
Renesas - DF36034FPV Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor H8/300H

Core Size 16-Bit

Speed 20MHz

Connectivity CANbus, SCI, SSU

Peripherals LVD, POR, PWM, WDT

Number of I/O 45

Program Memory Size 32KB (32K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 3V ~ 5.5V

Data Converters A/D 8x10b SAR; D/A 1x10b

Oscillator Type External, Internal

Operating Temperature -20°C ~ 75°C (TA)

Mounting Type Surface Mount

Package / Case 64-LQFP

Supplier Device Package 64-LFQFP (10x10)

Purchase URL https://www.e-xfl.com/product-detail/renesas-electronics-america/df36034fpv

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/df36034fpv-4383089
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Section 2 CPU

 Rev. 4.00 Mar. 15, 2006 Page 11 of 556

 REJ09B0026-0400

H'0000
H'0049
H'004A

H'DFFF

H'FB7F

H'FF7F
H'FF80

H'FB80 H'FB80

H'F77F
H'F780

H'FB7F

H'F780

H'F600
H'F77F
H'F600

H'EFFF

H'EC00

H'FFFF

HD64F36057
HD64F36057G
HD64F36037

HD64F36037G
(Flash memory version)

Interrupt vector

On-chip ROM
(56 kbytes)

On-chip RAM
(1 kbyte)

Not used

Interrupt vector

On-chip ROM
(32 kbytes)

Not used

Not used

Internal I/O register Internal I/O register

On-chip RAM
(2 kbytes)

(1-kbyte user area)

Internal I/O register Internal I/O register

(1-kbyte work area
for flash memory

programming)
On-chip RAM

(2 kbytes)

(1-kbyte user area)

(1-kbyte work area
for flash memory

programming)

HD64F36054
HD64F36054G
HD64F36034

HD64F36034G
(Flash memory version)

H'0000
H'0049
H'004A

H'FF7F
H'FF80

H'FFFF

H'7FFF

Figure 2.1 Memory Map (1)

Section 2 CPU

Rev. 4.00 Mar. 15, 2006 Page 44 of 556

REJ09B0026-0400

• After executing BSET instruction

 P57 P56 P55 P54 P53 P52 P51 P50

Input/output Input Input Output Output Output Output Output Output

Pin state Low
level

High
level

Low
level

Low
level

Low
level

Low
level

Low
level

High
level

PCR5 0 0 1 1 1 1 1 1

PDR5 0 1 0 0 0 0 0 1

• Description on operation

1. When the BSET instruction is executed, first the CPU reads port 5.

Since P57 and P56 are input pins, the CPU reads the pin states (low-level and high-level
input).
P55 to P50 are output pins, so the CPU reads the value in PDR5. In this example PDR5 has a
value of H'80, but the value read by the CPU is H'40.

2. Next, the CPU sets bit 0 of the read data to 1, changing the PDR5 data to H'41.

3. Finally, the CPU writes H'41 to PDR5, completing execution of BSET instruction.

As a result of the BSET instruction, bit 0 in PDR5 becomes 1, and P50 outputs a high-level signal.
However, bits 7 and 6 of PDR5 end up with different values. To prevent this problem, store a copy
of the PDR5 data in a work area in memory. Perform the bit manipulation on the data in the work
area, then write this data to PDR5.

• Prior to executing BSET instruction

MOV.B #80, R0L
MOV.B R0L, @RAM0
MOV.B R0L, @PDR5

 The PDR5 value (H'80) is written to a work area in
memory (RAM0) as well as to PDR5.

 P57 P56 P55 P54 P53 P52 P51 P50

Input/output Input Input Output Output Output Output Output Output

Pin state Low
level

High
level

Low
level

Low
level

Low
level

Low
level

Low
level

Low
level

PCR5 0 0 1 1 1 1 1 1

PDR5 1 0 0 0 0 0 0 0

RAM0 1 0 0 0 0 0 0 0

Section 3 Exception Handling

Rev. 4.00 Mar. 15, 2006 Page 62 of 556

REJ09B0026-0400

3.4.3 Interrupt Handling Sequence

Interrupts are controlled by an interrupt controller.

