E·XFL

NXP USA Inc. - MCF51JM64VQH Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	Coldfire V1
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	CANbus, I ² C, SCI, SPI, USB OTG
Peripherals	LVD, PWM, WDT
Number of I/O	51
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-QFP
Supplier Device Package	64-QFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcf51jm64vqh

Email: info@E-XFL.COM

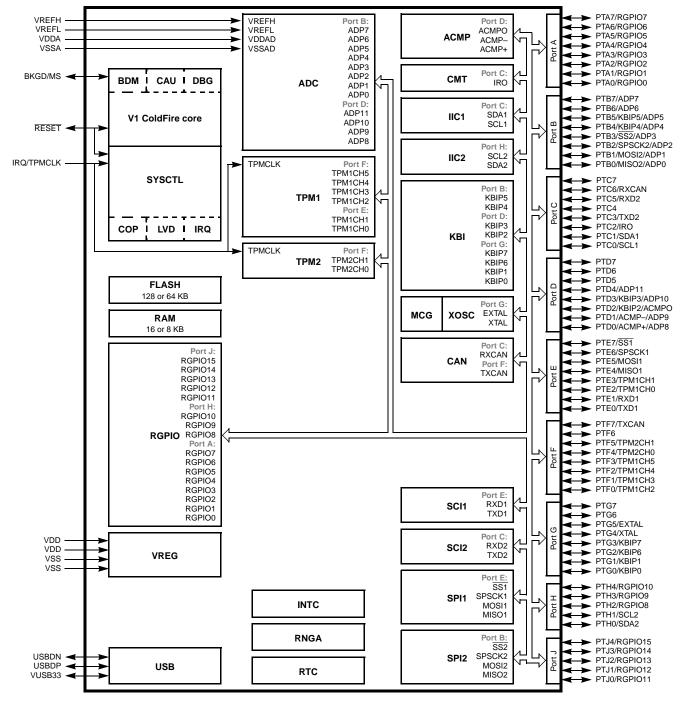
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1 Device Comparison

The MCF51JM128 series consists of the devices compared in Table 1.

Table 1. MCF51JM128 Series Device Comparison

Facture	MCF51JM128			MCF51JM64			MCF51JM32		
Feature	80-pin	64-pin	44-pin	80-pin	64-pin	44-pin	80-pin	64-pin	44-pin
Flash memory size (KB)	128				64		32		
RAM size (KB)	16				16			16	
V1 ColdFire core with BDM (background debug module)					Yes				
ACMP (analog comparator)					Yes				
ADC channels (12-bit)	1	2	8	1	2	8	12		8
CAN (controller area network)	Yes	Yes	No	Yes Yes		No	Yes	Yes	No
RNGA + CAU				1	Yes ¹	1			
CMT (carrier modulator timer)					Yes				
COP (computer operating properly)					Yes				
IIC1 (inter-integrated circuit)					Yes				
IIC2	Yes	N	0	Yes	No		Yes No		lo
IRQ (interrupt request input)		1		Yes			1		
KBI (keyboard interrupts)	8	8	6	8	8	6	8	8	6
LVD (low-voltage detector)	Yes								
MCG (multipurpose clock generator)				Yes					
Port I/O ²	66	51	33	66	51	33	66	51	33
RGPIO (rapid general-purpose I/O)	16	6	0	16	6	0	16	6	0
RTC (real-time counter)	Yes								
SCI1 (serial communications interface)					Yes				
SCI2					Yes				
SPI1 (serial peripheral interface)					Yes				
SPI2	Yes			Yes					
TPM1 (timer/pulse-width modulator) channels	6	6	4	6	6	4	6	6	4
TPM2 channels				2					
USBOTG (USB On-The-Go dual-role controller)				Yes					
XOSC (crystal oscillator)					Yes				


¹ Only existed on special part number

² Up to 16 pins on Ports A, H, and J are shared with the ColdFire Rapid GPIO module.

1.2 Block Diagram

Figure 1 shows the connections between the MCF51JM128 series pins and modules.

1.3 Features

Table 2 describes the functional units of the MCF51JM128 series.

