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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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Figure 2.1   Memory Map (1) 
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• After executing BSET instruction 

 P57 P56 P55 P54 P53 P52 P51 P50 

Input/output Input Input  Output Output Output Output Output Output 

Pin state Low  
level 

High  
level  

Low  
level 

Low  
level 

Low  
level 

Low  
level 

Low  
level 

High  
level  

PCR5 0 0 1 1 1 1 1 1 

PDR5 0 1 0 0 0 0 0 1 

 

• Description on operation 

1. When the BSET instruction is executed, first the CPU reads port 5.  

Since P57 and P56 are input pins, the CPU reads the pin states (low-level and high-level 
input).  
P55 to P50 are output pins, so the CPU reads the value in PDR5. In this example PDR5 has a 
value of H'80, but the value read by the CPU is H'40. 

2. Next, the CPU sets bit 0 of the read data to 1, changing the PDR5 data to H'41.  

3. Finally, the CPU writes H'41 to PDR5, completing execution of BSET instruction. 
 
As a result of the BSET instruction, bit 0 in PDR5 becomes 1, and P50 outputs a high-level signal. 
However, bits 7 and 6 of PDR5 end up with different values. To prevent this problem, store a copy 
of the PDR5 data in a work area in memory. Perform the bit manipulation on the data in the work 
area, then write this data to PDR5. 

• Prior to executing BSET instruction 

MOV.B   #80,  R0L 
MOV.B   R0L,  @RAM0 
MOV.B   R0L,  @PDR5 

 The PDR5 value (H'80) is written to a work area in 
memory (RAM0) as well as to PDR5. 

 

 P57 P56 P55 P54 P53 P52 P51 P50 

Input/output Input Input  Output Output Output Output Output Output 

Pin state Low  
level 

High  
level  

Low  
level 

Low  
level 

Low  
level 

Low  
level 

Low  
level 

Low  
level 

PCR5 0 0 1 1 1 1 1 1 

PDR5 1 0 0 0 0 0 0 0 

RAM0 1 0 0 0 0 0 0 0 

 



Section 3   Exception Handling 

Rev. 4.00  Mar. 15, 2006  Page 62 of 556 

REJ09B0026-0400  

3.4.3 Interrupt Handling Sequence 

Interrupts are controlled by an interrupt controller. 

Interrupt operation is described as follows. 

1. If an interrupt occurs while the NMI or interrupt enable bit is set to 1, an interrupt request 
signal is sent to the interrupt controller. 

2. When multiple interrupt requests are generated, the interrupt controller requests to the CPU for 
the interrupt handling with the highest priority at that time according to table 3.1. Other 
interrupt requests are held pending. 

3. The CPU accepts the NMI and address break without depending on the I bit value. Other 
interrupt requests are accepted, if the I bit is cleared to 0 in CCR; if the I bit is set to 1, the 
interrupt request is held pending.  

4. If the CPU accepts the interrupt after processing of the current instruction is completed, 
interrupt exception handling will begin. First, both PC and CCR are pushed onto the stack. The 
state of the stack at this time is shown in figure 3.2. The PC value pushed onto the stack is the 
address of the first instruction to be executed upon return from interrupt handling. 

5. Then, the I bit of CCR is set to 1, masking further interrupts excluding the NMI and address 
break. Upon return from interrupt handling, the values of I bit and other bits in CCR will be 
restored and returned to the values prior to the start of interrupt exception handling.  

6. Next, the CPU generates the vector address corresponding to the accepted interrupt, and 
transfers the address to PC as a start address of the interrupt handling-routine. Then a program 
starts executing from the address indicated in PC.  

 
Figure 3.3 shows a typical interrupt sequence where the program area is in the on-chip ROM and 
the stack area is in the on-chip RAM. 
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Table 7.2 Boot Mode Operation 

Communication Contents

Processing Contents

Host Operation LSI Operation

Processing Contents

Continuously transmits data H'00 
at specified bit rate.

Branches to boot program at reset-start.

Boot program initiation

H'00, H'00 . . . H'00

H'00

H'55

Transmits data H'55 when data H'00 
is received error-free.

