

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	H8/300H
Core Size	16-Bit
Speed	20MHz
Connectivity	CANbus, SCI, SSU
Peripherals	LVD, POR, PWM, WDT
Number of I/O	45
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	64-BQFP
Supplier Device Package	64-QFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df36034ghv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Keep safety first in your circuit designs!

 Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
- 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any thirdparty's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

Contents

Sect	ion 1 C	Overview	1
1.1	Feature	s	1
1.2	Internal	Block Diagram	
1.3	Pin Arr	angement	
1.4	Pin Fun	actions	5
Sect	ion 2 C	CPU	9
2.1	Address	s Space and Memory Map	
2.2	Registe	r Configuration	14
	2.2.1	General Registers	
	2.2.2	Program Counter (PC)	
	2.2.3	Condition-Code Register (CCR)	
2.3	Data Fo	ormats	
	2.3.1	General Register Data Formats	
	2.3.2	Memory Data Formats	
2.4	Instruct	ion Set	
	2.4.1	Table of Instructions Classified by Function	
	2.4.2	Basic Instruction Formats	
2.5	Address	sing Modes and Effective Address Calculation	
	2.5.1	Addressing Modes	
	2.5.2	Effective Address Calculation	
2.6	Basic B	Sus Cycle	
	2.6.1	Access to On-Chip Memory (RAM, ROM)	
	2.6.2	On-Chip Peripheral Modules	
2.7	CPU St	ates	40
2.8	Usage 1	Notes	
	2.8.1	Notes on Data Access to Empty Areas	
	2.8.2	EEPMOV Instruction	
	2.8.3	Bit-Manipulation Instruction	
Sect	ion 3 E	Exception Handling	49
3.1		on Sources and Vector Address	
3.2	-	r Descriptions	
	3.2.1	Interrupt Edge Select Register 1 (IEGR1)	
	3.2.2	Interrupt Edge Select Register 2 (IEGR2)	
	3.2.3	Interrupt Enable Register 1 (IENR1)	

RENESAS

• On-chip memory

		Ν	lodel		
Product Classification	ı	Standard Version	On-Chip Power- On Reset and Low-Voltage Detecting Circuit Version	ROM	RAM
Flash memory version	H8/36057F	HD64F36057	HD64F36057G	56 kbytes	3 kbytes
(F-ZTAT [™] version)	H8/36054F	HD64F36054	HD64F36054G	32 kbytes	2 kbytes
	H8/36037F	HD64F36037	HD64F36037G	56 kbytes	3 kbytes
	H8/36034F	HD64F36034	HD64F36034G	32 kbytes	2 kbytes
Masked ROM version	H8/36057	HD64336057	HD64336057G	56 kbytes	2 kbytes
	H8/36054	HD64336054	HD64336054G	32 kbytes	2 kbytes
	H8/36037	HD64336037	HD64336037G	56 kbytes	2 kbytes
	H8/36036	HD64336036	HD64336036G	48 kbytes	2 kbytes
	H8/36035	HD64336035	HD64336035G	40 kbytes	2 kbytes
	H8/36034	HD64336034	HD64336034G	32 kbytes	2 kbytes
	H8/36033	HD64336033	HD64336033G	24 kbytes	1 kbyte
	H8/36032	HD64336032	HD64336032G	16 kbytes	1 kbyte

- General I/O ports
 - I/O pins: 45 I/O pins, including 8 large current ports ($I_{oL} = 20 \text{ mA}, @V_{oL} = 1.5 \text{ V}$)
 - Input-only pins: 8 input pins (also used for analog input)
- Supports various power-down modes

Note: F-ZTATTM is a trademark of Renesas Technology Corp.

• Compact package

Package	Code	Body Size	Pin Pitch
LQFP-64	FP-64K	10.0 imes10.0 mm	0.5 mm
QFP-64	FP-64A	14.0 imes14.0 mm	0.8 mm

2.4 Instruction Set

2.4.1 Table of Instructions Classified by Function

The H8/300H CPU has 62 instructions. Tables 2.2 to 2.9 summarize the instructions in each functional category. The notation used in tables 2.2 to 2.9 is defined below.