Unit	Function
CF1CORE (V1 ColdFire core)	Executes programs and interrupt handlers
BDM (background debug module)	Provides a single-pin debugging interface (part of the V1 ColdFire core)
DBG (debug)	Provides debugging and emulation capabilities (part of the V1 ColdFire core)
SYSCTL (system control)	Provides LVD, COP, external interrupt request, and so on
FLASH (flash memory)	Provides storage for program code and constants
RAM (random-access memory)	Provides storage for program code, constants, and variables
RGPIO (rapid general-purpose input/output)	Allows I/O port access at CPU clock speeds
VREG (voltage regulator)	Controls power management throughout the device
USBOTG (USB On-The-Go)	Supports the USB On-The-Go dual-role controller
ADC (analog-to-digital converter)	Measures analog voltages at up to 12 bits of resolution
TPM1, TPM2 (timer/pulse-width modulators)	Provide a variety of timing-based features
CF1_INTC (interrupt controller)	Controls and prioritizes all device interrupts
CAU (cryptographic acceleration unit)	Co-processor support for DES, 3DES, AES, MD5, and SHA-1
RNGA (random number generator accelerator)	32-bit random number generator that complies with FIPS-140
RTC (real-time counter)	Provides a constant-time base with optional interrupt
ACMP (analog comparator)	Compares two analog inputs
CMT (carrier modulator timer)	Infrared output used for the Remote Controller
IIC1, IIC2 (inter-integrated circuits)	Supports the standard IIC communications protocol
KBI (keyboard interrupt)	Provides pin interrupt capabilities
MCG (multipurpose clock generator)	Provides clocking options for the device, including a phase-locked loop (PLL) and frequency-locked loop (FLL) for multiplying slower reference clock sources
XOSC (crystal oscillator)	Supports low/high range crystals
CAN (controller area network)	Supports standard CAN communications protocol
SCI1, SCI2 (serial communications interfaces)	Serial communications UARTs that can support RS-232 and LIN protocols
SPI1, SPI2 (serial peripheral interfaces)	Provide a 4-pin synchronous serial interface

- Controller area network (MSCAN)
 - Implementation of the CAN protocol Version 2.0A/B
 - Five receive buffers with FIFO storage scheme
 - Three transmit buffers with internal prioritization using a "local priority" concept
 - Flexible maskable identifier filter programmable as 2x32-bit, 4x16-bit, or 8x8-bit
 - Programmable wakeup functionality with integrated low-pass filter
 - Programmable loopback mode supports self-test operation
 - Programmable bus-off recovery functionality
 - Internal timer for time-stamping of received and transmitted messages
- Cryptographic acceleration unit (CAU)
 - Co-processor support of DES, 3DES, AES, MD5, and SHA-1
- Random number generator accelerator (RNGA)
 - 32-bit random number generator that complies with FIPS-140
- Analog-to-digital converter (ADC)
 - 12-channel, 12-bit resolution
 - Output formatted in 12-, 10-, or 8-bit right-justified format
 - Single or continuous conversion, and selectable asynchronous hardware conversion trigger
 - Operation in Stop3 mode
 - Automatic compare function
 - Internal temperature sensor
- Analog comparators (ACMP)
 - Selectable interrupt on rising edge, falling edge, or either rising or falling edges of comparator output
 - Option to compare to fixed internal bandgap reference voltage
 - Option to route output to TPM module
 - Operation in Stop3 mode
 - Inter-integrated circuit (IIC)
 - Up to 100 kbps with maximum bus loading
 - Multi-master operation
 - Programmable slave address
 - Supports broadcast mode and 10-bit address extension
 - Serial communications interfaces (SCI)
 - Two SCIs with full-duplex, non-return-to-zero (NRZ) format
 - LIN master extended break generation
 - LIN slave extended break detection
 - Programmable 8-bit or 9-bit character length
 - Wake up on active edge
 - Serial peripheral interfaces (SPI)
 - Two serial peripheral interfaces with full-duplex or single-wire bidirectional
 - Double-buffered transmit and receive
 - Programmable transmit bit rate, phase, polarity, and Slave Select output
 - MSB-first or LSB-first shifting
- Timer/pulse width modulator (TPM)
 - 16-bit free-running or modulo up/down count operation
 - Up to eight channels, where each channel can be an input capture, output compare, or edge-aligned PWM
 - One interrupt per channel plus terminal count interrupt

Figure 4 shows the pinout of the 44-pin LQFP.