Interrupt operation is described as follows.

1. If an interrupt occurs while the NMI or interrupt enable bit is set to 1, an interrupt request
signal is sent to the interrupt controller.

2. When multiple interrupt requests are generated, the interrupt controller requests to the CPU for
the interrupt handling with the highest priority at that time according to table 3.1. Other
interrupt requests are held pending.

3. The CPU accepts the NMI and address break without depending on the I bit value. Other
interrupt requests are accepted, if the I bit is cleared to 0 in CCR; if the I bit is set to 1, the
interrupt request is held pending.

4. If the CPU accepts the interrupt after processing of the current instruction is completed,
interrupt exception handling will begin. First, both PC and CCR are pushed onto the stack. The
state of the stack at this time is shown in figure 3.2. The PC value pushed onto the stack is the
address of the first instruction to be executed upon return from interrupt handling.

5. Then, the I bit of CCR is set to 1, masking further interrupts excluding the NMI and address
break. Upon return from interrupt handling, the values of I bit and other bits in CCR will be
restored and returned to the values prior to the start of interrupt exception handling.

6. Next, the CPU generates the vector address corresponding to the accepted interrupt, and
transfers the address to PC as a start address of the interrupt handling-routine. Then a program
starts executing from the address indicated in PC.

Figure 3.3 shows a typical interrupt sequence where the program area is in the on-chip ROM and
the stack area is in the on-chip RAM.

Section 6 Power-Down Modes

Rev. 4.00 Mar. 15, 2006 Page 88 of 556

REJ09B0026-0400

Section 7 ROM

 Rev. 4.00 Mar. 15, 2006 Page 97 of 556

 REJ09B0026-0400

Table 7.2 Boot Mode Operation

Communication Contents

Processing Contents

Host Operation LSI Operation

Processing Contents

Continuously transmits data H'00
at specified bit rate.

Branches to boot program at reset-start.

Boot program initiation

H'00, H'00 . . . H'00

H'00

H'55

Transmits data H'55 when data H'00
is received error-free.

H'XX

Transmits number of bytes (N) of
programming control program to be
transferred as 2-byte data
(low-order byte following high-order
byte)

Transmits 1-byte of programming
control program (repeated for N times)

H'AA reception

H'AA reception

Upper bytes, lower bytes

Echoback

Echoback

H'AA

H'AA

Branches to programming control program
transferred to on-chip RAM and starts
execution.

Transmits data H'AA to host.

Checks flash memory data, erases all flash
memory blocks in case of written data
existing, and transmits data H'AA to host.
(If erase could not be done, transmits data
H'FF to host and aborts operation.)

H'FF
Boot program
erase error

Ite
m

B
oo

t m
od

e
in

iti
at

io
n

• Measures low-level period of receive data
 H'00.
• Calculates bit rate and sets BRR in SCI3.
• Transmits data H'00 to host as adjustment
 end indication.

 H'55 reception.B

it
ra

te
 a

dj
us

tm
en

t

Echobacks the 2-byte data
received to host.

Echobacks received data to host and also
transfers it to RAM.
(repeated for N times)

T
ra

ns
fe

r
of

 n
um

be
r

of
 b

yt
es

 o
f

pr
og

ra
m

m
in

g
co

nt
ro

l p
ro

gr
am

F
la

sh
 m

em
or

y
er

as
e

Section 12 Timer Z

Rev. 4.00 Mar. 15, 2006 Page 186 of 556

REJ09B0026-0400

12.3.14 Interface with CPU

16-Bit Register: TCNT and GR are 16-bit registers. Reading/writing in a 16-bit unit is enabled
but disabled in an 8-bit unit since the data bus with the CPU is 16-bit width. These registers must
always be accessed in a 16-bit unit. Figure 12.5 shows an example of accessing the 16-bit
registers.

H
Internal data bus

Bus interface Module data bus

C

P

U

L

TCNTLTCNTH

Figure 12.5 Accessing Operation of 16-Bit Register (between CPU and TCNT (16 Bits))

8-Bit Register: Registers other than TCNT and GR are 8-bit registers that are connected internally
with the CPU in an 8-bit width. Figure 12.6 shows an example of accessing the 8-bit registers.