H'XX

Transmits number of bytes (N) of 
programming control program to be 
transferred as 2-byte data 
(low-order byte following high-order 
byte)

Transmits 1-byte of programming 
control program (repeated for N times)

H'AA reception

H'AA reception

Upper bytes, lower bytes

Echoback

Echoback

H'AA

H'AA

Branches to programming control program 
transferred to on-chip RAM and starts 
execution.

Transmits data H'AA to host.

Checks flash memory data, erases all flash 
memory blocks in case of written data 
existing, and transmits data H'AA to host.
(If erase could not be done, transmits data 
H'FF to host and aborts operation.)
 

H'FF
Boot program 
erase error
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12.3.14 Interface with CPU 

16-Bit Register: TCNT and GR are 16-bit registers. Reading/writing in a 16-bit unit is enabled 
but disabled in an 8-bit unit since the data bus with the CPU is 16-bit width. These registers must 
always be accessed in a 16-bit unit. Figure 12.5 shows an example of accessing the 16-bit 
registers. 

H
Internal data bus 

Bus interface Module data bus 

C

P

U

L

TCNTLTCNTH
 

Figure 12.5   Accessing Operation of 16-Bit Register (between CPU and TCNT (16 Bits)) 

8-Bit Register: Registers other than TCNT and GR are 8-bit registers that are connected internally 
with the CPU in an 8-bit width. Figure 12.6 shows an example of accessing the 8-bit registers. 

TSTR

H
Internal data bus 

Bus interface Module data bus 

C

P

U

L

 

Figure 12.6   Accessing Operation of 8-Bit Register (between CPU and TSTR (8 Bits)) 
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H'0180

H'0160

H'0005

H'0000

FTIOB

FTIOA

H'0160

H'0005

H'0005GRA

H'0160GRC

H'0180GRB

TCNT value
Counter is cleared by the input capture B  

Time 

Input capture A
  

Figure 12.40   Example of Buffer Operation (2)  
(Buffer Operation for Input Capture Register) 
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14.3.8 Bit Rate Register (BRR) 

BRR is an 8-bit register that adjusts the bit rate. The initial value of BRR is H'FF. Table 14.3 
shows the relationship between the N setting in BRR and the n setting in bits CKS1 and CKS0 of 
SMR in asynchronous mode. Table 14.4 shows the maximum bit rate for each frequency in 
asynchronous mode. The values shown in both tables 14.3 and 14.4 are values in active (high-
speed) mode. Table 14.5 shows the relationship between the N setting in BRR and the n setting in 
bits CKS1 and CKS0 of SMR in clocked synchronous mode. The values shown in table 14.5 are 
values in active (high-speed) mode. The N setting in BRR and error for other operating 
frequencies and bit rates can be obtained by the following formulas: 

[Asynchronous Mode] 

N =
φ

64 × 22n–1 × B
× 106 – 1

 

Error (%) =                                          – 1   × 100








φ × 106 
(N + 1) × B × 64 × 22n–1

 

[Clocked Synchronous Mode] 

N =
φ

8 × 22n–1 × B
 × 106 – 1

 

[Legend] 
B: Bit rate (bit/s) 

N: BRR setting for baud rate generator (0 ≤ N ≤ 255) 

φ: Operating frequency (MHz) 
n: CSK1 and CSK0 settings in SMR (0 ≤ n ≤ 3) 
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14.4.4 Serial Data Reception 

Figure 14.7 shows an example of operation for reception in asynchronous mode. In serial 
reception, the SCI3 operates as described below. 

1. The SCI3 monitors the communication line. If a start bit is detected, the SCI3 performs 
internal synchronization, receives receive data in RSR, and checks the parity bit and stop bit. 

2. If an overrun error occurs (when reception of the next data is completed while the RDRF flag 
is still set to 1), the OER bit in SSR is set to 1. If the RIE bit in SCR3 is set to 1 at this time, an 
ERI interrupt request is generated. Receive data is not transferred to RDR. 

3. If a parity error is detected, the PER bit in SSR is set to 1 and receive data is transferred to 
RDR. If the RIE bit in SCR3 is set to 1 at this time, an ERI interrupt request is generated. 