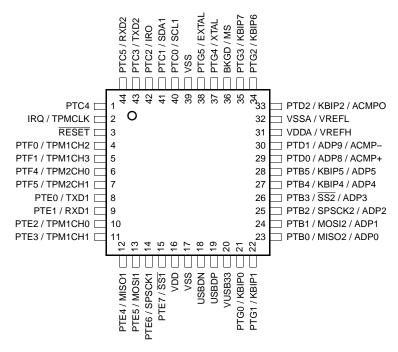


Figure 4. 44-pin LQFP

Table 4 shows the package pin assignments.

Pin Number < Lowest				vest Priority > ⊦	lighest
80	64	44	Port Pin	Alt 1	Alt 2
1	1	1	PTC4		_
2	2	2	_	IRQ	TPMCLK
3	3	3	—	RESET	_
4	4	4	PTF0	TPM1CH2	_
5	5	5	PTF1	TPM1CH3	_
6	6	_	PTF2	TPM1CH4	_
7	7		PTF3	TPM1CH5	_
8	8	6	PTF4	TPM2CH0	BUSCLK_OUT
9	9		PTC6	RXCAN	—
10	10	—	PTF7	TXCAN	_
11	11	7	PTF5	TPM2CH1	_
12	12	_	PTF6	—	—
13	13	8	PTE0	TXD1	_
14	14	9	PTE1	RXD1	
15	15	10	PTE2	TPM1CH0	

Pin	Pin Number < Lowest				
80	64	44	Port Pin	Alt 1	Alt 2
16	16	11	PTE3	TPM1CH1	—
17		—	PTC7	_	—
18	—	_	PTH0	SDA2	—
19			PTH1	SCL2	—
20		_	PTH2	RGPIO8	—
21	_	_	PTH3	RGPIO9	—
22			PTH4	RGPIO10	—
23	17	12	PTE4	MISO1	—
24	18	13	PTE5	MOSI1	—
25	19	14	PTE6	SPSCK1	—
26	20	15	PTE7	SS1	—
27	21	16	_	_	VDD
28	22	17	_	_	VSS
29	23	18	_	_	USBDN
30	24	19	_	_	USBDP
31	25	20	_	_	VUSB33
32	26	21	PTG0	KBIP0	USB_ALT_CLK
33	27	22	PTG1	KBIP1	—
34	28		PTA0	RGPIO0	USB_SESSVLD
35	29		PTA1	RGPIO1	USB_SESSEND
36	30	_	PTA2	RGPIO2	USB_VBUSVLD
37	31	_	PTA3	RGPIO3	USB_PULLUP(D+)
38	32	_	PTA4	RGPIO4	USB_DM_DOWN
39	33	_	PTA5	RGPIO5	USB_DP_DOWN
40		_	PTA6	RGPIO6	USB_ID
41	—	—	PTA7	RGPI07	—
42	34	23	PTB0	MISO2	ADP0
43	35	24	PTB1	MOSI2	ADP1
44	36	25	PTB2	SPSCK2	ADP2
45	37	26	PTB3	SS2	ADP3
46	38	27	PTB4	KBIP4	ADP4
47	39	28	PTB5	KBIP5	ADP5
48	40	—	PTB6	ADP6	

Table 4. Pin Assignments by Package and Pin Sharing Priority (continued)

This section contains electrical specification tables and reference timing diagrams for the MCF51JM128 microcontroller, including detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications.

The electrical specifications are preliminary and are from previous designs or design simulations. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle. These specifications will, however, be met for production silicon. Finalized specifications will be published after complete characterization and device qualifications have been completed.

NOTE

The parameters specified in this data sheet supersede any values found in the module specifications.

2.1 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Table 5.	. Parameter Classifications	

Р	Those parameters are guaranteed during production testing on each individual device.
с	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled C in the parameter tables where appropriate.

2.2 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 6 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, V_{SS} or V_{DD}).

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to + 5.8	V
Input voltage	V _{In}	– 0.3 to V _{DD} + 0.3	V
Instantaneous maximum current Single pin limit (applies to all port pins) ¹ , ² , ³	I _D	± 25	mA
Maximum current into V _{DD}	I _{DD}	120	mA
Storage temperature	T _{stg}	-55 to +150	°C
Maximum junction temperature	Τ _J	150	°C

Table 6. Absolute Maximum Ratings

¹ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

- 2 All functional non-supply pins are internally clamped to V_{SS} and V_{DD}.
- ³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load shunt current is greater than maximum injection current. This is the greatest risk when the MCU is not consuming power. Examples: if no system clock is present or if the clock rate is low, which would reduce overall power consumption.