Symbol	Description
Rd	General register (destination)*
Rs	General register (source)*
Rn	General register*
ERn	General register (32-bit register or address register)
(EAd)	Destination operand
(EAs)	Source operand
CCR	Condition-code register
Ν	N (negative) flag in CCR
Z	Z (zero) flag in CCR
V	V (overflow) flag in CCR
С	C (carry) flag in CCR
PC	Program counter
SP	Stack pointer
#IMM	Immediate data
disp	Displacement
+	Addition
_	Subtraction
×	Multiplication
÷	Division
^	Logical AND
\vee	Logical OR
\oplus	Logical XOR
\rightarrow	Move
7	NOT (logical complement)
:3/:8/:16/:24	3-, 8-, 16-, or 24-bit length

 Table 2.1
 Operation Notation

		Initial		
Bit	Bit Name	Value	R/W	Description
1	DCMP1	0	R/W	Data Compare Condition Select 1 and 0
0	DCMP0	0	R/W	These bits set the comparison condition between the data set in BDR and the internal data bus.
				00: No data comparison
				01: Compares lower 8-bit data between BDRL and data bus
				10: Compares upper 8-bit data between BDRH and data bus
				11: Compares 16-bit data between BDR and data bus
Logor	adl			

[Legend] X: Don't care.

When an address break is set in the data read cycle or data write cycle, the data bus used will depend on the combination of the byte/word access and address. Table 4.1 shows the access and data bus used. When an I/O register space with an 8-bit data bus width is accessed in word size, a byte access is generated twice. For details on data widths of each register, see section 21.1, Register Addresses (Address Order).

Table 4.1 Access and Data Bus Used

	Word	Access	Byte Access					
	Even Address	Odd Address	Even Address	Odd Address				
ROM space	Upper 8 bits	Lower 8 bits	Upper 8 bits	Upper 8 bits				
RAM space	Upper 8 bits	Lower 8 bits	Upper 8 bits	Upper 8 bits				
I/O register with 8-bit data bus width	Upper 8 bits	Upper 8 bits	Upper 8 bits	Upper 8 bits				
I/O register with 16-bit data bus width	Upper 8 bits	Lower 8 bits	_	—				

10.4 Operation

10.4.1 Interval Timer Operation

When bit TMB17 in TMB1 is cleared to 0, timer B1 functions as an 8-bit interval timer. Upon reset, TCB1 is cleared to H'00 and bit TMB17 is cleared to 0, so up-counting and interval timing resume immediately. The operating clock of the timer B1 is selected from seven internal clock signals output by prescaler S, or an external clock input at pin TMB1. The selection is made by bits TMB12 to TMB10 in TMB1.

After the count value in TMB1 reaches H'FF, the next clock signal input causes timer B1 to overflow, setting flag IRRTB1 in IRR2 to 1. If IENTB1 in IENR2 is 1, an interrupt is requested to the CPU.

At overflow, TCB1 returns to H'00 and starts counting up again. During interval timer operation (TMB17 = 0), when a value is set in TLB1, the same value is set in TCB1.

10.4.2 Auto-Reload Timer Operation

Setting bit TMB17 in TMB1 to 1 causes timer B1 to function as an 8-bit auto-reload timer. When a reload value is set in TLB1, the same value is loaded into TCB1, becoming the value from which TCB1 starts its count. After the count value in TCB1 reaches H'FF, the next clock signal input causes timer B1 to overflow. The TLB1 value is then loaded into TCB1, and the count continues from that value. The overflow period can be set within a range from 1 to 256 input clocks, depending on the TLB1 value.

The clock sources and interrupts in auto-reload mode are the same as in interval mode. In auto-reload mode (TMB17 = 1), when a new value is set in TLB1, the TLB1 value is also loaded into TCB1.

10.4.3 Event Counter Operation

Timer B1 can operate as an event counter in which TMIB1 is set to an event input pin. External event counting is selected by setting bits TMB12 to TMB10 in TMB1 to 1. TCB1 counts up at rising or falling edge of an external event signal input at pin TMB1.

When timer B1 is used to count external event input, bit IRQ1 in PMR1 should be set to 1 and IEN1 in IENR1 should be cleared to 0 to disable IRQ1 interrupt requests.

