 V	V _{hys}	_	100 60	_	mV

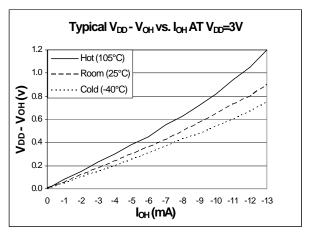
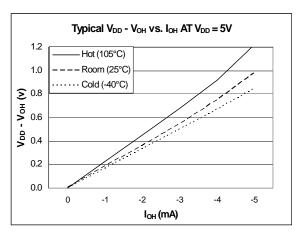



Figure 7. Typical High-side Drive (source) characteristics – High Drive (PTxDSn = 1)

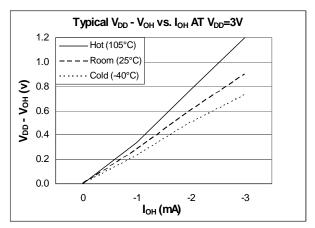


Figure 8. Typical High-side Drive (source) characteristics – Low Drive (PTxDSn = 0)

Supply Current Characteristics 2.6

Table 11. Supply Current Characteristics

Num	С	Parameter	Symbol	V _{DD} (V)	Typical ¹	Max ²	Unit
1	С	Run supply current ³ measured at (CPU clock =		5	4.0	7	m ^
		2 MHz, f _{Bus} = 1 MHz)		3	4.0	7	mA
2	Р	Run supply current ³ measured at (CPU clock =	RI _{DD}	5	19	30	
		16 MHz, f _{Bus} = 8 MHz)	55	3	18.7	30	mA
3	С	Run supply current ³ measured at (CPU clock =		5	45	70	A
		48 MHz, f _{Bus} = 24 MHz)		3	44	70	mA

MCF51JM128 ColdFire Microcontroller, Rev. 4 21 Freescale Semiconductor

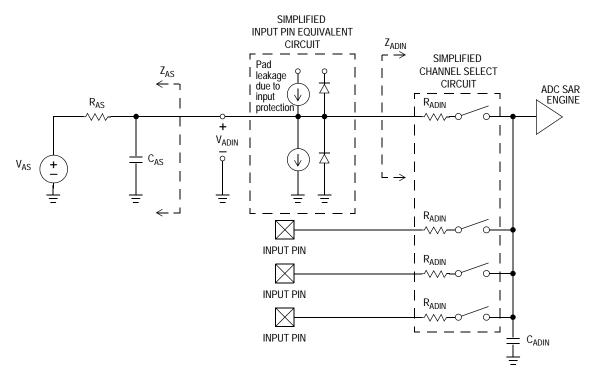


Figure 9. ADC Input Impedance Equivalency Diagram

Table 14. 5 Volt 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit	Comment
Supply Current ADLPC=1 ADLSMP=1 ADCO=1		Т	I _{DDAD}		133		μА	
Supply Current ADLPC=1 ADLSMP=0 ADCO=1		Т	I _{DDAD}	_	218	_	μА	
Supply Current ADLPC=0 ADLSMP=1 ADCO=1		Т	I _{DDAD}	_	327	_	μА	
Supply Current ADLPC=0 ADLSMP=0 ADCO=1		Р	I _{DDAD}		0.582	1	mA	
Supply Current	Stop, Reset, Module Off		I _{DDAD}	_	0.011	1	μА	
ADC	High Speed (ADLPC=0)	Т	f _{ADACK}	2	3.3	5	MHz	t _{ADACK} =
Asynchronous Clock Source	Low Power (ADLPC=1)			1.25	2	3.3		1/f _{ADACK}

2.9 External Oscillator (XOSC) Characteristics

Table 15. Oscillator Electrical Specifications (Temperature Range = −40 to 105°C Ambient)