4. If a framing error is detected (when the stop bit is 0), the FER bit in SSR is set to 1 and receive 
data is transferred to RDR. If the RIE bit in SCR3 is set to 1 at this time, an ERI interrupt 
request is generated. 

5. If reception is completed successfully, the RDRF bit in SSR is set to 1, and receive data is 
transferred to RDR. If the RIE bit in SCR3 is set to 1 at this time, an RXI interrupt request is 
generated. Continuous reception is possible because the RXI interrupt routine reads the receive 
data transferred to RDR before reception of the next receive data has been completed. 

 

1 frame

Start
bit

Start
bit

Receive
data

Receive
data

Parity
bit

Stop
bit

Parity
bit

Stop
bit

Mark state
(idle state)

1 frame

01 D0 D1 D7 0/1 1 0 10 D0 D1 D7 0/1Serial
data

RDRF

FER

LSI
operation

User 
processing

RDRF 
cleared to 0

RDR data read Framing error 
processing

RXI request 0 stop bit 
detected

ERI request in 
response to 
framing error

 

Figure 14.7   Example of SCI3 Reception in Asynchronous Mode 
(8-Bit Data, Parity, One Stop Bit) 
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Yes

<End>

No

Start reception

[1]

[4]

No

Yes

Read RDRF flag in SSR [2]

[3]

Clear RE bit in SCR3 to 0

Error processing

(Continued below)

Read receive data in RDR

Yes

No

OER = 1

RDRF = 1

All data received?

Read OER flag in SSR

<End>

Error processing

Overrun error processing

Clear OER flag in SSR to 0

[4]

[1] Read the OER flag in SSR to determine if 
there is an error. If an overrun error has 
occurred, execute overrun error processing.

[2] Read SSR and check that the RDRF flag is 
set to 1, then read the receive data in RDR. 
When data is read from RDR, the RDRF 
flag is automatically cleared to 0.

[3] To continue serial reception, before the 
MSB (bit 7) of the current frame is received, 
reading the RDRF flag and reading RDR 
should be finished. When data is read from 
RDR, the RDRF flag is automatically 
cleared to 0.

[4] If an overrun error occurs, read the OER 
flag in SSR, and after performing the 
appropriate error processing, clear the OER 
flag to 0.  Reception cannot be resumed if 
the OER flag is set to 1.

 

Figure 14.13   Sample Serial Reception Flowchart (Clocked Synchronous Mode) 
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Yes

<End>

No

Start transmission/reception

[3]

Error processing

[4]

Read receive data in RDR

Yes

No

OER = 1

All data received?

[1]Read TDRE flag in SSR

No

Yes

TDRE = 1

Write transmit data to TDR

No

Yes

RDRF = 1

Read OER flag in SSR

[2]Read RDRF flag in SSR

Clear TE and RE bits in SCR to 0

[1] Read SSR and check that the TDRE 
flag is set to 1, then write transmit 
data to TDR.

        When data is written to TDR, the 
TDRE flag is automatically cleared to 
0.

[2] Read SSR and check that the RDRF 
flag is set to 1, then read the receive 
data in RDR.

        When data is read from RDR, the 
RDRF flag is automatically cleared to 
0.

[3] To continue serial transmission/ 
reception, before the MSB (bit 7) of 
the current frame is received, finish 
reading the RDRF flag, reading RDR.  
Also, before the MSB (bit 7) of the 
current frame is transmitted, read 1 
from the TDRE flag to confirm that 
writing is possible.  Then write data to 
TDR.

        When data is written to TDR, the 
TDRE flag is automatically cleared to 
0. When data is read from RDR, the 
RDRF flag is automatically cleared to 
0.

[4] If an overrun error occurs, read the 
OER flag in SSR, and after 
performing the appropriate error 
processing, clear the OER flag to 0.  
Transmission/reception cannot be 
resumed if the OER flag is set to 1.

       For overrun error processing, see 
figure 14.13.