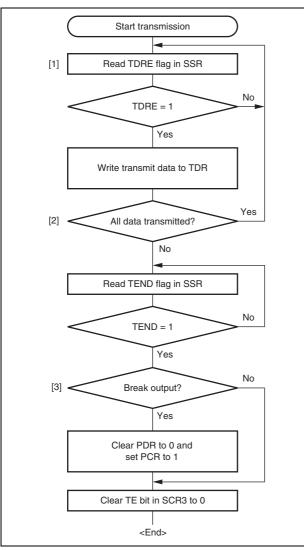
- Eleven interrupt sources
 - Four compare match/input capture interrupts and an overflow interrupt are available for each channel. An underflow interrupt can be set for channel 1.

Item		Channel 0	Channel 1				
Count clock		Internal clocks: φ, φ/2, φ/4, φ/8 External clock: FTIOA0 (TCLK)					
General registe (output compare capture register	e/input	GRA_0, GRB_0, GRC_0, GRD_0	GRA_1, GRB_1, GRC_1, GRD_1				
Buffer register		GRC_0, GRD_0	GRC_1, GRD_1				
I/O pins		FTIOA0, FTIOB0, FTIOC0, FTIOD0	FTIOA1, FTIOB1, FTIOC1, FTIOD1				
Counter clearing	g function	Compare match/input capture of GRA_0, GRB_0, GRC_0, or GRD_0	Compare match/input capture of GRA_1, GRB_1, GRC_1, or GRD_1				
Compare	0 output	Yes	Yes				
match output	1 output	Yes	Yes				
	output	Yes	Yes				
Input capture fu	nction	Yes	Yes				
Synchronous of	peration	Yes	Yes				
PWM mode		Yes	Yes				
Reset synchron mode	ous PWM	Yes	Yes				
Complementary mode	/ PWM	Yes	Yes				
Buffer function		Yes	Yes				
Interrupt source	es	Compare match/input capture A0 to D0 Overflow	Compare match/input capture A1 to D1 Overflow Underflow				

Table 12.1 Timer Z Functions

12.3.9 Timer Control Register (TCR)

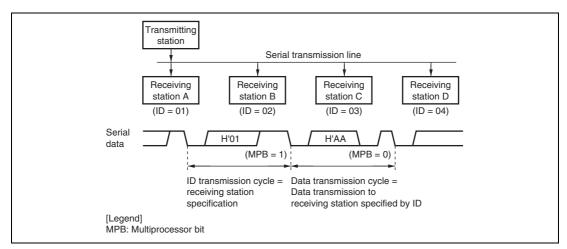
The TCR registers select a TCNT counter clock, an edge when an external clock is selected, and counter clearing sources. Timer Z has a total of two TCR registers, one for each channel.


Bit	Bit Name	Initial Value	R/W	Description
			-	Description
7	CCLR2	0	R/W	Counter Clear 2 to 0
6	CCLR1	0	R/W	000: Disables TCNT clearing
5	CCLR0	0	R/W	001: Clears TCNT by GRA compare match/input capture* ¹
				010: Clears TCNT by GRB compare match/input capture*1
				011: Synchronization clear; Clears TCNT in synchronous with counter clearing of the other channel's timer* ²
				000: Disables TCNT clearing
				001: Clears TCNT by GRC compare match/input capture* ¹
				010: Clears TCNT by GRD compare match/input capture* ¹
				011: Synchronization clear; Clears TCNT in synchronous with counter clearing of the other channel's timer* ²
4	CKEG1	0	R/W	Clock Edge 1 and 0
3	CKEG0	0	R/W	00: Count at rising edge
				01: Count at falling edge
				1X: Count at both edges
2	TPSC2	0	R/W	Time Prescaler 2 to 0
1	TPSC1	0	R/W	000: Internal clock: count by ϕ
0	TPSC0	0	R/W	001: Internal clock: count by $\phi/2$
				010: Internal clock: count by φ/4
				011: Internal clock: count by
				1XX: External clock: count by FTIOA0 (TCLK) pin input
	1 14/1 01	D (the standard management of the second barrier second states

Notes: 1. When GR functions as an output compare register, TCNT is cleared by compare match. When GR functions as input capture, TCNT is cleared by input capture.

RENESAS

2. Synchronous operation is set by TMDR.


3. X: Don't care

- [1] Read SSR and check that the TDRE flag is set to 1, then write transmit data to TDR. When data is written to TDR, the TDRE flag is automaticaly cleared to 0.
- [2] To continue serial transmission, read 1 from the TDRE flag to confirm that writing is possible, then write data to TDR. When data is written to TDR, the TDRE flag is automaticaly cleared to 0.
- [3] To output a break in serial transmission, after setting PCR to 1 and PDR to 0, clear TxD in PMR1 to 0, then clear the TE bit in SCR3 to 0.