TSTR

H
Internal data bus

Bus interface Module data bus

C

P

U

L

Figure 12.6 Accessing Operation of 8-Bit Register (between CPU and TSTR (8 Bits))

Section 12 Timer Z

 Rev. 4.00 Mar. 15, 2006 Page 225 of 556

 REJ09B0026-0400

H'0180

H'0160

H'0005

H'0000

FTIOB

FTIOA

H'0160

H'0005

H'0005GRA

H'0160GRC

H'0180GRB

TCNT value
Counter is cleared by the input capture B

Time

Input capture A

Figure 12.40 Example of Buffer Operation (2)
(Buffer Operation for Input Capture Register)

Section 14 Serial Communication Interface 3 (SCI3)

 Rev. 4.00 Mar. 15, 2006 Page 261 of 556

 REJ09B0026-0400

14.3.8 Bit Rate Register (BRR)

BRR is an 8-bit register that adjusts the bit rate. The initial value of BRR is H'FF. Table 14.3
shows the relationship between the N setting in BRR and the n setting in bits CKS1 and CKS0 of
SMR in asynchronous mode. Table 14.4 shows the maximum bit rate for each frequency in
asynchronous mode. The values shown in both tables 14.3 and 14.4 are values in active (high-
speed) mode. Table 14.5 shows the relationship between the N setting in BRR and the n setting in
bits CKS1 and CKS0 of SMR in clocked synchronous mode. The values shown in table 14.5 are
values in active (high-speed) mode. The N setting in BRR and error for other operating
frequencies and bit rates can be obtained by the following formulas:

[Asynchronous Mode]

N =
φ

64 × 22n–1 × B
× 106 – 1

Error (%) = – 1 × 100

φ × 106
(N + 1) × B × 64 × 22n–1

[Clocked Synchronous Mode]

N =
φ

8 × 22n–1 × B
 × 106 – 1

[Legend]
B: Bit rate (bit/s)

N: BRR setting for baud rate generator (0 ≤ N ≤ 255)

φ: Operating frequency (MHz)
n: CSK1 and CSK0 settings in SMR (0 ≤ n ≤ 3)

Section 14 Serial Communication Interface 3 (SCI3)

Rev. 4.00 Mar. 15, 2006 Page 274 of 556

REJ09B0026-0400

14.4.4 Serial Data Reception

Figure 14.7 shows an example of operation for reception in asynchronous mode. In serial
reception, the SCI3 operates as described below.

1. The SCI3 monitors the communication line. If a start bit is detected, the SCI3 performs
internal synchronization, receives receive data in RSR, and checks the parity bit and stop bit.

2. If an overrun error occurs (when reception of the next data is completed while the RDRF flag
is still set to 1), the OER bit in SSR is set to 1. If the RIE bit in SCR3 is set to 1 at this time, an
ERI interrupt request is generated. Receive data is not transferred to RDR.

3. If a parity error is detected, the PER bit in SSR is set to 1 and receive data is transferred to
RDR. If the RIE bit in SCR3 is set to 1 at this time, an ERI interrupt request is generated.

4. If a framing error is detected (when the stop bit is 0), the FER bit in SSR is set to 1 and receive
data is transferred to RDR. If the RIE bit in SCR3 is set to 1 at this time, an ERI interrupt
request is generated.

5. If reception is completed successfully, the RDRF bit in SSR is set to 1, and receive data is
transferred to RDR. If the RIE bit in SCR3 is set to 1 at this time, an RXI interrupt request is
generated. Continuous reception is possible because the RXI interrupt routine reads the receive
data transferred to RDR before reception of the next receive data has been completed.