  

Figure 14.14   Sample Flowchart of Simultaneous Serial Transmit and Receive Operations 
(Clocked Synchronous Mode) 
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14.6 Multiprocessor Communication Function 

Use of the multiprocessor communication function enables data transfer between a number of 
processors sharing communication lines by asynchronous serial communication using the 
multiprocessor format, in which a multiprocessor bit is added to the transfer data. When 
multiprocessor communication is performed, each receiving station is addressed by a unique ID 
code. The serial communication cycle consists of two component cycles; an ID transmission cycle 
that specifies the receiving station, and a data transmission cycle. The multiprocessor bit is used to 
differentiate between the ID transmission cycle and the data transmission cycle. If the 
multiprocessor bit is 1, the cycle is an ID transmission cycle; if the multiprocessor bit is 0, the 
cycle is a data transmission cycle. Figure 14.15 shows an example of inter-processor 
communication using the multiprocessor format. The transmitting station first sends the ID code 
of the receiving station with which it wants to perform serial communication as data with a 1 
multiprocessor bit added. It then sends transmit data as data with a 0 multiprocessor bit added. 
When data with a 1 multiprocessor bit is received, the receiving station compares that data with its 
own ID. The station whose ID matches then receives the data sent next. Stations whose IDs do not 
match continue to skip data until data with a 1 multiprocessor bit is again received. 

The SCI3 uses the MPIE bit in SCR3 to implement this function. When the MPIE bit is set to 1, 
transfer of receive data from RSR to RDR, error flag detection, and setting the SSR status flags, 
RDRF, FER, and OER, to 1, are inhibited until data with a 1 multiprocessor bit is received. On 
reception of a receive character with a 1 multiprocessor bit, the MPBR bit in SSR is set to 1 and 
the MPIE bit is automatically cleared, thus normal reception is resumed. If the RIE bit in SCR3 is 
set to 1 at this time, an RXI interrupt is generated. 

When the multiprocessor format is selected, the parity bit setting is rendered invalid. All other bit 
settings are the same as those in normal asynchronous mode. The clock used for multiprocessor 
communication is the same as that in normal asynchronous mode. 
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15.3.7 Transmit Pending Register (TXPR) 

TXPR sets transmit pending (CAN bus arbitration wait) for the transmit message that is stored in a 
Mailbox. Setting the corresponding bit in TXPR to 1 enables a message to be transmitted. Writing 
0 to the bit in TXPR is ignored. 

Bit Bit Name 
Initial 
Value R/W Description 

7 to 4 — All 0 — Reserved 

These bits are always read as 0.  

3 

2 

1 

MB3 

MB2 

MB1 

0 

0 

0 

R/W 

R/W 

R/W 

[Setting condition] 

When the corresponding MBCR bit for a mailbox is 0, the 
corresponding bit in TXPR is set to 1  
(n = 3 to 1) 

[Clearing conditions] 

• When message transmission has completed 
successfully (TXACKn set) 

• When transmission cancellation for an untransmitted 
message has finished (ABACKn set) 

• When a transmission cancellation request has 
occurred during message transmission, and an error 
occurs or arbitration is lost on the CAN bus (ABACKn 
set) 

• When a transmit error or arbitration loss occurred with 
the corresponding DART bit for a message being 
transmitted set to 1 

If the message is not transmitted successfully, the MBn 
bit is not cleared to 0. If any of these MB bits in TXPR are 
cleared to 0, the EMPI bit in TCIRR1 is set to 1. The 
TinyCAN automatically attempts retransmission as long 
as the DART bit in the message control of the 
corresponding Mailbox is not set to 1 or the 
corresponding bit in TXCR is not set to 1. 

Note: When the MBn bit in MBCR is set to 1, the 
 TinyCAN does not transmit a message even if 
 the MBn bit in TXPR is set to 1. To clear the 
 MBn bit in TXPR to 0, set the MBn bit in TXCR 
 to 1 beforehand. 

0 — 0 — Reserved 

This bit is always read as 0. This bit is relevant to the 
receive-only Mailbox, and its value cannot be changed. 
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15.3.13 Unread Message Status Register (UMSR) 

UMSR is a status flag that indicates that an unread message in each Mailbox has been overwritten 
by a new receive message or a new receive message has been discarded. 

Bit Bit Name 
Initial 
Value R/W Description 

7 to 4 — All 0 — Reserved 

These bits are always read as 0.  