2.3 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} is small.

Rating	Symbol	Value	Unit
Operating temperature range (packaged)	T _A	-40 to +105	°C
Thermal resistance ^{1,2,3,4}			
80-pin LQFP			
1:		52	
2s2		40	
64-pin LQFP			
1:		65	
2s2	θ_{JA}	47	°C/W
64-pin QFP			
1:		54	
2s2		40	
44-pin LQFP			
1:		69	
2s2j)	48	

Table 7. Thermal Characteristics	Table	7.	Thermal	Characteristics
----------------------------------	-------	----	---------	-----------------

Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

² Junction to Ambient Natural Convection

Num	С	Parameter	Symbol	Min	Typ ¹	Max	Unit
7	Ρ	Input low voltage; all digital inputs $V_{DD} = 5V$ $V_{DD} = 3V$	V _{IL}		_	1.75 1.05	v
8	Ρ	Input hysteresis; all digital inputs	V _{hys}	0.06 x V _{DD}			mV
9	Ρ	Input leakage current; input only pins ³	I _{In}	_	0.1	1	μA
10	Ρ	High Impedance (off-state) leakage current ³	I _{OZ}		0.1	1	μA
11	Ρ	Internal pullup resistors ⁴	R _{PU}	20	45	65	kΩ
12	Ρ	Internal pulldown resistors ⁵	R _{PD}	20	45	65	kΩ
13		Internal pullup resistor to USBDP (to V _{USB33}) Idle Transmit	R _{PUPD}	900 1425	1300 2400	1575 3090	kΩ
14	С	Input Capacitance; all non-supply pins	C _{In}		—	8	pF
15	D	RAM retention voltage ⁶	V _{RAM}	_	0.6	1.0	V
16	Ρ	POR rearm voltage	V _{POR}	0.9	1.4	2.0	V
17	D	POR rearm time	t _{POR}	10	—	_	μs
18	Ρ	Low-voltage detection threshold — high range V _{DD} falling V _{DD} rising	V _{LVD1}	3.9 4.0	4.0 4.1	4.1 4.2	V
19	Ρ	Low-voltage detection threshold — low range V _{DD} falling V _{DD} rising	V _{LVD0}	2.48 2.54	2.56 2.62	2.64 2.70	V
20	с	Low-voltage warning threshold — high range 1 V _{DD} falling V _{DD} rising	V _{LVW3}	4.5 4.6	4.6 4.7	4.7 4.8	V
21	Ρ	Low-voltage warning threshold — high range 0 V _{DD} falling V _{DD} rising	V _{LVW2}	4.2 4.3	4.3 4.4	4.4 4.5	V
22	Ρ	Low-voltage warning threshold low range 1 V _{DD} falling V _{DD} rising	V _{LVW1}	2.84 2.90	2.92 2.98	3.00 3.06	V
23	С	Low-voltage warning threshold — low range 0 V _{DD} falling V _{DD} rising	V _{LVW0}	2.66 2.72	2.74 2.80	2.82 2.88	V
24	Т	Low-voltage inhibit reset/recover hysteresis 5 V 3 V	V _{hys}		100 60	_	mV

Table 10. DC Characteristics	(continued)
------------------------------	-------------

- ¹ Typical values are based on characterization data at 25°C unless otherwise stated.
- ² Operating voltage with USB enabled can be found in Section 2.14, "USB Electricals."
- ³ Measured with $V_{In} = V_{DD}$ or V_{SS} .
- ⁴ Measured with $V_{In} = V_{SS}$.
- ⁵ Measured with $V_{In} = V_{DD}$.
- ⁶ This is the voltage below which the contents of RAM are not guaranteed to be maintained.