1 frame

Start
bit

Start
bit

Receive
data

Receive
data

Parity
bit

Stop
bit

Parity
bit

Stop
bit

Mark state
(idle state)

1 frame

01 D0 D1 D7 0/1 1 0 10 D0 D1 D7 0/1Serial
data

RDRF

FER

LSI
operation

User
processing

RDRF
cleared to 0

RDR data read Framing error
processing

RXI request 0 stop bit
detected

ERI request in
response to
framing error

Figure 14.7 Example of SCI3 Reception in Asynchronous Mode
(8-Bit Data, Parity, One Stop Bit)

Section 14 Serial Communication Interface 3 (SCI3)

Rev. 4.00 Mar. 15, 2006 Page 282 of 556

REJ09B0026-0400

Yes

<End>

No

Start reception

[1]

[4]

No

Yes

Read RDRF flag in SSR [2]

[3]

Clear RE bit in SCR3 to 0

Error processing

(Continued below)

Read receive data in RDR

Yes

No

OER = 1

RDRF = 1

All data received?

Read OER flag in SSR

<End>

Error processing

Overrun error processing

Clear OER flag in SSR to 0

[4]

[1] Read the OER flag in SSR to determine if
there is an error. If an overrun error has
occurred, execute overrun error processing.

[2] Read SSR and check that the RDRF flag is
set to 1, then read the receive data in RDR.
When data is read from RDR, the RDRF
flag is automatically cleared to 0.

[3] To continue serial reception, before the
MSB (bit 7) of the current frame is received,
reading the RDRF flag and reading RDR
should be finished. When data is read from
RDR, the RDRF flag is automatically
cleared to 0.

[4] If an overrun error occurs, read the OER
flag in SSR, and after performing the
appropriate error processing, clear the OER
flag to 0. Reception cannot be resumed if
the OER flag is set to 1.

Figure 14.13 Sample Serial Reception Flowchart (Clocked Synchronous Mode)

Section 14 Serial Communication Interface 3 (SCI3)

Rev. 4.00 Mar. 15, 2006 Page 284 of 556

REJ09B0026-0400

Yes

<End>

No

Start transmission/reception

[3]

Error processing

[4]

Read receive data in RDR

Yes

No

OER = 1

All data received?

[1]Read TDRE flag in SSR

No

Yes

TDRE = 1

Write transmit data to TDR

No

Yes

RDRF = 1

Read OER flag in SSR

[2]Read RDRF flag in SSR

Clear TE and RE bits in SCR to 0

[1] Read SSR and check that the TDRE
flag is set to 1, then write transmit
data to TDR.

 When data is written to TDR, the
TDRE flag is automatically cleared to
0.

[2] Read SSR and check that the RDRF
flag is set to 1, then read the receive
data in RDR.

 When data is read from RDR, the
RDRF flag is automatically cleared to
0.

[3] To continue serial transmission/
reception, before the MSB (bit 7) of
the current frame is received, finish
reading the RDRF flag, reading RDR.
Also, before the MSB (bit 7) of the
current frame is transmitted, read 1
from the TDRE flag to confirm that
writing is possible. Then write data to
TDR.

 When data is written to TDR, the
TDRE flag is automatically cleared to
0. When data is read from RDR, the
RDRF flag is automatically cleared to
0.

[4] If an overrun error occurs, read the
OER flag in SSR, and after
performing the appropriate error
processing, clear the OER flag to 0.
Transmission/reception cannot be
resumed if the OER flag is set to 1.

 For overrun error processing, see
figure 14.13.

Figure 14.14 Sample Flowchart of Simultaneous Serial Transmit and Receive Operations
(Clocked Synchronous Mode)

Section 14 Serial Communication Interface 3 (SCI3)

 Rev. 4.00 Mar. 15, 2006 Page 285 of 556

 REJ09B0026-0400

14.6 Multiprocessor Communication Function

Use of the multiprocessor communication function enables data transfer between a number of
processors sharing communication lines by asynchronous serial communication using the
multiprocessor format, in which a multiprocessor bit is added to the transfer data. When
multiprocessor communication is performed, each receiving station is addressed by a unique ID
code. The serial communication cycle consists of two component cycles; an ID transmission cycle
that specifies the receiving station, and a data transmission cycle. The multiprocessor bit is used to
differentiate between the ID transmission cycle and the data transmission cycle. If the
multiprocessor bit is 1, the cycle is an ID transmission cycle; if the multiprocessor bit is 0, the
cycle is a data transmission cycle. Figure 14.15 shows an example of inter-processor
communication using the multiprocessor format. The transmitting station first sends the ID code
of the receiving station with which it wants to perform serial communication as data with a 1
multiprocessor bit added. It then sends transmit data as data with a 0 multiprocessor bit added.
When data with a 1 multiprocessor bit is received, the receiving station compares that data with its
own ID. The station whose ID matches then receives the data sent next. Stations whose IDs do not
match continue to skip data until data with a 1 multiprocessor bit is again received.