3 

2 

1 

0 

MB3 

MB2 

MB1 

MB0 

0 

0 

0 

0 

R/(W)* 

R/(W)* 

R/(W)* 

R/(W)* 

Status flags indicating that a new receive message has 
overwritten/overrun an unread message. 

[Setting condition] 

When a new message is received before the 
corresponding bit in RXPR or RFPR is cleared to 0 

[Clearing condition] 

When 1 is written to these bits 

Note: * Only 1 can be written to clear the flag. 
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Bit Bit Name 
Initial 
Value R/W Description 

3 TEND 0 R/W Transmit End  

[Setting condition] 

• When the last bit of data is transmitted, the TDRE bit 

is 1 

[Clearing conditions] 

• When 0 is written to this bit after reading 1 

• When data is written in SSTDR 

2 TDRE 1 R/W Transmit Data Empty 

[Setting conditions] 

• When the TE bit in SSER is 0 

• When data transfer is performed from SSTDR to 

SSTRSR and data can be written in SSTDR 

[Clearing conditions] 

• When 0 is written to this bit after reading 1 

• When data is written in SSTDR 

1 RDRF 0 R/W Receive Data Register Full 

[Setting condition] 

• When serial reception is completed normally and 

receive data is transferred from SSTRSR to SSRDR 

[Clearing conditions] 

• When 0 is written to this bit after reading 1 

• When data is read from SSRDR 

0 CE 0 R/W Conflict Error Flag 

[Setting conditions] 

• When serial communication is started while SSUMS = 

1 and MSS =1, the SCS pin input is low  

• When the SCS pin level changes from low to high 

during transfer while SSUMS = 1 and MSS = 0 

[Clearing condition] 

• When 0 is written to this bit after reading 1 
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21.1 Register Addresses (Address Order) 

The data-bus width column indicates the number of bits. The access-state column shows the 
number of states of the selected basic clock that is required for access to the register. 

Note: Access to undefined or reserved addresses should not take place. Correct operation of the 
access itself or later operations is not guaranteed when such a register is accessed. 

 
 
Register Name 

 
Abbre- 
viation 

 
 
Bit No 

 
 
Address 

 
Module 
Name 

Data 
Bus 
Width 

 
Access 
State 

   H'F000 to 
H'F5FF 

   

Master control register MCR 8 H'F600 TinyCAN 8 4 

General status register GSR 8 H'F601 TinyCAN 8 4 

Bit configuration register 1 BCR1 8 H'F602 TinyCAN 8 4 

Bit configuration register 0 BCR0 8 H'F603 TinyCAN 8 4 

Mailbox configuration register MBCR 8 H'F604 TinyCAN 8 4 

TinyCAN module control register TCMR 8 H'F605 TinyCAN 8 4 

Transmit pending register TXPR 8 H'F606 TinyCAN 8 4 

Transmit pending cancel register TXCR 8 H'F608 TinyCAN 8 4 

Transmit acknowledge register TXACK 8 H'F60A TinyCAN 8 4 

Abort acknowledge register ABACK 8 H'F60C TinyCAN 8 4 

Receive complete register RXPR 8 H'F60E TinyCAN 8 4 

Remote request register RFPR 8 H'F610 TinyCAN 8 4 

TinyCAN interrupt register 1 TCIRR1 8 H'F612 TinyCAN 8 4 

TinyCAN interrupt register 0 TCIRR0 8 H'F613 TinyCAN 8 4 

Mailbox interrupt mask register MBIMR 8 H'F614 TinyCAN 8 4 

TinyCAN interrupt mask register 1 TCIMR1 8 H'F616 TinyCAN 8 4 

TinyCAN interrupt mask register 0 TCIMR0 8 H'F617 TinyCAN 8 4 

Receive error counter REC 8 H'F618 TinyCAN 8 4 

Transmit error counter TEC 8 H'F619 TinyCAN 8 4 

Test control register TCR 8 H'F61A TinyCAN 8 4 

Unread message status register UMSR 8 H'F61B TinyCAN 8 4 

Message control 0 [0] MC0[0] 8 H'F620 TinyCAN 8 4 
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22.2 Electrical Characteristics (F-ZTAT™ Version) 

22.2.1 Power Supply Voltage and Operating Ranges 

Power Supply Voltage and Oscillation Frequency Range: 

10.0

2.0

20.0

3.0 4.0 5.5 VCC (V)

φOSC (MHz)

64.0

850.0

4.0 5.5 VCC (V)

φOSC (MHz)

AVCC = 3.3 to 5.5 V
•  Active mode
•  Sleep mode

AVCC = 3.3 to 5.5 V
•  Active mode
•  Sleep mode
•  Subactive mode
•  Subsleep mode

Note:  This frequency range is supplied by the on-chip 
          oscillator for the subtimer and is guaranteed.  