Figure 14.6 Sample Serial Transmission Data Flowchart (Asynchronous Mode)

Figure 14.15 Example of Inter-Processor Communication Using Multiprocessor Format (Transmission of Data H'AA to Receiving Station A)

14.6.1 Multiprocessor Serial Data Transmission

Figure 14.14 shows a sample flowchart for multiprocessor serial data transmission. For an ID transmission cycle, set the MPBT bit in SSR to 1 before transmission. For a data transmission cycle, clear the MPBT bit in SSR to 0 before transmission. All other SCI3 operations are the same as those in asynchronous mode.

15.5 Operation

15.5.1 TinyCAN Initial Settings

Figure 15.4 shows a flowchart for reset clearing of the TinyCAN. After a reset is cleared, all registers are initialized.

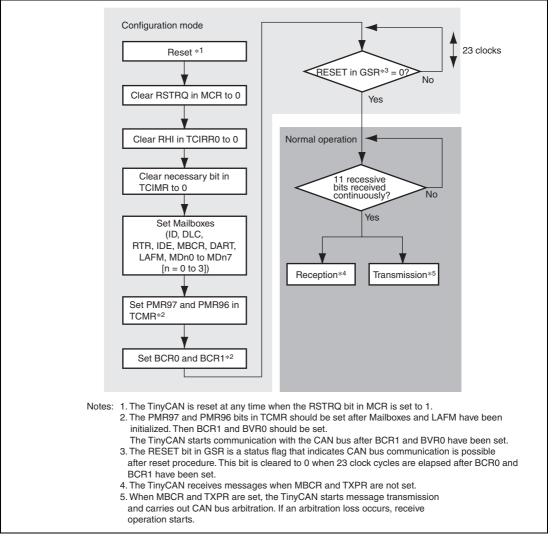
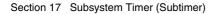



Figure 15.4 Reset Clearing Flowchart

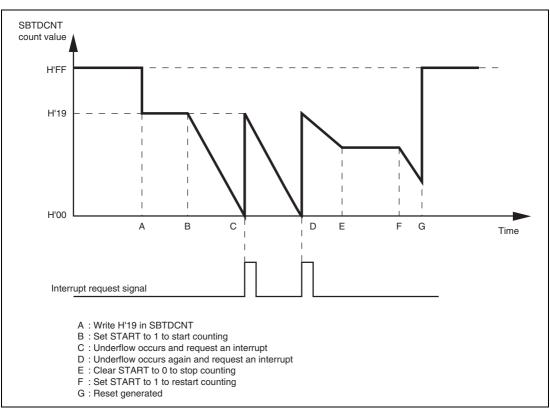
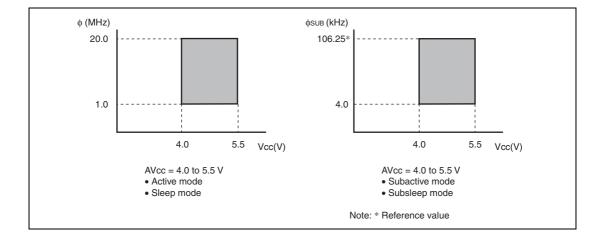



Figure 17.4 Example of Subtimer Operation

Range of Power Supply Voltage and Oscillation Frequency when Subtimer is Used:

Table 22.16 Controller Area Network for Tiny (TinyCAN) Timing

 $V_{cc} = 2.7$ to 5.5 V, $V_{ss} = 0.0$ V, $T_a = -20$ to $+75^{\circ}C$ (regular specifications) or $T_a = -40$ to $+85^{\circ}C$ (wide-range specifications), unless otherwise indicated.

		Applicable	Test		Value	s		Reference
Item	Symbol	Pins	Condition	Min. Typ.		Max.	Unit	Figure
Transmit data delay time*	t _{htxd}	HTXD		_	_	50	ns	Figure 22.6
Receive data setup time*	t _{HRXS}	HRXD		50	_	_	ns	_
Receive data hold time*	t _{HRXH}	HRXD		50	—	_	ns	_
Note: *	Although th	ne TinyCAN inp	out/output sign	al is asyn	chronous	, its state	is dete	rmined to

have changed at the rising-edge (two clock cycles) of the CK clock shown in figure 22.6.