The SCI3 uses the MPIE bit in SCR3 to implement this function. When the MPIE bit is set to 1,
transfer of receive data from RSR to RDR, error flag detection, and setting the SSR status flags,
RDRF, FER, and OER, to 1, are inhibited until data with a 1 multiprocessor bit is received. On
reception of a receive character with a 1 multiprocessor bit, the MPBR bit in SSR is set to 1 and
the MPIE bit is automatically cleared, thus normal reception is resumed. If the RIE bit in SCR3 is
set to 1 at this time, an RXI interrupt is generated.

When the multiprocessor format is selected, the parity bit setting is rendered invalid. All other bit
settings are the same as those in normal asynchronous mode. The clock used for multiprocessor
communication is the same as that in normal asynchronous mode.

Section 15 Controller Area Network for Tiny (TinyCAN)

 Rev. 4.00 Mar. 15, 2006 Page 307 of 556

 REJ09B0026-0400

15.3.7 Transmit Pending Register (TXPR)

TXPR sets transmit pending (CAN bus arbitration wait) for the transmit message that is stored in a
Mailbox. Setting the corresponding bit in TXPR to 1 enables a message to be transmitted. Writing
0 to the bit in TXPR is ignored.

Bit Bit Name
Initial
Value R/W Description

7 to 4 — All 0 — Reserved

These bits are always read as 0.

3

2

1

MB3

MB2

MB1

0

0

0

R/W

R/W

R/W

[Setting condition]

When the corresponding MBCR bit for a mailbox is 0, the
corresponding bit in TXPR is set to 1
(n = 3 to 1)

[Clearing conditions]

• When message transmission has completed
successfully (TXACKn set)

• When transmission cancellation for an untransmitted
message has finished (ABACKn set)

• When a transmission cancellation request has
occurred during message transmission, and an error
occurs or arbitration is lost on the CAN bus (ABACKn
set)

• When a transmit error or arbitration loss occurred with
the corresponding DART bit for a message being
transmitted set to 1

If the message is not transmitted successfully, the MBn
bit is not cleared to 0. If any of these MB bits in TXPR are
cleared to 0, the EMPI bit in TCIRR1 is set to 1. The
TinyCAN automatically attempts retransmission as long
as the DART bit in the message control of the
corresponding Mailbox is not set to 1 or the
corresponding bit in TXCR is not set to 1.

Note: When the MBn bit in MBCR is set to 1, the
 TinyCAN does not transmit a message even if
 the MBn bit in TXPR is set to 1. To clear the
 MBn bit in TXPR to 0, set the MBn bit in TXCR
 to 1 beforehand.

0 — 0 — Reserved

This bit is always read as 0. This bit is relevant to the
receive-only Mailbox, and its value cannot be changed.

Section 15 Controller Area Network for Tiny (TinyCAN)

 Rev. 4.00 Mar. 15, 2006 Page 311 of 556

 REJ09B0026-0400

15.3.13 Unread Message Status Register (UMSR)

UMSR is a status flag that indicates that an unread message in each Mailbox has been overwritten
by a new receive message or a new receive message has been discarded.

Bit Bit Name
Initial
Value R/W Description

7 to 4 — All 0 — Reserved

These bits are always read as 0.

3

2

1

0

MB3

MB2

MB1

MB0

0

0

0

0

R/(W)*

R/(W)*

R/(W)*

R/(W)*

Status flags indicating that a new receive message has
overwritten/overrun an unread message.

[Setting condition]

When a new message is received before the
corresponding bit in RXPR or RFPR is cleared to 0

[Clearing condition]

When 1 is written to these bits

Note: * Only 1 can be written to clear the flag.