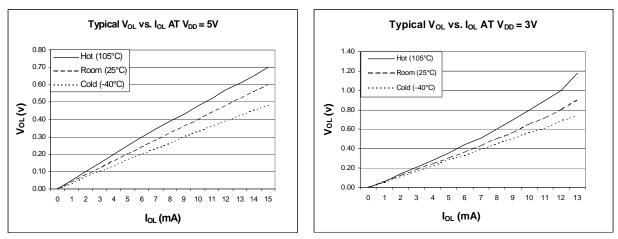


Figure 5. Typical Low-side Drive (sink) characteristics – High Drive (PTxDSn = 1)

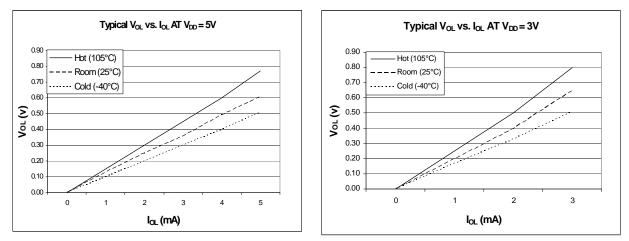


Figure 6. Typical Low-side Drive (sink) characteristics – Low Drive (PTxDSn = 0)

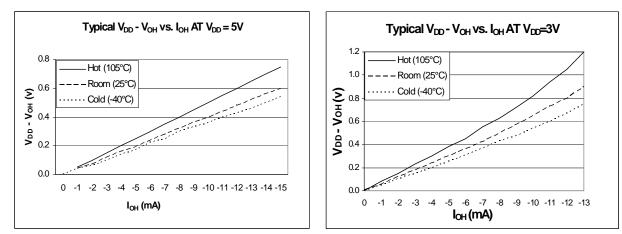


Figure 7. Typical High-side Drive (source) characteristics – High Drive (PTxDSn = 1)

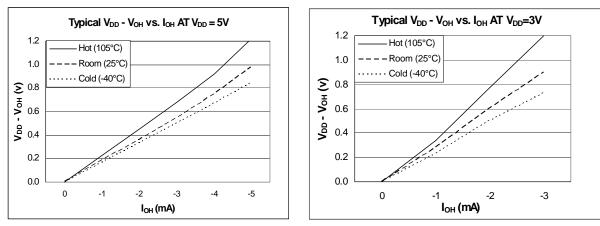


Figure 8. Typical High-side Drive (source) characteristics – Low Drive (PTxDSn = 0)

2.6 Supply Current Characteristics

Table 11. Supply Current Characteristics

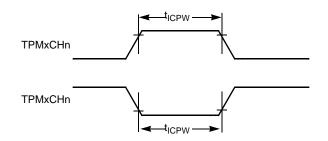
Num	С	Parameter		Symbol	V _{DD} (V)	Typical ¹	Max ²	Unit
1	С	Run supply current ³ measured at (CPU clock = 2 MHz, f _{Bus} = 1 MHz)		5	4.0	7		
				3	4.0	7	mA	
2	Р	Run supply current ³ measured at (CPU clock = 16 MHz, f _{Bus} = 8 MHz)	RI _{DD}	5	19	30	mA	
				3	18.7	30		
3	С	Run supply current ³ measured at (CPU clock = 48 MHz, f _{Bus} = 24 MHz)		5	45	70		
				3	44	70	mA	

2.9 External Oscillator (XOSC) Characteristics

Table 15. Oscillator Electrical Specifications (Temperature Range = -40 to 105°C Ambient)

Num	С	Rating	Symbol	Min	Typ ¹	Max	Unit	
1		Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) • Low range (RANGE = 0) • High range (RANGE = 1) FEE or FBE mode ² • High range (RANGE = 1) PEE or PBE mode ³ • High range (RANGE = 1, HGO = 1) BLPE mode • High range (RANGE = 1, HGO = 0) BLPE mode	f _{lo} f _{hi-fll} f _{hi-pll} f _{hi-hgo} f _{hi-lp}	32 1 1 1 1	 	38.4 5 16 16 8	kHz MHz MHz MHz MHz	
2		Load capacitors	C ₁ C ₂		See crystal or resonator manufacturer's recommendation			
3		Feedback resistor • Low range (32 kHz to 38.4 kHz) • High range (1 MHz to 16 MHz)	R _F		10 1		ΜΩ ΜΩ	
4		Series resistor • Low range, low gain (RANGE = 0, HGO = 0) • Low range, high gain (RANGE = 0, HGO = 1) $\geq 8 \text{ M}$ 4 M 1 M • High range, low gain (RANGE = 1, HGO = 0) • High range, high gain (RANGE = 1, HGO = 1) $\geq 8 \text{ M}$ 4 M 1 M	Hz Hz Hz Hz	 	0 100 0 0 0	 10 20	kΩ	
5	т	Crystal start-up time ⁴ • Low range, low gain (RANGE = 0, HGO = 0) • Low range, high gain (RANGE = 0, HGO = 1) • High range, low gain (RANGE = 1, HG0 = 0) ⁵ • High range, high gain (RANGE = 1, HG0 = 1) ⁵	^t CSTL-LP ^t CSTL-HGO ^t CSTH-LP ^t CSTH-HGC	_	200 400 5 15	 	ms	
6	т	Square wave input clock frequency (EREFS = 0, ERCLKEN = ² • FEE or FBE mode ² • PEE or PBE mode ³ • BLPE mode) f _{extal}	0.03125 1 0		5 16 40	MHz MHz MHz	