4. Shift Instructions

							ng Lei			nd /tes)								No. State	
Mnemonic		Operand Size	#xx	-	@ERn	@(d, ERn)	@-ERn/@ERn+	@aa	@(d, PC)	@aa		Operation	Condition Code						Normal	Advanced
	1	-	ŧ	Rn	0	0	0	8	0	0			Т	н	N	z	۷	С		
SHAL	SHAL.B Rd	В		2								C - 0	-	-	\$	€	↕	\$	2	
	SHAL.W Rd	W		2									-	-	\$	€	↕	\$	2	
	SHAL.L ERd	L		2								MSB LSB	-	-	\$	\$	↕	\$	2	
SHAR	SHAR.B Rd	В		2								► C	-	-	\$	\$	0	\$	2	
	SHAR.W Rd	W		2									-	-	\$	€	0	\$	2	
	SHAR.L ERd	L		2								MSB LSB	_	_	\$	↕	0	\$	2	2
SHLL	SHLL.B Rd	В		2								C0	_	_	\$	↕	0	\$	2	
ŀ	SHLL.W Rd	W		2									_	_	\$	↕	0	\$	2	2
	SHLL.L ERd	L		2								MSB LSB	-	_	\$	€	0	\$	2	
SHLR	SHLR.B Rd	В		2								0 -> C	-	-	\$	€	0	↕	2	_
	SHLR.W Rd	W		2									-	-	\$	€	0	\$	2	
	SHLR.L ERd	L		2								MSB LSB	-	-	€	€	0	↕	2	2
ROTXL	ROTXL.B Rd	В		2									_	-	\$	€	0	\updownarrow	2	2
	ROTXL.W Rd	W		2									_	-	\$	€	0	\$	2	2
	ROTXL.L ERd	L		2								MSB 🔶 LSB	—	_	\$	€	0	\$	2	2
ROTXR	ROTXR.B Rd	В		2								┍╸────┝╸┏╴	—	<u> </u>	\$	€	0	\updownarrow	2	2
	ROTXR.W Rd	W		2									_	-	\$	€	0	\updownarrow	2	2
	ROTXR.L ERd	L		2								MSB → LSB	—	—	\$	€	0	\$	2	2
ROTL	ROTL.B Rd	В		2									—	-	\uparrow	\updownarrow	0	\updownarrow	2	2
	ROTL.W Rd	W		2									—	-	\$	€	0	\updownarrow	2	2
	ROTL.L ERd	L		2								MSB - LSB	—	-	€	€	0	↕	2	2
ROTR	ROTR.B Rd	В		2								► ►C	—	_	\$	€	0	\updownarrow	2	2
	ROTR.W Rd	W		2									_	_	\$	€	0	\updownarrow	2	2
	ROTR.L ERd	L		2								MSB	-	-	\$	\$	0	\$	2	2

A.2 Operation Code Map

Table A.2 Operation Code Map (1)

		e A.2	e A.2			щ															
	ш.	Table A.2 (2)	Table A.2 (2)			BLE															
	ш	ADDX	SUBX			BGT	JSR		A.2												
Instruction when most significant bit of BH is 0.			0			BLT			Table A.2 (3)												
	U	MOV	CMP			BGE	BSR														
	8	Table A.2 Table A.2 (2) (2)	Table A.2 Table A.2 (2)			BMI		^ ^	EEPMOV												
ignifica ignifica	٩	Table A.2 (2)	Table A.2 (2)			BPL	JMP		Table A.2 Table A.2 EEPMOV (2) (2)												
most s most s	6		m			BVS			Table A.2 (2)												
when 1 when 1	8	ADD	SUB			BVC	Table A.2 (2)		NOM												
truction	7	LDC	Table A.2 (2)		MOV.B	BEQ	TRAPA	BST BIST	BLD	ADD	ADDX	CMP	SUBX	OR	XOR	AND	MOV				
	9	ANDC	AND.B							BNE	RTE		BAND BIAND								
	2	XORC	XOR.B			BCS	BSR		BXOR BIXOR												
byte BL	4	ORC	OR.B			BCC	RTS	OR	BOR BIOR												
2nd byte BH BL	e	LDC	Table A.2 (2)			BLS	DIVXU		מ												
1st byte AH AL	5	STC	Table A.2 (2)			BHI	MULXU	i i	BCLH												
	-	Table A.2 (2)	Table A.2 Table A.2 Table A.2 Table A.2 (2) (2) (2)			BRN	DIVXU	ł	BNO												
ion cod	0	NOP	Table A.2 (2)			BRA	MULXU		BSE												
Instruction code:	AH	0	-	N	ю	4	ы	9	7	ø	თ	¥	В	U	۵	ш	ш				