Num	С	Rating	Symbol	Min	Typ ¹	Max	Unit
1		Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) • Low range (RANGE = 0) • High range (RANGE = 1) FEE or FBE mode ² • High range (RANGE = 1) PEE or PBE mode ³ • High range (RANGE = 1, HGO = 1) BLPE mode • High range (RANGE = 1, HGO = 0) BLPE mode	f _{lo} f _{hi-fll} f _{hi-pll} f _{hi-hgo} f _{hi-lp}	32 1 1 1 1		38.4 5 16 16 8	kHz MHz MHz MHz MHz
2		Load capacitors	C ₁ C ₂			or resonato ecommend	
3		Feedback resistor • Low range (32 kHz to 38.4 kHz) • High range (1 MHz to 16 MHz)	R _F		10 1		ΜΩ ΜΩ
4	_	Series resistor • Low range, low gain (RANGE = 0, HGO = 0) • Low range, high gain (RANGE = 0, HGO = 1) ≥ 8 MHz 4 MHz 1 MHz • High range, low gain (RANGE = 1, HGO = 0) • High range, high gain (RANGE = 1, HGO = 1) ≥ 8 MHz 4 MHz 1 MHz	R _S	_ _ _ _	0 100 0		kΩ
5	Т	Crystal start-up time ⁴ • Low range, low gain (RANGE = 0, HGO = 0) • Low range, high gain (RANGE = 0, HGO = 1) • High range, low gain (RANGE = 1, HG0 = 0) ⁵ • High range, high gain (RANGE = 1, HG0 = 1) ⁵	tCSTL-LP tCSTL-HGO tCSTH-LP tCSTH-HGO	_ _ _ _	200 400 5 15	_ _ _ _	ms
6	Т	Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) • FEE or FBE mode ² • PEE or PBE mode ³ • BLPE mode	f _{extal}	0.03125 1 0		5 16 40	MHz MHz MHz

Data in Typical column was characterized at 5.0 V, 25°C or is typical recommended value.

When MCG is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz.

When MCG is configured for PEE or PBE mode, input clock source must be divisible using RDIV to within the range of 1 MHz to 2 MHz.

⁴ This parameter is characterized and not tested on each device. Proper PC board-layout procedures must be followed to achieve specifications.

⁵ 4 MHz crystal

- Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{BUS}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.
- 6 625 ns represents 5 time quanta for CAN applications, under worst case conditions of 8 MHz CAN bus clock, 1 Mbps CAN bus speed, and 8 time quanta per bit for bit time settings. 5 time quanta is the minimum time between a synchronization edge and the sample point of a bit using 8 time quanta per bit.
- Below D_{lock} minimum, the MCG is guaranteed to enter lock. Above D_{lock} maximum, the MCG will not enter lock. But if the MCG is already in lock, then the MCG may stay in lock.
- ⁸ Below D_{unl} minimum, the MCG will not exit lock if already in lock. Above D_{unl} maximum, the MCG is guaranteed to exit lock.

2.11 AC Characteristics

This section describes ac timing characteristics for each peripheral system.

2.11.1 Control Timing

Table 17. Control Timing

Num	С	Parameter	Symbol	Min	Typ ¹	Max	Unit
1		Bus frequency (t _{cyc} = 1/f _{Bus})	f _{Bus}	dc	_	24	MHz
2		Internal low-power oscillator period	t _{LPO}	700		1300	μS
3		External reset pulse width ² (t _{cyc} = 1/f _{Self_reset})	t _{extrst}	100		_	ns
4		Reset low drive	t _{rstdrv}	66 x t _{cyc}		_	ns
5		Active background debug mode latch setup time	t _{MSSU}	500		_	ns
6		Active background debug mode latch hold time	t _{MSH}	100		_	ns
7		IRQ pulse width Asynchronous path ² Synchronous path ³	t _{ILIH,} t _{IHIL}	100 1.5 x t _{cyc}	_	_	ns
8		KBIPx pulse width Asynchronous path ² Synchronous path ³	t _{ILIH,} t _{IHIL}	100 1.5 x t _{cyc}	_	_	ns
9		Port rise and fall time (load = 50 pF) ⁴ Slew rate control disabled (PTxSE = 0) High drive Slew rate control enabled (PTxSE = 1) High drive Slew rate control disabled (PTxSE = 0) Low drive Slew rate control enabled (PTxSE = 1) Low drive	^t Rise ^{, t} Fall		11 35 40 75		ns

Typical values are based on characterization data at V_{DD} = 5.0V, 25°C unless otherwise stated.