¹ Data in Typical column was characterized at 5.0 V, 25°C or is typical recommended value.


² When MCG is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz.

³ When MCG is configured for PEE or PBE mode, input clock source must be divisible using RDIV to within the range of 1 MHz to 2 MHz.

⁴ This parameter is characterized and not tested on each device. Proper PC board-layout procedures must be followed to achieve specifications.

⁵ 4 MHz crystal

Figure 13. Timer Input Capture Pulse

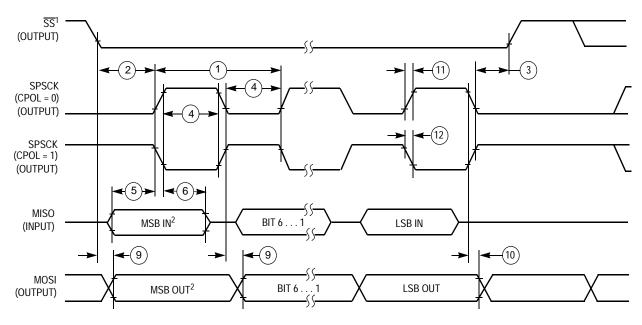
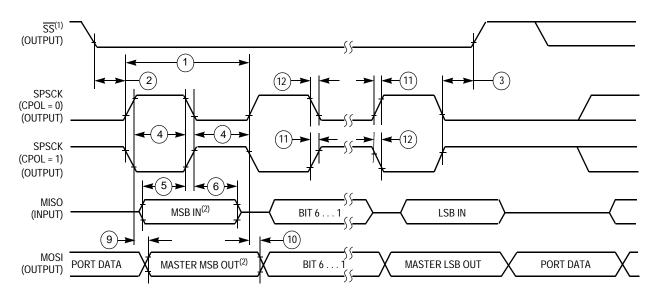

2.11.3 MSCAN

Table 19. MSCAN Wake-up Pulse Characteristics

Num	С	Parameter	Symbol	Min	Typ ¹	Max	Unit
1	D	MSCAN Wake-up dominant pulse filtered	t _{WUP}			2	μs
2	D	MSCAN Wake-up dominant pulse pass	t _{WUP}	5		5	μS

¹ Typical values are based on characterization data at V_{DD} = 5.0V, 25°C unless otherwise stated.

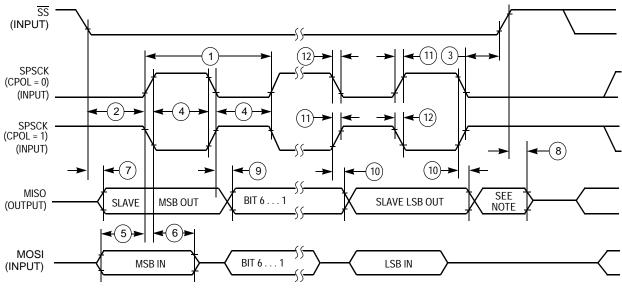


NOTES:

- 1. \overline{SS} output mode (DDS7 = 1, SSOE = 1).
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

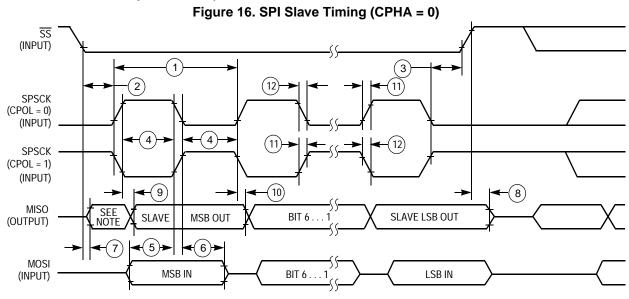
Figure 14. SPI Master Timing (CPHA = 0)