Appendix

Instruction	Mnemonic	Instruction Fetch I	Branch Addr. Read J	Stack Operation K	Byte Data Access L	Word Data Access M	Internal Operation N
Bcc	BLT d:8	2					
	BGT d:8	2					
	BLE d:8	2					
	BRA d:16(BT d:16)	2					2
	BRN d:16(BF d:16)	2					2
	BHI d:16	2					2
	BLS d:16	2					2
	BCC d:16(BHS d:16)	2					2
	BCS d:16(BLO d:16)	2					2
	BNE d:16	2					2
	BEQ d:16	2					2
	BVC d:16	2					2
	BVS d:16	2					2
	BPL d:16	2					2
	BMI d:16	2					2
	BGE d:16	2					2
	BLT d:16	2					2
	BGT d:16	2					2
	BLE d:16	2					2
BCLR	BCLR #xx:3, Rd	1					
	BCLR #xx:3, @ERd	2			2		
	BCLR #xx:3, @aa:8	2			2		
	BCLR Rn, Rd	1					
	BCLR Rn, @ERd	2			2		
	BCLR Rn, @aa:8	2			2		
BIAND	BIAND #xx:3, Rd	1					
	BIAND #xx:3, @ERd	2			1		
	BIAND #xx:3, @aa:8	2			1		
BILD	BILD #xx:3, Rd	1					
	BILD #xx:3, @ERd	2			1		
	BILD #xx:3, @aa:8	2			1		

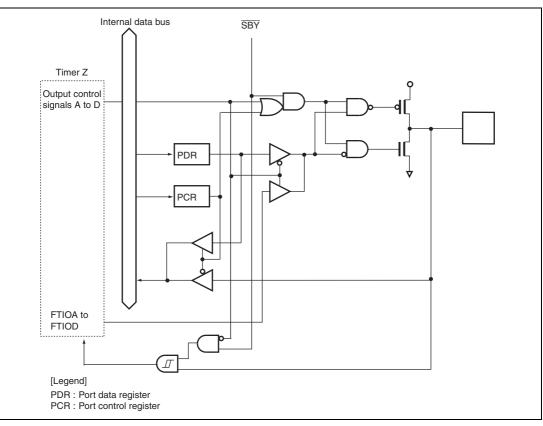


Figure B.12 Port 6 Block Diagram (P67 to P60)

Index

A

A/D converter	391
Sample-and-hold circuit	398
Scan mode	397
Single mode	397
Address break	67
Addressing modes	32
Absolute address	33
Immediate	34
Memory indirect	34
Program-counter relative	34
Register direct	
Register indirect	33
Register indirect with displacement.	33
Register indirect with post-incremen	t 33
Register indirect with pre-decrement	t 33

С

Clock pulse generators	73
Prescaler S	76
System clock generator	74
Condition field	31
Condition-code register (CCR)	16
Controller area network (TinyCAN)	295
Mailbox	340
Message reception	336
Message transmission	327
Time Quanta	326
TinyCAN standby transition	342
CPU	9

E

Effective address	36
Effective address extension	31
Exception handling	49

Reset exception handling	59
Stack status	63
Trap instruction	49

G

General registers15	General	registers		15
---------------------	---------	-----------	--	----

I

I/O ports	111
Instruction set	21
Arithmetic operations instructions.	23
Bit manipulation instructions	26
Block data transfer instructions	30
Branch instructions	28
Data transfer instructions	22
Logic operations instructions	25
Shift instructions	
System control instructions	
Internal power supply Step-down	
circuit	413
Interrupt	
Internal interrupts	61
Interrupt response time	
IRQ3 to IRQ0 interrupts	
NMI interrupt	
WKP5 to WKP0 interrupts	
Interrupt mask bit	
1	

L

RENESAS

Large current ports	2
Low-voltage detection circuit	3
LVDI (interrupt by low voltage detect)	
circuit41	0