MCF51JM128 ColdFire Microcontroller, Rev. 4

² This is the shortest pulse guaranteed to be recognized as a reset pin request. Shorter pulses are not guaranteed to override reset requests from internal sources.

³ This is the minimum pulse width guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.

 $^{^4}$ Timing is shown with respect to 20% $\rm V_{DD}$ and 80% $\rm V_{DD}$ levels. Temperature range –40°C to 105°C.

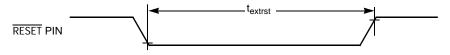


Figure 10. Reset Timing

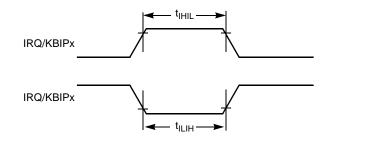


Figure 11. IRQ/KBIPx Timing

2.11.2 Timer/PWM (TPM) Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

Table 18. TPM Input Timing

NUM	С	Function	Symbol	Min	Max	Unit
1	_	External clock frequency	f _{TPMext}	dc	f _{Bus} /4	MHz
2	_	External clock period	t _{TPMext}	4	_	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	_	t _{cyc}
4	D	External clock low time	t _{clkl}	1.5	_	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

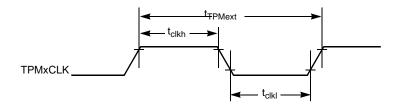
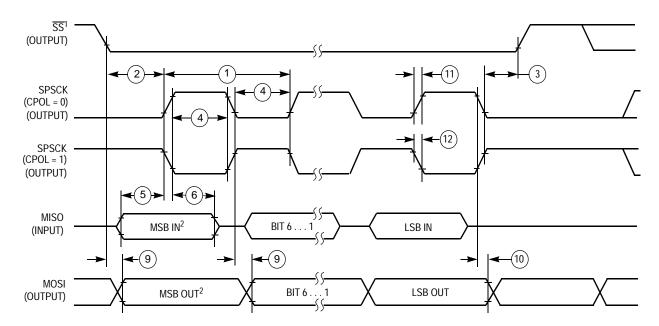
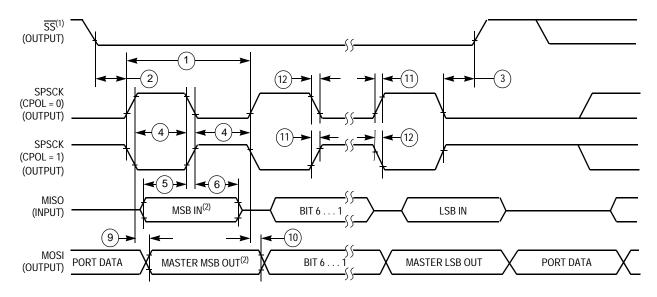



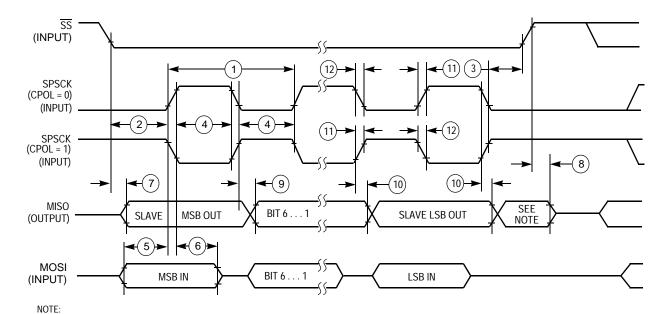
Figure 12. Timer External Clock



NOTES:

- 1. \overline{SS} output mode (DDS7 = 1, SSOE = 1).
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 14. SPI Master Timing (CPHA = 0)



NOTES:

- 1. \overline{SS} output mode (DDS7 = 1, SSOE = 1).
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 15. SPI Master Timing (CPHA = 1)