Section 16 Synchronous Serial Communication Unit (SSU)

 Rev. 4.00 Mar. 15, 2006 Page 357 of 556

 REJ09B0026-0400

Bit Bit Name
Initial
Value R/W Description

3 TEND 0 R/W Transmit End

[Setting condition]

• When the last bit of data is transmitted, the TDRE bit

is 1

[Clearing conditions]

• When 0 is written to this bit after reading 1

• When data is written in SSTDR

2 TDRE 1 R/W Transmit Data Empty

[Setting conditions]

• When the TE bit in SSER is 0

• When data transfer is performed from SSTDR to

SSTRSR and data can be written in SSTDR

[Clearing conditions]

• When 0 is written to this bit after reading 1

• When data is written in SSTDR

1 RDRF 0 R/W Receive Data Register Full

[Setting condition]

• When serial reception is completed normally and

receive data is transferred from SSTRSR to SSRDR

[Clearing conditions]

• When 0 is written to this bit after reading 1

• When data is read from SSRDR

0 CE 0 R/W Conflict Error Flag

[Setting conditions]

• When serial communication is started while SSUMS =

1 and MSS =1, the SCS pin input is low

• When the SCS pin level changes from low to high

during transfer while SSUMS = 1 and MSS = 0

[Clearing condition]

• When 0 is written to this bit after reading 1

Section 21 List of Registers

Rev. 4.00 Mar. 15, 2006 Page 416 of 556

REJ09B0026-0400

21.1 Register Addresses (Address Order)

The data-bus width column indicates the number of bits. The access-state column shows the
number of states of the selected basic clock that is required for access to the register.

Note: Access to undefined or reserved addresses should not take place. Correct operation of the
access itself or later operations is not guaranteed when such a register is accessed.

Register Name

Abbre-
viation

Bit No

Address

Module
Name

Data
Bus
Width

Access
State

 H'F000 to
H'F5FF

Master control register MCR 8 H'F600 TinyCAN 8 4

General status register GSR 8 H'F601 TinyCAN 8 4

Bit configuration register 1 BCR1 8 H'F602 TinyCAN 8 4

Bit configuration register 0 BCR0 8 H'F603 TinyCAN 8 4

Mailbox configuration register MBCR 8 H'F604 TinyCAN 8 4

TinyCAN module control register TCMR 8 H'F605 TinyCAN 8 4

Transmit pending register TXPR 8 H'F606 TinyCAN 8 4

Transmit pending cancel register TXCR 8 H'F608 TinyCAN 8 4

Transmit acknowledge register TXACK 8 H'F60A TinyCAN 8 4

Abort acknowledge register ABACK 8 H'F60C TinyCAN 8 4

Receive complete register RXPR 8 H'F60E TinyCAN 8 4

Remote request register RFPR 8 H'F610 TinyCAN 8 4

TinyCAN interrupt register 1 TCIRR1 8 H'F612 TinyCAN 8 4

TinyCAN interrupt register 0 TCIRR0 8 H'F613 TinyCAN 8 4

Mailbox interrupt mask register MBIMR 8 H'F614 TinyCAN 8 4

TinyCAN interrupt mask register 1 TCIMR1 8 H'F616 TinyCAN 8 4

TinyCAN interrupt mask register 0 TCIMR0 8 H'F617 TinyCAN 8 4

Receive error counter REC 8 H'F618 TinyCAN 8 4

Transmit error counter TEC 8 H'F619 TinyCAN 8 4

Test control register TCR 8 H'F61A TinyCAN 8 4

Unread message status register UMSR 8 H'F61B TinyCAN 8 4

Message control 0 [0] MC0[0] 8 H'F620 TinyCAN 8 4

Section 22 Electrical Characteristics

Rev. 4.00 Mar. 15, 2006 Page 442 of 556

REJ09B0026-0400

22.2 Electrical Characteristics (F-ZTAT™ Version)

22.2.1 Power Supply Voltage and Operating Ranges

Power Supply Voltage and Oscillation Frequency Range:

10.0

2.0

20.0

3.0 4.0 5.5 VCC (V)

φOSC (MHz)

64.0

850.0

4.0 5.5 VCC (V)

φOSC (MHz)

AVCC = 3.3 to 5.5 V
• Active mode
• Sleep mode

AVCC = 3.3 to 5.5 V
• Active mode
• Sleep mode
• Subactive mode
• Subsleep mode

Note: This frequency range is supplied by the on-chip
 oscillator for the subtimer and is guaranteed.