NOTES:


1. \overline{SS} output mode (DDS7 = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 15. SPI Master Timing (CPHA = 1)



Preliminary Electrical Characteristics

NOTE:

1. Not defined but normally MSB of character just received

NOTE:

1. Not defined but normally LSB of character just received

Mechanical Outline Drawings

3 Mechanical Outline Drawings

3.1 80-pin LQFP

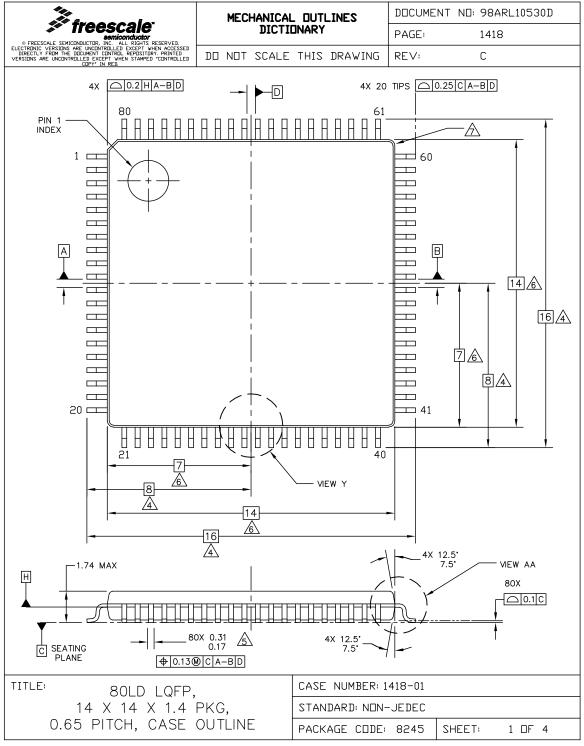