1. Not defined but normally MSB of character just received

Figure 16. SPI Slave Timing (CPHA = 0) SS (INPUT) 3 2 (11) **SPSCK** (CPOL = 0)(INPUT) 4 **SPSCK** (CPOL = 1) (INPUT) (9) (10) MISO MSB OUT BIT 6.. SLAVE LSB OUT SLAVE (OUTPUT) **←**(5)**> ∢**(6)> MOSI LSB IN BIT 6 . . . MSB IN (INPUT)

NOTE:

1. Not defined but normally LSB of character just received

Figure 17. SPI Slave Timing (CPHA = 1)

2.13 Flash Specifications

This section provides details about program/erase times and program-erase endurance for the Flash memory.

Program and erase operations do not require any special power sources other than the normal V_{DD} supply.

Table 21. Flash Characteristics

Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit
1		Supply voltage for program/erase	V _{prog/erase}	2.7		5.5	V
2		Supply voltage for read operation	V _{Read}	2.7		5.5	V
3		Internal FCLK frequency ²	f _{FCLK}	150		200	kHz
4		Internal FCLK period (1/FCLK)	t _{Fcyc}	5		6.67	μS
5		Byte program time (random location) ⁽²⁾	t _{prog}	9		t _{Fcyc}	
6		Byte program time (burst mode) ⁽²⁾	t _{Burst}	4		t _{Fcyc}	
7		Page erase time ³	t _{Page}	4000		t _{Fcyc}	
8		Mass erase time ⁽²⁾	t _{Mass}		20,000		t _{Fcyc}
9	С	Program/erase endurance ⁴ T _L to T _H = -40°C to + 105°C T = 25°C		10,000	 100,000	_	cycles
10		Data retention ⁵	t _{D_ret}	15	100	_	years

¹ Typical values are based on characterization data at V_{DD} = 5.0 V, 25°C unless otherwise stated.

2.14 USB Electricals

The USB electricals for the USBOTG module conform to the standards documented by the Universal Serial Bus Implementers Forum. For the most up-to-date standards, visit http://www.usb.org.

If the Freescale USBOTG implementation requires additional or deviant electrical characteristics, this space would be used to communicate that information.

² The frequency of this clock is controlled by a software setting.

These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase.

⁴ Typical endurance for Flash was evaluated for this product family on the 9S12Dx64. For additional information on how Freescale Semiconductor defines typical endurance, please refer to Engineering Bulletin EB619/D, *Typical Endurance for Nonvolatile Memory.*

Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale Semiconductor defines typical data retention, please refer to Engineering Bulletin EB618/D, Typical Data Retention for Nonvolatile Memory.

Mechanical Outline Drawings

40.			DOCUMENT NO: 98ARL10530D			
# freescale	MECHANICAL OUTLINES DICTIONARY				18	
⇒ FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROL REPOSITORY, PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED. ■ COPY" IN RED.	DO NOT SCALE	THIS DRAWING	REV:	C		
NOTES:						
1. DIMENSIONS ARE IN MILLIMETERS.						
2. DIMENSIONING AND TOLERANCING PER	R ASME Y14.5M-1994.					
3. DATUMS A, B AND D TO BE DETERMI	NED AT DATUM PLAN	Е Н.				
DIMENSIONS TO BE DETERMINED AT S	SEATING PLANE C.					
5. THIS DIMENSION DOES NOT INCLUDE I PROTRUSION SHALL NOT CAUSE THE BY MORE THAN 0.08 mm AT MAXIMI LOCATED ON THE LOWER RADIUS OR PROTRUSION AND ADJACENT LEAD S	LEAD WIDTH TO EXC JM MATERIAL CONDITI THE FOOT. MINIMUM	EED THE UPPER LIMIT ON. DAMBAR CANNOT SPACE BETWEEN				
6. THIS DIMENSION DOES NOT INCLUDE IS 0.25 mm PER SIDE. THIS DIMENSI INCLUDING MOLD MISMATCH.						
7. EXACT SHAPE OF EACH CORNER IS O	OPTIONAL.					
8. THESE DIMENSIONS APPLY TO THE FL AND 0.25 mm FROM THE LEAD TIP.	AT SECTION OF THE	LEAD BETWEEN 0.1 m	m			
TITLE: 80LD LQFP,		CASE NUMBER: 1	418-01			
14 X 14 X 1.4		STANDARD: NON-	-JEDEC			
0.65 PITCH, CASE		PACKAGE CODE:	8245	SHEET:	3 OF 4	