Power Supply Voltage and Operating Frequency Range:

10.0

1.0

20.0

3.0 4.0 5.5 VCC (V)

φ (MHz)

1250

78.125

2500

3.0 4.0 5.5 VCC (V)

φ (kHz)

AVCC = 3.3 to 5.5 V
• Active mode
• Sleep mode
 (When MA2 in SYSCR2 = 0)

AVCC = 3.3 to 5.5 V
• Active mode
• Sleep mode
 (When MA2 in SYSCR2 = 1)

Section 22 Electrical Characteristics

 Rev. 4.00 Mar. 15, 2006 Page 461 of 556

 REJ09B0026-0400

22.3 Electrical Characteristics (Masked ROM Version)

22.3.1 Power Supply Voltage and Operating Ranges

Power Supply Voltage and Oscillation Frequency Range:

10.0

2.0

20.0

2.7 4.0 5.5 VCC (V)

φOSC (MHz)

64.0

850.0

4.0 5.5 VCC (V)

φOSC (MHz)

AVCC = 3.3 to 5.5 V
• Active mode
• Sleep mode

AVCC = 3.3 to 5.5 V
• Active mode
• Sleep mode
• Subactive mode
• Subsleep mode

Note: This frequency range is supplied by the on-chip
 oscillator for the subtimer and is guaranteed.

Power Supply Voltage and Operating Frequency Range:

10.0

1.0

20.0

2.7 4.0 5.5 VCC (V)

φ (MHz)

1250

78.125

2500

2.7 4.0 5.5 VCC (V)

φ (kHz)

AVCC = 3.3 to 5.5 V
• Active mode
• Sleep mode
 (When MA2 in SYSCR2 = 0)

AVCC = 3.3 to 5.5 V
• Active mode
• Sleep mode
 (When MA2 in SYSCR2 = 1)

Section 22 Electrical Characteristics

Rev. 4.00 Mar. 15, 2006 Page 478 of 556

REJ09B0026-0400

22.4 Operation Timing

tOSC

VIH

VIL

tCPH tCPL

tCPr

OSC1

tCPf

Figure 22.1 System Clock Input Timing

tREL

VIL
RES

tREL

VIL

VCC × 0.7VCC

OSC1

Figure 22.2 RES Low Width Timing

VIH

VIL

tIL

NMI

IRQ0 to IRQ3

WKP0 to WKP5

ADTRG

FTIOA0 to FTIOD0,
FTIOA1 to FTIOD1,
TMCIV, TMRIV
TRGV

tIH

Figure 22.3 Input Timing

Appendix

 Rev. 4.00 Mar. 15, 2006 Page 505 of 556

 REJ09B0026-0400

A.3 Number of Execution States

The status of execution for each instruction of the H8/300H CPU and the method of calculating
the number of states required for instruction execution are shown below. Table A.4 shows the
number of cycles of each type occurring in each instruction, such as instruction fetch and data
read/write. Table A.3 shows the number of states required for each cycle. The total number of
states required for execution of an instruction can be calculated by the following expression:

Execution states = I × SI + J × SJ + K × SK + L × SL + M × SM + N × SN

Examples: When instruction is fetched from on-chip ROM, and an on-chip RAM is accessed.

 BSET #0, @FF00

From table A.4:
I = L = 2, J = K = M = N= 0

From table A.3:
SI = 2, SL = 2

Number of states required for execution = 2 × 2 + 2 × 2 = 8

When instruction is fetched from on-chip ROM, branch address is read from on-chip ROM, and
on-chip RAM is used for stack area.

 JSR @@ 30

From table A.4:
I = 2, J = K = 1, L = M = N = 0

From table A.3:
SI = SJ = SK = 2

Number of states required for execution = 2 × 2 + 1 × 2+ 1 × 2 = 8