Power Supply Voltage and Operating Frequency Range: 

10.0

1.0

20.0

3.0 4.0 5.5 VCC (V)

φ (MHz)

1250

78.125

2500

3.0 4.0 5.5 VCC (V)

φ (kHz)

AVCC = 3.3  to 5.5 V
•  Active mode
•  Sleep mode
   (When MA2 in SYSCR2 = 0 )

AVCC = 3.3 to 5.5 V
•  Active mode
•  Sleep mode
   (When MA2 in SYSCR2 = 1 )  
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22.3 Electrical Characteristics (Masked ROM Version) 

22.3.1 Power Supply Voltage and Operating Ranges 

Power Supply Voltage and Oscillation Frequency Range: 

10.0

2.0

20.0

2.7 4.0 5.5 VCC (V)

φOSC (MHz)

64.0

850.0

4.0 5.5 VCC (V)

φOSC (MHz)

AVCC = 3.3 to 5.5 V
•  Active mode
•  Sleep mode

AVCC = 3.3 to 5.5 V
•  Active mode
•  Sleep mode
•  Subactive mode
•  Subsleep mode

Note:  This frequency range is supplied by the on-chip 
          oscillator for the subtimer and is guaranteed.  

Power Supply Voltage and Operating Frequency Range: 

10.0

1.0

20.0

2.7 4.0 5.5 VCC (V)

φ (MHz)

1250

78.125

2500

2.7 4.0 5.5 VCC (V)

φ (kHz)

AVCC = 3.3  to 5.5 V
•  Active mode
•  Sleep mode
   (When MA2 in SYSCR2 = 0 )

AVCC = 3.3 to 5.5 V
•  Active mode
•  Sleep mode
   (When MA2 in SYSCR2 = 1 )  
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22.4 Operation Timing 

tOSC

VIH

VIL

tCPH tCPL

tCPr

OSC1

tCPf  

Figure 22.1   System Clock Input Timing 

tREL

VIL
RES

tREL

VIL

VCC × 0.7VCC

OSC1

 

Figure 22.2   RES Low Width Timing 

VIH

VIL

tIL

NMI

IRQ0 to IRQ3

WKP0 to WKP5

ADTRG

FTIOA0 to FTIOD0,
FTIOA1 to FTIOD1,
TMCIV, TMRIV
TRGV

tIH
 

Figure 22.3   Input Timing 
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A.3 Number of Execution States 

The status of execution for each instruction of the H8/300H CPU and the method of calculating 
the number of states required for instruction execution are shown below. Table A.4 shows the 
number of cycles of each type occurring in each instruction, such as instruction fetch and data 
read/write. Table A.3 shows the number of states required for each cycle. The total number of 
states required for execution of an instruction can be calculated by the following expression: 

Execution states = I × SI + J × SJ + K × SK + L × SL + M × SM + N × SN 

Examples: When instruction is fetched from on-chip ROM, and an on-chip RAM is accessed. 

 BSET #0, @FF00 

From table A.4: 
I = L = 2,     J = K = M = N= 0 

From table A.3: 
SI = 2,     SL = 2 

Number of states required for execution = 2 × 2 + 2 × 2 = 8 

When instruction is fetched from on-chip ROM, branch address is read from on-chip ROM, and 
on-chip RAM is used for stack area. 

 JSR @@ 30 

From table A.4: 
I = 2,     J = K = 1,     L = M = N = 0 

From table A.3: 
SI = SJ = SK = 2 

Number of states required for execution = 2 × 2 + 1 × 2+ 1 × 2 = 8 