Figure 20. 80-pin LQFP Diagram - III

MCF51JM128 ColdFire Microcontroller, Rev. 4

Mechanical Outline Drawings

TITLE:

64LD QFP (14 X 14)

***	MECHANICAL OUTLINES	DOCUMENT NO: 98ASB42844B			
FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	DICTIONARY	PAGE:	840B		
© FREESCALE SEMICONDUCTOR, INTERCONDUCTOR, PESERVED. CETRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED HERCILY FROM THE DOCUMENT CONTROL REPOSITORY, PRINTED RSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED.	DO NOT SCALE THIS DRAWING	REV:	В		
NOTES:					
1. DIMENSIONING AND TOLERANC	CING PER ASME Y14.5M, 1994.				
2. CONTROLLING DIMENSION: MIL	LIMETER.				
	TED AT BOTTOM OF LEAD AND IS O PLASTIC BODY AT THE BOTTOM O				
4. DATUMS A-B AND -D- TO E	BE DETERMINED AT DATUM PLANE	-H			
A DIMENSIONS TO BE DETERMIN	ED AT SEATING PLANE -C				
	Mold protrusion. Allowable f de mold mismatch and are dete				
SHALL BE 0.08mm TOTAL IN	E DAMBAR PROTRUSION. ALLOWABI I EXCESS OF THE DIMENSION AT M DT BE LOCATED ON THE LOWER				

Figure 26. 64-pin QFP Diagram - III

CASE NUMBER: 840B-01

STANDARD: NON-JEDEC
PACKAGE CODE: 6057

SHEET:

3 OF 4

MCF51JM128 ColdFire Microcontroller, Rev. 4

3.4 44-pin LQFP

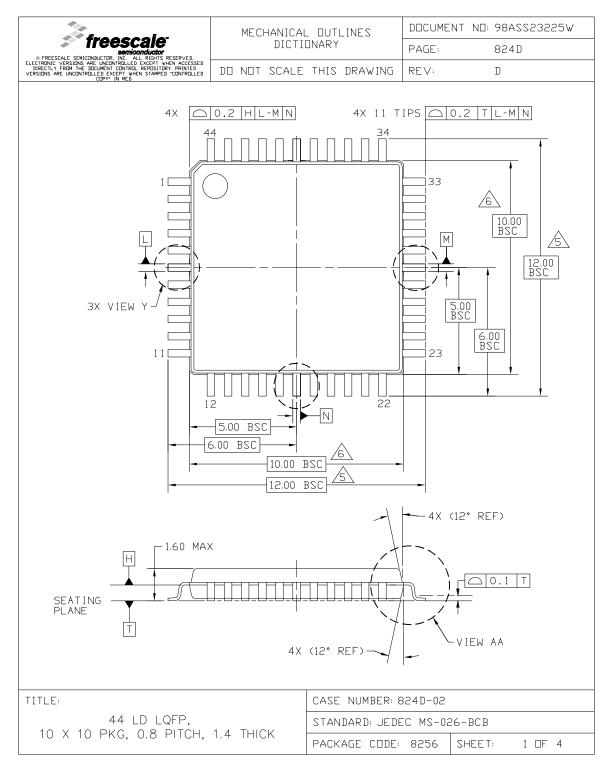


Figure 27. 44-pin LQFP Diagram - I

MCF51JM128 ColdFire Microcontroller, Rev. 4

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The described product contains a PowerPC processor core. The PowerPC name is a trademark of IBM Corp. and used under license. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008, 2009, 2010, 2011. All rights reserved.

MCF51JM128 Rev. 4 05/2012