Figure 18. 80-pin LQFP Diagram - I

Mechanical Outline Drawings

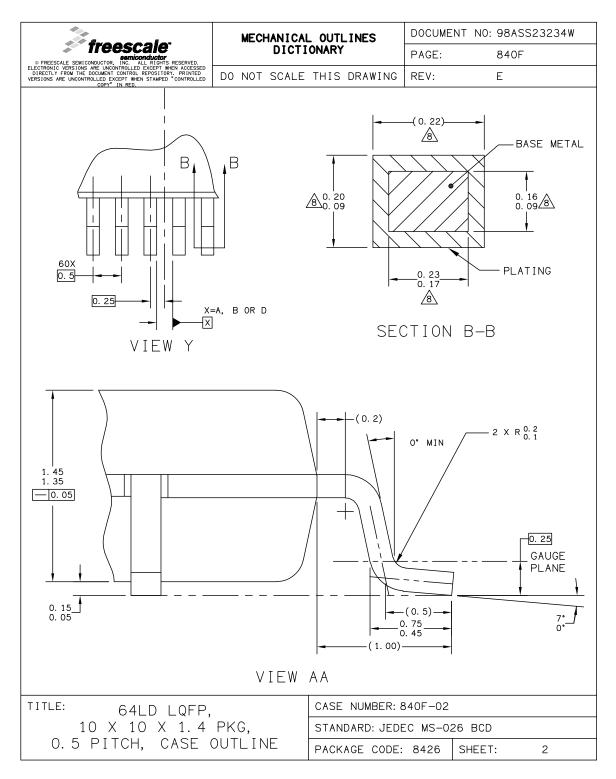


Figure 22. 64-pin LQFP Diagram - II

NP

Mechanical Outline Drawings

3.3 64-pin QFP

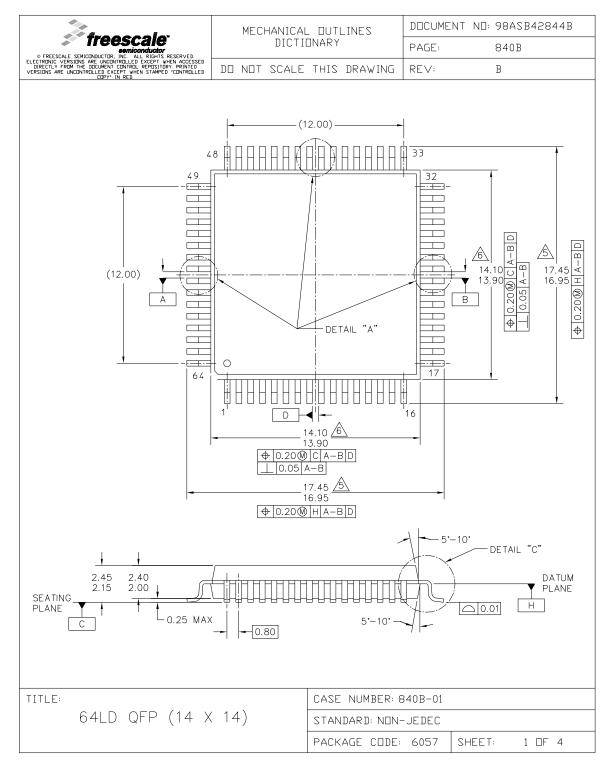


Figure 24. 64-pin QFP Diagram - I

3.4 44-pin LQFP

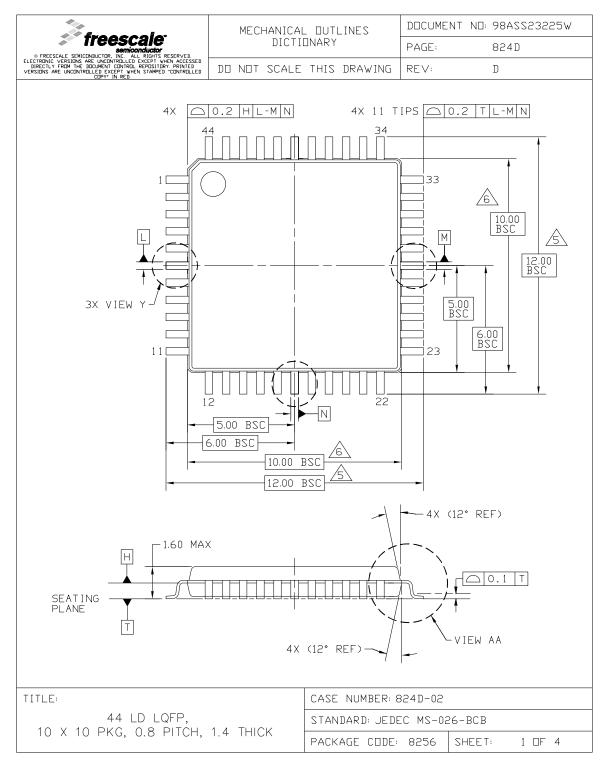
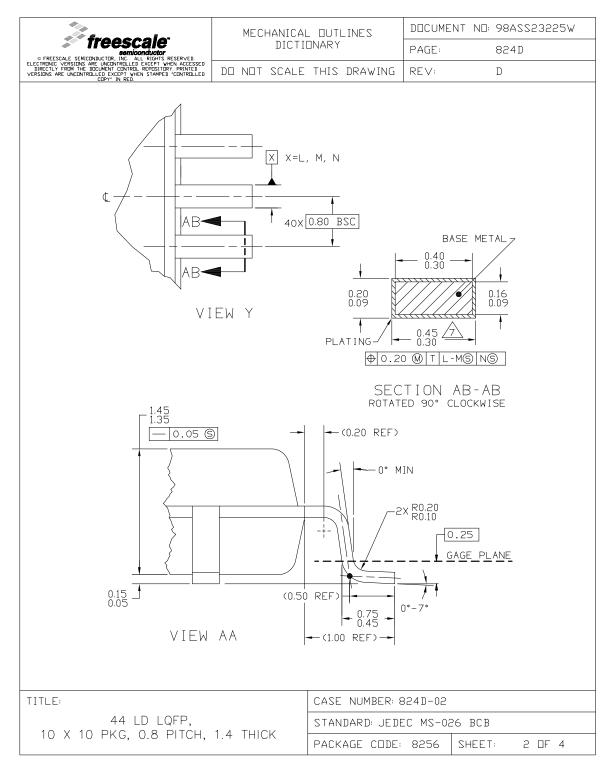



Figure 27. 44-pin LQFP Diagram - I

Mechanical Outline Drawings

